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Abstract: Forest succession is a rapid approach that can be used to increase soil carbon
(C) stocks. It is crucial to understand how forest succession influences microbial com-
munity assembly and soil carbon fractions to improve carbon sequestration strategies.
This present work analyzed microbial communities in forest succession, and the effects
of particulate-associated organic C (POC) and mineral-associated organic C (MAOC) on
microbial community structure and assembly in forest succession in Changbai Mountains,
China. Compared to cropland, primary forest increased MAOC by 35% and POC by 43%,
suggesting the importance of POC for microbial assembly processes, offering insights into
forest restoration practices to enhance soil carbon sequestration. As succession proceeds,
weak environmental selection facilitated the reduced deterministic processes, whereas local
ecological and dispersal drift were elevated. Such shifts in fungal and bacterial commu-
nities could be mostly triggered by soil pH. Considering that POC was important, shifts
in assembly processes can be determined by resource availability rather than succession
sequences. Such findings conform to the neutral hypothesis, suggesting that POC exerts a
negligible effect on analyzing microbial community assembly in forest succession. Overall,
this present work sheds more light on the important effects of POC and MAOC on modeling
different microbial communities and community assembly in forest succession.

Keywords: particulate organic carbon; mineral-associated organic carbon; microbial
community; assembly processes; forest succession; high-throughput sequencing

1. Introduction
Untroubled primary forests contribute to storing excessive soil organic carbon (SOC);

thus, they are the important carbon sink that can mitigate climate change [1–3]. At present,
an increasing number of primary forests are transformed into secondary forests, planta-
tions, or additional land uses due to human activities and climate change [4–6]. Therefore,
SOC storage is reduced and SOC stability and formation paths are changed, which have
substantially affected SOC sequestration [1,2]. According to the latest frameworks, SOC
deposition and maintenance, climate change response, and land management and utiliza-
tion have been widely investigated by classifying SOC as particulate organic C (POC) or
mineral-associated organic C (MAOC) [1,7–9]. POC consists of plant-derived structural
polymers [10,11], including different structural compounds that have decreased N contents
and defend against soil microbial attacks through the physical protection of aggregates
and inherent biochemical resistance [12,13]. POC shows a decreased lifespan, with average
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residence time between years and decades [14,15]. By contrast, MAOC mostly contains
microbial products (high-/low-molecular-weight compounds) that have an increased N
content, and it is persistent within soil because of chemical bonding with Ca, Mn, and
Mg oxides, and macroaggregate-mediated physical protection [11,16–18]. Owing to the
mineral protection, the mean residence time is between decades and centuries, and it is less
susceptible to environmental disturbance and change than POC [15,19]. Nevertheless, the
SOC fractions are usually neglected in research, limiting a comprehensive understanding
of SOC deposition and susceptibility in forest transformation.

The microbial assembly processes remain a hotspot in microbial ecology because of
its assistance in the mechanical knowledge of the drivers of community succession [20,21].
Microbial community assembly is mostly influenced by deterministic processes, confirming
the “everything is everywhere, but the environment selects” principle [22,23]. However,
stochastic processes must not be neglected in the case of dispersal events and random
extinctions. Soil can store excessive SOC in forest succession, and SOC is a vital part of C
input studies [24,25]. Microbial communities play an essential role in SOC cycling, directly
or indirectly providing services to forest ecosystems [26]. The balance of microbial assem-
bly processes may be strongly affected by soil C fractions [27]. The microbial community
assembly collection process is expected to influence carbon metabolism-related microbial
activities by limiting community membership, and it exerts a vital impact on POC and
MAOC immobilization and mineralization [7,8]. For instance, in salt marsh plant com-
munity succession, SOC temporal alterations exert the most potent selection of bacterial
community assembly [28]. Based on Luan et al. [29], the greatest carbon metabolic capacity
can be obtained at the maximal selection pressure, with minimal dispersal. In this regard,
microbial assembly processes may dominate the formation of SOC (especially POC and
MAOC immobilization and mineralization). Thus, for understanding how forest succession
affects microbial community and assembly, we should associate it with soil C fractions.

