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Abstract: Changes in vegetation activities driven by climate change serve as both a sen-
sitive indicator and a key driver of climate impacts, underscoring the need for accurate
phenological predictions. Delays in leaf senescence due to rising air temperatures increase
the risk of damage from early frost, potentially affecting growth and survival in subse-
quent years. This study aimed to quantify long-term changes in leaf senescence timing
for palmate maple and ginkgo trees, explore their associations with environmental factors,
and compare the performance of multiple modeling approaches to identify their strengths
and limitations for phenological predictions. Using data from 48 sites across South Korea
(1989–2020), this study analyzed trends in the timing of leaf senescence for maple and
ginkgo trees and compared the performance of process-based models (CDD_T, CDD_P,
TP_T, TP_P), a linear regression model, and machine-learning models (random forest,
RF; gradient-boosting decision tree, GBTD). Leaf senescence timing for both species has
progressively been delayed, with ginkgo trees showing a faster rate of change (0.20 vs.
0.17 days per year, p < 0.05). Delayed senescence was observed in most regions (81% for
maple and 75% for ginkgo), with statistically significant delays (p < 0.05) at half of the sites.
Machine-learning models demonstrated the highest training accuracy (RMSE < 4.0 days,
r > 0.90). Evaluation with independent datasets revealed that the RF and process-based
TP_P (including minimum temperature and photoperiod) using a site-specific approach
performed best (RMSE < 5.5 days, r > 0.75). Key environmental factors identified by RF
included autumn minimum or mean temperatures and a summer photoperiod. By con-
ducting this comparative assessment, the study provides insights into the applicability of
different modeling approaches for phenology research and highlights their implications for
vegetation management and climate change adaptation.

Keywords: leaf senescence; ginkgo tree; palmate maple tree; phenological model; tempera-
tures; photoperiod; climate change

1. Introduction
The concentration of greenhouse gases in the atmosphere has increased sharply since

the Industrial Revolution, driving a continuous rise in global temperatures. According to
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the Intergovernmental Panel on Climate Change, surface temperatures in the Northern
Hemisphere in recent decades have reached their highest levels in the past 1400 years [1],
resulting in widespread shifts in vegetation phenology across temperate and boreal forest
regions [2–6]. These shifts affect ecosystem structure and function by altering productivity,
community composition, and carbon, water, and energy exchanges between ecosystems
and the atmosphere [7–9], thereby reshaping the climate [10,11]. Understanding and
predicting phenological changes, therefore, are critical not only for interpreting climate
change impacts but also for informing ecosystem management and adaptation strategies.

Many previous studies on phenological modeling have primarily focused on spring
phenology, such as flowering and leaf-out [12–20]. In contrast, autumn phenological
events, such as leaf senescence and leaf fall, have received less attention due to challenges
like ambiguous criteria for field observations, which lead to relatively high uncertainties
in the data [21,22]. Additionally, eco-physiological experiments, such as manipulation
experiments, have been limited, making it difficult to quantify fall phenological responses
to climate change. However, the annual growing season and carbon uptake period of
vegetation are jointly determined by spring and autumn phenology [7], and recent studies
suggest that changes in autumn phenology may have a greater influence on the length of the
growing season [23] and net ecosystem productivity [24] than those in spring. Furthermore,
delayed leaf senescence and leaf fall not only extend the growing season but also increase
the risk of early frost damage, which can directly impact tree growth and survival in
subsequent years [25,26].

Given the growing importance of studying autumn phenology in temperate tree
species, research efforts have increasingly turned to models to understand how leaf senes-
cence timing responds to climatic factors. These studies have primarily employed statistical
models [27–30], process-based models [31–34], and, more recently, machine-learning meth-
ods [35–37]. Process-based models, which are built on biological mechanisms inferred
through experiments, generally outperform simple statistical models [38] such as linear
regression that assume linear relationships between climate factors and phenological events.
Machine-learning models, with their ability to capture nonlinear relationships and utilize
ensemble techniques, have demonstrated even greater predictive performance compared
to traditional statistical approaches [27,39–41]. As a result, recent studies have increas-
ingly adopted machine-learning algorithms, such as random forest, gradient boosting, and
support vector machines, to enhance the accuracy of phenology predictions [35–37,42,43].
Moreover, certain machine-learning models, particularly random forest, facilitate the assess-
ment of the importance of climatic factors by ranking them based on their contribution to
the model, thereby supporting more reliable projections of phenological responses to future
climate conditions. However, the reliance of machine-learning models on large datasets
and their limited interpretability compared to process-based models pose challenges for
their practical application in ecological research.

Therefore, this study aimed to address these gaps by quantifying long-term changes in
leaf senescence timing in deciduous tree species and investigating their associations with
environmental factors using a comparative modeling approach. Specifically, we developed
and evaluated process-based, linear regression, and machine-learning-based models using
data on leaf senescence timing in ginkgo and palmate maple trees (Ginkgo biloba and
Acer spp.) observed at over 40 sites nationwide (46 and 43 for ginkgo and maple trees,
respectively) between 1989 and 2020. We also analyzed the key climatic and environmental
drivers influencing leaf senescence timing to better understand the observed temporal
changes and their implications. By conducting this comparative assessment, we aimed to
highlight the strengths, limitations, and practical applications of each modeling approach,
providing insights for phenology research and broader climate change studies.
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2. Materials and Methods
2.1. Data

For this study, we utilized long-term observations of leaf senescence timing for palmate
maple (Acer spp.) and ginkgo (Ginkgo biloba) trees across South Korea obtained from the
Korea Meteorological Administration (KMA) Data Portal (https://data.kma.go.kr, data
collected on 24 May 2021, last accessed on 11 November 2024). The KMA conducts autumn
phenological observations on ginkgo and palmate maple trees annually. Observations
are made daily from early September to late November at specific KMA weather stations
(Figure 1, Table A1), focusing on a single designated tree at each site that was selected
for consistent, long-term monitoring of seasonal changes. The onset of leaf coloration is
defined as the date when approximately 20% of the tree canopy has changed color, while
the peak of coloration is recorded when about 80% of the canopy has turned color [44].
These assessments are made through visual observation by trained personnel. The peak
of leaf coloration records was relatively fewer (approximately 86%–87% of onset records),
leading us to use the onset of leaf coloration, which is more consistently observed, as an
indicator for autumn leaf senescence timing.
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and a reference temperature (Table 1). In this study, we designated models using the ref-
erence temperature as the sole criterion for the onset of senescence as CDD_T [57], while 
models considering both the reference temperature and the critical photoperiod as criteria 
for determining the onset of senescence were labeled as CDD_P [31,58]. 

Unlike the CDD, the TPM uses the daily minimum temperature instead of the daily 
mean temperature as its temperature variable ([33], Table 1). According to the TPM 
model’s senescence rate formula, the leaf senescence rate increases exponentially as both 
the daily minimum temperature and photoperiod decrease. Similar to the CDD model, 
TPM models were classified into two types: TP_T and TP_P. The TP_T model defines the 
onset of senescence as the first day when the daily minimum temperature falls below the 

Figure 1. Observation site locations. The map illustrates 48 sites where autumn phenological events
of palmate maple (Acer spp.) and ginkgo (Ginkgo biloba) trees were observed. Data from 16 sites
(marked with red-outlined circles), which have been continuously monitored from 1989 to 2020, were
used for a Mann–Kendall trend analysis to assess changes in the timing of autumn leaf senescence.

To develop and evaluate models for simulating autumn leaf senescence timing, we
selected data spanning at least 20 years of phenological observations from 1989 to 2020,
covering 46 sites for ginkgo trees and 43 sites for palmate maple trees (Figure 1). All the
details about the site name, location, mean senescence dates, etc. are presented in Table A1.
Meteorological stations measure various climate variables, including air temperature, pre-
cipitation, sunshine duration, solar radiation, humidity, wind speed, and atmospheric
pressure. Previous studies have emphasized nighttime and daytime temperatures and pho-
toperiod as the key factors influencing autumn phenology [31–34,45–49], while additional
factors, such as water availability [26,50], nutrient availability [51], insolation [52,53], and
the timing of the preceding leaf unfolding [54,55], have also been suggested to contribute
to the timing of autumn leaf senescence. Based on these findings and the availability of
consistently measured data, we collected daily maximum, minimum, and mean tempera-

https://data.kma.go.kr
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tures, precipitation, and sunshine duration. Additionally, the photoperiod was calculated
for each observation site and each day using the day of the year and latitude [56]. This
calculation was performed using the geosphere package (version 1.5.20) in R (version 4.4.1).

2.2. Model Description
2.2.1. Process-Based Model

In the process-based model for predicting leaf senescence timing, the onset of leaf
senescence (Y) is defined as the day when the accumulated daily leaf senescence rate
(Rsen) reaches a threshold value (S∗

sen) after a specific starting date (t1) (Equation (1)). In
this model, the initiation of leaf senescence (t1) is determined as the earliest point when
environmental conditions fall below a reference temperature or a critical photoperiod.

S∗
sen =

Y

∑
t1

Rsen (1)

The process-based models used in this study include the CDD (cold degree days)
model [31,57,58] and the TPM (low temperature and photoperiod multiplicative) model [33].
Both the CDD and TPM models are categorized into two subtypes based on whether tem-
perature or photoperiod serves as the criterion for determining the onset of leaf senescence
(Table 1).

Table 1. Parameter, initiating conditions for leaf senescence, and daily leaf senescence rate in four
process-based models (CDD_T, CDD_P, TP_T, TP_P).

Model Parameter Initiation
Condition

Daily Leaf
Senescence Rate

CDD_T TB, S*
sen Tmi < TB max(TB − Tmi, 0)

CDD_P TB, Pstart, S*
sen Pi < Pstart

TP_T TB, S*
sen, a, b Tni < TB

{
1

1+e(a×(Tni×Pi−b)) , i ≥ t1

0 , i < t1TP_P Pstart, S*
sen, a, b Pi < Pstart

t1: start date of the leaf senescence, Tmi : mean temperature in a day i, Tni : minimum temperature in a day
i, Pi : photoperiod in a day i, TB: temperature threshold, Pstart: photoperiod threshold, a and b: parameters
controlling the rate of leaf senescence.

The CDD model assumes that leaf senescence progresses under cold conditions, with
the daily senescence rate calculated as the difference between the daily mean temperature
and a reference temperature (Table 1). In this study, we designated models using the
reference temperature as the sole criterion for the onset of senescence as CDD_T [57], while
models considering both the reference temperature and the critical photoperiod as criteria
for determining the onset of senescence were labeled as CDD_P [31,58].