This present work was conducted in Changbai Mountains, China. Approximately
5 decades ago, some forests in this area were deforested, forming a large area of various
forest succession stages [24]. Therefore, this area exhibits a good forest succession
sequence to study microbial community succession patterns. Shifts in stochastic and
deterministic balance may be linked to alterations in SOC fractions. Higher SOC can
increase environmental heterogeneity through diversifying resource availability for
soil microorganisms as well as plant–microorganism feedbacks, thereby enhancing
deterministic selection [30,31]. To address these issues, through analyzing microbial
communities in forest succession, we analyzed major effects of POC and MAOC on
shaping microbial community assembly and structures in forest succession of Changbai
Mountains, China. Unlike bulk SOC, POC and MAOC exhibit distinct turnover rates
and stability, offering unique insights into microbial dynamics during succession. Thus,
we hypothesized that: (1) deterministic processes dominate microbial assembly during
early succession stages, and stochasticity increases later; (2) SOC fractions, particularly
POC, explain differences in responses of microbial communities.

2. Materials and Methods
2.1. Study Site

We carried out the present work at the Research Station of Changbai Mountain Forest
Ecosystem in Northeast China (42◦23′ N and 128◦50′ E) (Figure S1). This site shows a repre-
sentative continental temperate monsoon climate, and altitude, mean annual temperature,
and precipitation are 780 m, 4.1 ◦C, and 840.3 mm, respectively. The soils can be classified
as dark brown soil (Chinese soil taxonomy) or Alfisol (USDA soil taxonomy), bedrocks are
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volcanic ash and weathered basalt, and maximum soil layer depth is 10 m. Table S1 shows
vegetation featured at this site.

2.2. Sampling

Field samples were collected in September 2024, with forest succession (secondary
forest succession referred to woody vegetation regrowing following total forest clearance
for human activities, and primary forests are primary or old-growth forests without
clear-felling and are slightly or not affected by known recent human disturbance [32])
being chosen: primary forest (PF), secondary forest (SF), as well as cropland (CL),
common land-use types of dryland cultivation (for corn) adopted in the last 50 years.
SF and CL are transformable based on PF with the same background [33]. We selected
five plots (around 50 × 50 m) of each forest type at a mutual distance of 50–100 m [34].
We randomly chose 15 subplots (1 × 1 m) of each plot. Litter and rock were removed
to obtain surface samples. Totally, we obtained 5 (depth, 0–20 cm) random soil cores
(diameter, 5.5 cm), with each layer mixed within one plot for forming a mixture sample.
Altogether, we obtained 225 soil samples (three land conversion types × five replicates
× 15 samples). Thereafter, we further divided fresh soil samples in two subsamples,
one for preservation under 4 ◦C to analyze physicochemical characters, and one for
preservation under −80 ◦C for microbial DNA analysis.

We performed a field survey at peak growing season from July to August in 2024.
Vegetation coverage was estimated in each plot, and the Pi was calculated [15]:

Pi = i/Ti

i stands for specific sample species, and Ti represents overall sample species; Pi
demonstrates importance value.

The plant diversity (Shannon–Wiener index) uses the information-theoretic method for
predicting species that the subsequently harvested individual belonged to. For the larger
community species diversity, there was a higher uncertainty in subsequent individual
prediction. The equation below was adopted for calculation:

H = −
s

∑
i=1

Pi ln Pi

S represents species number and Pi indicates importance value.

2.3. Analyses of Soil Physicochemical Characters

We utilized a pH meter (ThermoFisher Scientific Inc., San Jose, CA, USA) for analyzing
soil pH with aqueous suspension (soil:water = 1:5, w/v). Later, 10 g fresh samples were
dried for a 48 h period under 105 ◦C to constant weight for measuring soil moisture content
by means of gravimetry. Soil organic matter (SOM) was analyzed with the potassium
dichromate oxidation method (Six and Paustian, 2014). Through using the 0.58 conversion
factor, we analyzed SOC level (g kg−1) according to SOM. Soil total phosphorus and nitro-
gen (TP and TN, g kg−1) were analyzed through colorimetry, Kjeldahl, and molybdenum
antimony (Bremner, 1960). Absorbance was measured at 660 nm with a spectrophotometer
(FLUOstar Omega, BMG Labtech, Ortenberg, Germany). The chloroform fumigation–
extraction process was utilized for analyzing soil microbial biomass C, P, N (MBC, MBP,
and MBN, mg kg−1) [35]. Each sample was analyzed thrice to take the average as the final
result. Table S2 displays soil physicochemical properties.