Unlike the CDD, the TPM uses the daily minimum temperature instead of the daily
mean temperature as its temperature variable ([33], Table 1). According to the TPM model’s
senescence rate formula, the leaf senescence rate increases exponentially as both the daily
minimum temperature and photoperiod decrease. Similar to the CDD model, TPM models
were classified into two types: TP_T and TP_P. The TP_T model defines the onset of
senescence as the first day when the daily minimum temperature falls below the reference
temperature, while the TP_P model defines it as the first day when the photoperiod drops
below the critical threshold.
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2.2.2. Linear Regression

For the linear regression model (LR), we used the onset of leaf senescence as the
response variable and environmental factors as predictor variables. Regression coefficients
were estimated using the least square method. The predictor variables included monthly
averages of daily maximum, mean, and minimum temperatures from January to September,
monthly average photoperiod, monthly cumulative precipitation, monthly cumulative
sunshine duration, latitude, longitude, and elevation. To address multicollinearity and
select optimal predictors for the linear regression model, the following steps were un-
dertaken. (1) Pairs of variables with Pearson correlation coefficients exceeding 0.9 were
identified to mitigate multicollinearity while retaining relevant predictors [30,59,60]. For
each pair, the variable with a weaker correlation to leaf senescence timing was excluded.
(2) The stepwise selection method, implemented in the R (version 4.4.1) package leaps
(version 3.2), was applied to identify the optimal predictors. The best model was selected
based on the Bayes information criterion (BIC). (3) A variance inflation factor (VIF) analysis
was conducted to ensure that all retained predictors had VIF values below 10, confirming
minimal multicollinearity [60].

2.2.3. Machine-Learning Approach

Ensemble models combine a large number of weak learners, aggregate their pre-
dictions, and achieve high overall accuracy. To enhance the prediction of autumn leaf
senescence, a machine-learning approach was developed using ensemble techniques like
boosting and bagging (bootstrap aggregating) with decision tree models. The random
forest model (RF), based on the bagging method, limits the number of variables (features)
for consideration at each decision-making. This feature-level randomness, combined with
bootstrap sampling, allows the trees in the ensemble to focus on different parts of the
data, helping to reduce overfitting and improve generalization. On the other hand, the
gradient-boosting decision tree model (GBDT) uses the boosting method, where decision
trees are trained one at a time, with each tree improving upon the errors of the previous
trees. Each subsequent tree focuses on correcting the errors of the previous one by prioritiz-
ing instances that contribute more to the residual errors, guided by the minimization of a
loss function.

The predictors used in RF and GBDT were consistent with those in the LR (monthly
averages of daily maximum, mean, and minimum temperatures from January to September,
monthly mean photoperiod, monthly cumulative precipitation, monthly cumulative sun-
shine duration, latitude, longitude, and elevation). Monthly data were chosen over weekly
data as they demonstrated more reliable results, likely due to reduced variability and
noise, which can improve the robustness of the model. To mitigate multicollinearity, pairs
of variables with Pearson correlation coefficients exceeding 0.9 were identified, and the
variable less strongly correlated with leaf senescence timing was excluded [60]. However,
tree-based machine-learning models tend to be less sensitive to multicollinearity due to
their inherent structure [61]. Therefore, the additional steps described in Section 2.2.2 were
not applied.

2.3. Model Development

The models were developed using two approaches: (1) a multi-site modeling approach,
which integrated data from all sites by pooling site-level observations into a single dataset,
and (2) a site-specific modeling approach, where the models were independently built
for each site. The performance differences between these approaches were compared.
The 32 years of leaf senescence timing data were split approximately 8:2, with 80% of
the data used for model development and parameter or hyperparameter estimation, and
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the remaining 20% used for model validation. To ensure consistency in the training and
validation periods across all sites, six random years (1994, 1996, 2003, 2005, 2009, and 2019)
from the 1989–2020 period were selected for model evaluation. A Wilcoxon rank-sum test
was conducted to confirm that there were no statistically significant differences between
the distributions of the training and validation datasets.

The parameter estimation was conducted using the R (version 4.4.1) packages GenSA
(version 1.1.14.1), xgboost (version 1.7.8.1), and ranger (version 0.17.0). The simulated
annealing (SA) algorithm was applied to the four process-based models (CDD_T, CDD_P,
TP_T, and TP_P). For the two machine-learning models (RF and GBDT), hyperparameter
optimization was performed using a grid search algorithm. In addition, hyperparameter
tuning for the GBDT model employed K-fold cross-validation (K = 10 for the integrated
model and K = 5 for site-specific models), while the RF model utilized the out-of-bag (OOB)
error approach.

2.4. Model Evaluation

The training and validation performance of seven models (CDD_T, CDD_P, TP_T, TP_P,
LR, RF, and GBDT) were evaluated. We used root mean square error (RMSE) (Equation (2)),
Nash–Sutcliffe efficiency (NSE) (Equation (3)), and the Pearson correlation coefficient (r)
(Equation (4)) as performance metrics. The cor() function from the stats (version 4.4.1)
package in R (version 4.4.1) was used to compute r.

RMSE =

√
∑n

i = 1
(
dpi − doi

)2

n
(2)

NSE = 1 −
∑n

i = 1
(
doi − dpi

)2

∑n
i = 1

(
doi − do

)2 (3)

r =
∑N

i = 1

(
doi − doi

)(
dpi − dpi

)
√

∑N
i = 1

(
doi − doi

)2
·
√

∑N
i = 1

(
dpi − dpi

)2
(4)

Here, doi denotes the date when the phenological event (onset of leaf senescence) was
observed in the ith year, dpi is the predicted date by the model for the same year, and n
indicates the total number of observations. The NSE ranges from −∞ to 1, where a value
closer to 1 indicates greater model efficiency. If the NSE is negative, the model performs
worse than predicting the average of the observed dates. In addition, RMSE values were
calculated for each site (RMSEsite), and their distributions were compared across the model
types and development approaches.

2.5. Statistical Analysis

RMSEsite were used to compare the performance differences across the model types
(CDD_T, CDD_P, TP_T, TP_P, LR, RF, and GBDT) and modeling approaches (multi-site
modeling and site-specific modeling). Statistical differences among the model types were
tested using a one-way analysis of variance (ANOVA), and Tukey’s post hoc test was
conducted if significant differences were detected. A paired t-test was performed to
compare the performances of the multi-site and site-specific models.

Additionally, to analyze changes in average leaf senescence timing and autumn
(September to November) temperatures over 30 years and regional variations, we fo-
cused on 16 sites with observation periods exceeding 25 years that continued through 2020
to examine the changes in leaf senescence timing over the study period. Sen’s slope was
calculated, and the Mann–Kendall test was conducted using the zyp (version 0.11.1) and
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wql (version 1.0.1) R (version 4.4.1) packages. All statistical analyses were performed in R
(version 4.4.1).

3. Results
3.1. Changes in Leaf Senescence Timing

Over the past 30 years, the average leaf senescence timing for maple and ginkgo
trees across all of the sites has been delayed (Figure 2a). In 1989, the average timing
was approximately day of the year (DOY) 290 for both species (maple: 291 ± 7; ginkgo:
289 ± 11). By 2020, these dates had shifted to around DOY 300 (maple: 301 ± 8; ginkgo:
302 ± 7). Such delayed trends in leaf senescence timing were statistically significant for
both species (Figure 2a), with ginkgo showing a slightly faster rate (0.204 days year−1,
τ = 0.383, p = 0.002) compared to maple (0.169 days year−1, τ = 0.306, p = 0.015).
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In terms of each of the observation locations, most sites showed delayed trends in 
leaf senescence timing for both maple and ginkgo (13 and 12 out of 16 sites, respectively) 
(Figure 3). Among these, approximately 50% of the sites (maple: seven sites, ginkgo: nine 
sites) showed statistically significant delays (p < 0.05). At a few sites, earlier trends were 
observed, but none were significant. 

Figure 2. (a) Changes in the mean autumn leaf senescence timing [days year−1] for palmate maple
(Acer; Acer spp.) and ginkgo (Ginkgo; Ginkgo biloba) trees over all sites from 1989 to 2020, (b) inter-
site variation in leaf senescence timing [days year−1], (c) changes in the autumn temperatures
[◦C year−1] over all sites from 1989 to 2020, and (d) inter-site variation in autumn temperatures
[◦C year−1]. Inter-site variation indicates the standard deviation among all sites, and the p-values
represent the statistical significance of the trends, as determined by the Mann–Kendall test. LS:
leaf senescence timing, AT: autumn temperatures (mean values of T_max, T_avg, and T_min from
September to November), DOY: day of year, T_max: daily maximum temperature, T_avg: daily
average temperature, T_min: daily minimum temperature.

Over the entire study period (1989–2020), inter-site variation (i.e., the standard de-
viation among sites) in leaf senescence timing showed a decreasing trend, which was
significant for ginkgo trees (−0.09 days year−1, τ = −0.28, p = 0.026, Figure 2b). Simi-
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larly, the inter-site variation in autumn temperatures (September–November) decreased
(Figure 2d), likely contributing to reduced differences in leaf senescence timing until 2010.
However, over the past decade, inter-site variation in leaf senescence timing began in-
creasing again (Figure 2b). For ginkgo, the variation was highest in 1990 (11.0 days) and
lowest in 2010 (3.4 days). Similarly, maple showed a steady decline after the mid-1990s,
reaching its lowest point in 2008 (3.3 days), but this trend reversed, with variation peaking
at 11.4 days in 2019.

In terms of each of the observation locations, most sites showed delayed trends in
leaf senescence timing for both maple and ginkgo (13 and 12 out of 16 sites, respectively)
(Figure 3). Among these, approximately 50% of the sites (maple: seven sites, ginkgo: nine
sites) showed statistically significant delays (p < 0.05). At a few sites, earlier trends were
observed, but none were significant.
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Model 
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RMSE NSE r RMSE NSE r 
GBDT 2.04 0.94 0.98 5.90 0.51 0.72 
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Figure 3. Rate of change in leaf senescence timing [days year−1] for (a) palmate maple (Acer spp.)
and (b) ginkgo (Ginkgo biloba) trees at each site from 1989 to 2020. The color of the points represents
the average onset date of leaf coloring over the study period at each site [day of year], and larger
points indicate a statistically significant trend, as determined by the Mann–Kendall test (p < 0.05).

3.2. Model Comparison for Multi-Site Approach

For the multi-site approach (i.e., blue boxes in Figure 4), the machine-learning models
(GBDT, RF) exhibited substantially improved training performance compared to the process-
based models and a linear regression model (Table 2, left panels in Figure 4a,b). The GBDT
and RF showed RMSEs below 3 days and correlation coefficients above 0.95 (Table 2).
Notably, the GBDT explained 94% and 93% of the total variation in maple and ginkgo trees,
respectively (Table 2). However, the process-based models showed slightly lower training
performance than LM. When RMSEs were calculated separately for each site (RMSEsite in
Figure 4), the GBDT and RF had, on average, 3.5–5 days lower RMSEsite than those of the
other models. Furthermore, the site-to-site variability in RMSEsite (standard deviation of
RMSEsite) was less than half that of the other models. The statistical details are presented
in Figure 4.
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Table 2. Performance of models using a multi-site approach, including machine-learning models
(GBDT, RF), a linear regression model (LR), and process-based models (TP_P, TP_T, CDD_P, CDD_T),
for predicting leaf senescence timing in (a) palmate maple (Acer spp.) and (b) ginkgo (Ginkgo biloba)
trees. RMSE: root mean square error; NSE: Nash–Sutcliffe efficiency; r: Pearson correlation coefficient.

(a)

Model
Training Performance Validation Performance

RMSE NSE r RMSE NSE r

GBDT 2.04 0.94 0.98 5.90 0.51 0.72
RF 2.67 0.90 0.96 5.90 0.50 0.71
LR 5.96 0.49 0.70 6.38 0.42 0.65

TP_P 7.30 0.23 0.55 7.21 0.26 0.58
TP_T 8.26 0.02 0.58 8.56 −0.04 0.57

CDD_P 6.75 0.34 0.61 6.86 0.33 0.60
CDD_T 7.35 0.22 0.61 7.78 0.14 0.59

(b)

Model
Training Performance Validation Performance

RMSE NSE r RMSE NSE r

GBDT 2.23 0.93 0.97 5.62 0.54 0.74
RF 3.00 0.88 0.95 5.45 0.57 0.75
LR 6.07 0.51 0.71 5.80 0.51 0.72

TP_P 6.91 0.36 0.65 6.63 0.36 0.67
TP_T 7.45 0.25 0.66 7.00 0.29 0.70

CDD_P 6.48 0.44 0.67 6.14 0.45 0.70
CDD_T 7.34 0.28 0.68 7.27 0.23 0.69

In the validation dataset (i.e., right panels in Figure 4a,b), the machine-learning models
still outperformed the others, while the process-based models showed the lowest perfor-
mance (Table 2, right panels in Figure 4a,b). However, performance differences among
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the model types decreased compared to the training dataset. Specifically, GBDT and RF
performed relatively worse on the validation dataset compared to their performance on
the training dataset (Table 2). Notably, there were no statistically significant differences in
RMSEsite between the two machine-learning models and the other models (p < 0.05), except
for TP_T in maple and CDD_T in ginkgo (Figure 4).

3.3. Model Comparison for Site-Specific Approach

When models were constructed independently for each site (i.e., red boxes in Figure 4),
the machine-learning models (GBDT, RF) still outperformed the other models, which was
similar to the results from the multi-site approach (Table 3, left panels in Figure 4a,b). The
RMSE of the machine-learning models was less than 4 days, with correlation coefficients
exceeding 0.93 (Table 3). The GBDT explained 92% and 91% of the total variation for the
senescence dates in maple and ginkgo trees, respectively, while the RF modeled 84% and
85% of the variation (Table 3). GBDT and RF outperformed the other models, with RMSEsite

values that were approximately 3.5–5 days lower (p < 0.05, Figure 4). Statistical details are
presented in Figure 4.

Table 3. Performances of models using a site-specific approach, including machine-learning models
(GBDT, RF), a linear regression model (LR), and process-based models (TP_P, TP_T, CDD_P, CDD_T),
for predicting leaf senescence timing in (a) palmate maple (Acer spp.) and (b) ginkgo (Ginkgo biloba)
trees. RMSE: root mean square error; NSE: Nash–Sutcliffe efficiency; r: Pearson correlation coefficient.

(a)

Model
Training Performance Validation Performance

RMSE NSE r RMSE NSE r

GBDT 2.43 0.92 0.96 5.90 0.50 0.72
RF 3.31 0.84 0.93 5.36 0.59 0.77
LR 6.53 0.38 0.62 6.93 0.32 0.57

TP_P 5.38 0.58 0.76 5.48 0.57 0.76
TP_T 5.72 0.53 0.74 6.18 0.46 0.70

CDD_P 5.50 0.56 0.75 5.76 0.53 0.73
CDD_T 6.00 0.48 0.71 6.18 0.46 0.69

(b)

Model
Training Performance Validation Performance

RMSE NSE r RMSE NSE r

GBDT 2.57 0.91 0.96 5.73 0.52 0.74
RF 3.33 0.85 0.94 5.37 0.58 0.76
LR 6.28 0.47 0.69 6.00 0.48 0.69

TP_P 5.40 0.61 0.78 5.27 0.60 0.77
TP_T 5.69 0.57 0.76 5.92 0.49 0.73

CDD_P 5.57 0.58 0.76 5.50 0.56 0.75
CDD_T 6.04 0.51 0.73 6.10 0.46 0.71

Interestingly, however, similar to the results from the multi-site model approach, the
performance differences between machine learning and some process-based models were
reduced in the validation dataset (Table 3, right panels in Figure 4a,b).

The RMSEsite values for RF and TP_P were not statistically significant for either species
(Figure 4), although the RF and TP_P showed the best performance for maple and ginkgo,
respectively. For maple, RF and TP_P demonstrated significantly lower RMSEsite values
compared to the LR (p < 0.05, right panel in Figure 4a). For ginkgo, no statistically significant
differences for RMSEsite were observed among the model types (right panel in Figure 4b).
Meanwhile, the LR generally exhibited a lower validation performance compared to both
the process-based and machine-learning models with a site-specific approach (Table 3, right
panels in Figure 4a,b).
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3.4. Importance Analysis

The importance of the predictors for autumn leaf senescence was assessed using per-
mutation importance in the RF (Figure 5). The results showed that September temperatures,
just before leaf coloring, were the most important factor for predicting leaf senescence
timing in both ginkgo and maple trees. Among temperature variables, daily mean and
minimum temperatures had a greater influence than daily maximum temperatures. The
summer photoperiod was also identified as a key factor.
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4. Discussion
4.1. Environmental Factors Driving Autumn Leaf Senescence

Rising temperatures in the Northern Hemisphere have led to delayed autumn phe-
nological events over the past few decades [2–4,6,7,23,62,63], and extended the growing
season in temperate and boreal forests [3,7,23]. Similarly, this study reveals that, in South
Korea, daily minimum and mean temperatures during autumn have steadily increased
over the past 30 years (1989–2020) (Figure 2c), and the timing of leaf senescence for maple
and ginkgo has shifted to later compared to the 1990s (Figure 2a).

The variation in autumn leaf senescence timing across sites showed a declining trend
until 2010, largely driven by differences in temperature changes among sites. The rate of
change in autumn temperatures from 1989 to 2010 reflected that most sites experienced
warming, with colder regions generally showing more pronounced temperature increases
(p < 0.05, Figure 6a). Sites with higher autumn temperatures and later leaf senescence
timing (Table A1) tended to exhibit slower warming rates (Figure 6a). Consequently, sites
with earlier leaf senescence experienced greater autumn warming, which led to more
pronounced delays in leaf senescence timing compared to warmer sites where leaf coloring
occurred later (Figure 6c). This uneven autumn warming likely contributed to the reduction
in the differences in leaf senescence timing between sites to narrow over time (Figure 2b).
However, since 2011, these differences have started to widen again (Figure 2b). Autumn
temperature trends across sites over the past decade (2011–2020) (Figure 6b) revealed that,
while the warming trend in average temperatures has slowed in most locations, minimum
temperatures have continued to rise at many sites, particularly in warmer areas. This marks
a reversal of the patterns observed before 2011. As a result, from 2011 to 2020, the greatest
delays in senescence timing were observed at sites with later leaf senescence (Figure 6d),
which likely contributed to the renewed increase in site-to-site variation.
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Figure 6. Rate of change in autumn temperatures at each site [◦C year−1] during (a) 1989–2010 and
(b) 2011–2020. Rate of change in leaf senescence timing [days year−1] for palmate maple (Acer; Acer
spp.) and ginkgo (Ginkgo; Ginkgo biloba) at each site [days year−1] during (c) 1989–2010 and (d) 2011–
2020, plotted against the average timing of leaf senescence at each site. Autumn temperatures (AT)
represent the mean values of T_avg and T_min from September to November), and leaf senescence
(LS) timing represents the onset date of leaf coloring. T_avg: daily mean temperature, T_min: daily
minimum temperature.

Furthermore, as the trend of delayed leaf senescence has recently moderated in many
locations (Figure 6c,d), the overall pace of delay in leaf senescence timing appears to be
decreasing. Park, Ho, Jeong, Lee and Kim [58] analyzed changes in leaf senescence timing
for maple and ginkgo trees in South Korea from 1989 to 2007 using data collected through
the same observation network. They reported that the timing of leaf senescence was delayed
by approximately 0.45 days per year for maple and ginkgo trees (maple: 0.44 days year−1,
ginkgo: 0.46 days year−1). In contrast, this study reveals reduced delay rates of +0.1693
days year−1 for maple and +0.2043 days year−1 for ginkgo from 1989 to 2020. These rates
are about 55%–60% (maple: 55.6%, ginkgo: 61.5%) lower than those reported by Park, Ho,
Jeong, Lee and Kim [58].

This phenomenon may be associated with the recent slowdown in autumn warming
trends in many locations (Figure 6b). Additionally, the limitations of photoperiod may also
have affected the rate of delay in leaf senescence timing. In contrast to spring phenology,
which is predominantly driven by temperature [19,64,65], with photoperiod serving as a
genetically fixed constraint [66,67], autumn phenology is regulated by both the declining
photoperiod and temperature as key environmental cues [32,46,47,49]. In this study, re-
gardless of the modeling approach, the TP_P model outperformed the TP_T model, and
the CDD_P model showed better performance than the CDD_T model (Tables 2 and 3,
Figure 3). These findings suggest that the photoperiod after the summer solstice plays a
key role in determining the timing of leaf senescence in maple and ginkgo trees. This is
consistent with the variable importance analysis from the RF, which identified the summer
photoperiod as a key factor in predicting leaf senescence timing (Figure 5).
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4.2. Model Performance

Linear regression models have the advantage of simplicity and ease of interpretation,
as they are expressed in the form of a single equation. These models predict the response
variable based on the assumption of linear relationships with predictor variables, but their
limited predictive performance often stems from this linearity assumption. The mecha-
nisms determining leaf senescence timing reflect nonlinear responses to environmental
variables [8]. Consequently, in this study, linear regression models exhibited relatively
large errors in predicting leaf senescence timing under a site-specific modeling approach
(Table 3).

Process-based models that integrate multi-site data (multi-site model) performed worse
than machine learning and linear regression models. However, independently developed
site-specific models significantly outperformed the multi-site model across all datasets and the
process-based model types for both ginkgo and maple trees (Figure 4, Tables 2 and 3). This
suggests that site-specific models capture parameters that reflect the local adaptation of tree
species, thereby improving model accuracy. Previous studies indicate that plant species
have evolved specific physiological and ecological adaptations to their environmental
conditions [68]. Even within the same species, trees can exhibit phenotypic plasticity and
phenological plasticity, shaped by long-term adaptation to their surrounding environ-
ments [16,69–71]. Therefore, when building process-based models across large geographic
areas, it is essential to account for the unique traits of local populations to improve model
accuracy [38,72,73].

Another limitation of process-based models is that most models used for predicting
leaf senescence timing only rely on temperature and photoperiod as predictors. These
factors are the most dominant in determining the timing of leaf senescence in temperate
deciduous broadleaf trees and have been demonstrated to effectively track leaf senes-
cence timing in previous studies [31–34]. However, it has been revealed that autumn leaf
senescence can be influenced by various environmental factors, in addition to tempera-
ture and photoperiod, including heat stress [74,75], nutrient limitations [51], and water
stress [26] [75]. As a result, the predictive accuracy of process-based models may differ
substantially across regions, depending on the frequency of extreme weather events such
as droughts, heatwaves, and heavy rainfall [41]. Ideally, before incorporating additional
environmental variables into process-based models, experimental studies should first quan-
tify their effects on leaf senescence timing and elucidate the underlying mechanisms [76].
However, this approach remains a considerable challenge. Wolkovich, et al. [77] empha-
sized that warming experiments often fail to replicate the changes observed in natural
systems, resulting in underestimations of plant phenological responses to climate change.
Additionally, introducing new parameters is known to increase the risk of overfitting and
uncertainty in parameter estimation [78,79].

Machine-learning models are now widely used in various fields of natural sciences,
such as geoscience and ecology, to address complex interactions between vegetation and
the environment [37,40,41,43]. In this study, the RF and GBDT based on a multi-site ap-
proach showed smaller variations in RMSEsite (RMSE calculated for each site) compared
to process-based models with the same approach (Figure 4). These findings suggest that
the nonlinear, ensemble-based approach of these models enabled them to account for a
range of environmental factors affecting leaf senescence timing, as well as the complex
ways these factors interact. Moreover, the RF demonstrated strong performance in predict-
ing leaf-coloring timing in ginkgo and maple trees regardless of the modeling approach.
The RF effectively captured the impact of key environmental factors, including autumn
temperatures and summer photoperiod (Figure 5), achieving a strong correlation, a high
model efficiency, and a low RMSE between observations and predictions (Tables 2 and 3).
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Despite their strong performance, machine-learning models have certain limitations. First,
these models can overfit, causing substantial discrepancies between the training and validation
results (Tables 2 and 3). Limited or biased data toward specific environmental conditions may
reduce predictive accuracy under new environmental conditions [37,43]. To address overfitting
and enhance stability, it is necessary to develop extensive datasets that include a diverse range
of environmental conditions [37,80]. Second, while machine-learning models provide the
importance of key environmental variables, they cannot directly explain the physiological and
ecological mechanisms driving leaf senescence. Although variable importance metrics (e.g.,
permutation importance) can help identify the primary environmental factors influencing leaf
senescence timing for each species, they do not provide insights into “how” these factors affect
the leaf senescence process [27,37]. Unlike traditional statistical models or process-based models,
machine-learning models face challenges in offering the interpretability needed to explain the
underlying mechanisms [81].

Given the results we presented and the discussions above, future research should pri-
oritize improving the interpretability of machine-learning models by linking their outputs
to specific physiological mechanisms, such as the leaf senescence processes observed in
this study. Incorporating additional environmental factors, like photoperiod, temperature,
and precipitation, alongside the biological drivers could provide a more comprehensive
understanding of the interactions that govern phenology. These refinements would not
only enhance the accuracy and applicability of phenology predictions under novel climate
scenarios but also guide the development of targeted ecosystem management strategies
tailored to specific species and regions.

5. Conclusions
We investigated the effects of environmental factors on leaf senescence timing in

ginkgo and maple trees by utilizing a linear regression model, process-based models, and
machine-learning models. Our findings revealed that the machine-learning models, par-
ticularly random forest, achieved high predictive accuracy in explaining variations in leaf
senescence timing, identifying key factors such as autumn minimum or mean temper-
atures and summer photoperiod. However, these models require careful calibration to
mitigate overfitting risks, emphasizing the need for long-term observational datasets that
capture diverse environmental conditions. Site-specific process-based models, particularly
TP_P incorporating minimum temperature and photoperiod, demonstrated consistent and
robust performance, effectively simulating phenological responses across sites while bal-
ancing interpretability and predictive power. These results highlight the value of adopting
site-specific modeling approaches to account for local adaptations and the phenologi-
cal plasticity of species across regions. Future research should prioritize improving the
interpretability of machine-learning models by linking their outputs to physiological mech-
anisms, such as senescence-related temperature thresholds or photoperiodic cues, and by
integrating additional environmental and biological drivers. This integrative approach
could refine phenology predictions, deepen our understanding of species’ responses to
climate change, and guide targeted strategies for ecosystem management in a rapidly
changing environment.
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Appendix A

Table A1. Latitude, longitude, elevation, and autumn mean temperature (AMT; mean temperatures
from September to November) for the 48 study sites observing leaf senescence timing (LST) of
palmate maple (A; Acer spp.) and ginkgo (G; Ginkgo biloba) trees, with the onset of LST (mean ±
standard deviation) for them from 16 sites (indicated in bold) continuously monitored through 2020.
LSTA: onset of LST for Acer spp., LSTG: onset of LST for Ginkgo biloba.

Site ID Site Name Latitude
[◦N]

Longitude
[◦E]

Elevation
[m] AMT [◦C] Species LSTA LSTG

90 Sokcho 38.2509 128.5647 17.53 14.66 A, G
95 Cheorwon 38.1479 127.3042 155.48 11.63 A, G
101 Chuncheon 37.9026 127.7357 75.82 12.59 A, Gr
108 Seoul 37.5714 126.9658 85.67 14.72 A, G 300 ± 6 297 ± 8
106 Donghae 37.5071 129.1243 40.46 14.72 A, G
202 Yangpyeong 37.4886 127.4945 47.26 12.88 G
115 Ulleungdo 37.4813 130.8986 221.14 15.15 A, G 291 ± 8 296 ± 7
112 Incheon 37.4777 126.6249 68.99 14.91 A, G 301 ± 6 299 ± 5
114 Wonju 37.3375 127.9466 150.11 13.09 A, G
203 Icheon 37.2640 127.4842 80.09 12.87 G
119 Suwon 37.2575 126.9830 39.81 14.35 A, G 294 ± 5 294 ± 6
121 Yeongwol 37.1813 128.4574 240.54 12.38 A
216 Taebaek 37.1704 128.9893 714.45 10.25 G
221 Jecheon 37.1593 128.1943 264.62 11.46 G
130 Uljin 36.9918 129.4128 48.98 14.84 A, G
127 Chungju 36.9705 127.9525 114.85 12.87 A, G
272 Yeongju 36.8718 128.5169 211.32 12.70 A
129 Seosan 36.7766 126.4939 25.25 14.03 A, G
232 Cheonan 36.7622 127.2928 84.78 13.38 A, G
131 Cheongju 36.6392 127.4407 58.7 14.43 A, G 294 ± 4 295 ± 5
136 Andong 36.5729 128.7073 141.26 13.32 A, G 291 ± 5 291 ± 4
277 Yeongdeok 36.5334 129.4093 40.71 14.79 A, G
226 Boeun 36.4876 127.7342 171.31 12.26 A, G
133 Daejeon 36.3720 127.3721 67.79 14.51 A, G 297 ± 8 295 ± 8
235 Boryeong 36.3272 126.5574 9.98 14.95 A, G
135 Chupungnyeong 36.2203 127.9946 244.98 13.02 A, G
279 Gumi 36.1306 128.3206 49.17 13.99 A, G
138 Pohang 36.0320 129.3800 3.94 16.50 A, G 295 ± 6 298 ± 5
140 Gunsan 36.0053 126.7614 27.85 15.18 A, G
143 Daegu 35.8780 128.6530 54.27 15.80 A, G 298 ± 6 297 ± 5
146 Jeonju 35.8409 127.1172 60.44 15.31 A, G 296 ± 5 297 ± 5
284 Geochang 35.6674 127.9099 228.45 12.89 A, G
152 Ulsan 35.5824 129.3347 81.14 16.18 A, G 301 ± 5 302 ± 5
285 Hapcheon 35.5651 128.1699 26.72 14.38 A, G
245 Jeongeup 35.5634 126.8390 68.7 15.02 A, G
247 Namwon 35.4213 127.3965 133.49 13.76 A, G
156 Gwangju 35.1729 126.8916 70.28 15.92 A, G 301 ± 6 299 ± 6
155 Changwon 35.1702 128.5728 34.97 16.98 A, G 304 ± 6 303 ± 7
192 Jinju 35.1638 128.0400 29.35 14.83 A, G
159 Busan 35.1047 129.0320 69.56 17.46 A, G 306 ± 8 304 ± 7
256 Juam 35.0750 127.2391 74.63 14.04 A, G
162 Tongyeong 34.8454 128.4356 31.24 17.10 A, G
165 Mokpo 34.8173 126.3815 44.7 16.44 A, G 302 ± 6 304 ± 7
168 Yeosu 34.7393 127.7406 65.93 17.15 A, G 307 ± 7 305 ± 7
261 Haenam 34.5538 126.5691 16.36 15.40 A, G
170 Wando 34.3959 126.7018 35.37 16.73 A, G
184 Jeju 33.5141 126.5297 20.79 18.38 G
189 Seogwipo 33.2462 126.5653 51.86 19.41 A, G
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