We adopted compounds that give great fluorescence, such as 4-methylumbelliferone
(MUB) and 7-amino-4-methylcoumarin (MUC), to measure soil extracellular enzymes,
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such as acid phosphatase (AP), α-1,4-glucosidase (AG), and β-N-acetylglucosaminidase
(NAG) by fluorometry. Thereafter, we drew standard curves of MUB and MUC (0, 2.5,
5, 10, 25, 50, and 100 mL) [36]. Around 4 g freshly collected samples were stirred for
a 2 min period in 40 mL acetic acid buffer solution (pH 5.0) for forming homogenate.
Afterwards, 100 mL homogenate was added with 150 mL buffer, and the mixture was
added in a microtiter plate. We set one test (substrate + homogenate) along with one control
(buffer + homogenate) sample of every sample. The 96-well microplates were incubated
for a 3 h duration under 25 ◦C, and later, 1 mL of 1 M NaOH was added for terminating
reactions, thus analyzing soil extracellular enzymes, which were expressed as nmol activity
g−1 dry soil h−1 (nmol g−1h−1) after quenching was corrected. We detected fluorescence
intensity at 365 and 450 excitation and emission wavelengths, respectively. Table S2 displays
enzyme substrates, commissions, and incubation duration.

2.4. Soil POC and MAOC

Soil organic C could be categorized as POC or MAOC by wet sieving and particle-size
fractionation. In brief, air-dried soil samples (20 g) were added to the 50 mL plastic bottles
that contained 5% (w/v) sodium hexametaphosphate solution. Thereafter, we put bottles
onto the shaker for 2 h agitation at 180 rpm for complete blending, and later spread the
soil homogenates using the reciprocal sieve shaker (AS200 control, Retsch, Germany) by
the 53 µm sieve, and subsequently dispersed them using deionized water. Afterwards,
this shaker underwent movement 3 cm up and down 100 times. Meanwhile, we added
deionized water into this sieve persistently for facilitating organic matter dispersion in
aggregates. Then, the fractions remaining on and crossing this sieve were dried in the
beaker at 60 ◦C prior to weighing. Finally, two fractions including POC (>53 µm) and
MAOC (<53 µm) could be obtained.

2.5. DNA Extraction and Bioinformatics Analysis

We extracted total soil microbial DNA by the cetyltrimethylammonium bromide
approach. We also profiled fungal and bacterial communities through targeting ITS1 and
V4–V5 regions within 18S and 16S rRNA genes, respectively [37]. PCR was performed to
amplify target sequences using ITS5-1737F/ITS2-2043R and 515F/907R primers for fungal
and bacterial communities, respectively. Sequencing was completed with the Nova Seq
6000 platform (Illumina Inc., San Diego, CA, USA). By adopting the DADA2 module of
QIIME2 (Version QIIME2-202006), read assembly in amplicon sequence variants (ASVs) was
conducted after quality filtering. Unite and Silva Databases were adopted for annotations
of fungi and bacteria, respectively [38]. Furthermore, sequencing results were imported
into the National Center for Biotechnology Information Sequence Read Archive database
(accession number PRJNA1022345 and PRJNA1023123).

2.6. Microbial Community Assembly

We utilized alpha-diversity indices for evaluating microbial communities, and null
models for assessing the contributions of selection and dispersal processes to community
turnover [39]. Therefore, we analyzed phylogenetic beta-diversity (β-nearest taxon index,
βNTI) and taxonomic indices, and later determined the alterations by the Bray–Curtis-based
Raup–Crick metric (RCbray) [40]. βNTI indicates if deterministic processes occupy the
dominance, accompanied by unexpected significantly decreased (homogeneous selection:
βNTI < −2) or increased (variable selection: βNTI > 2) phylogenetic transitions. Notably,
|βNTI| < 2 and RCbray < −0.95 demonstrate markedly increased species quantities
within two communities relative to occasional expectation (homogeneous dispersal), while
RCbray > 0.95 indicates markedly decreased species quantities within two communities
relative to occasional expectation (dispersal limitation). Moreover, upon |RCbray| < 0.95,
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the two communities show the maximal shared species under occasional expectation,
suggesting the only “non-dominant” component (drift) [28].

2.7. Co-Occurrence Network Analysis

“WGCNA” package in R (V4.1.2) was utilized for building microbial networks [41].
p-value adjustment was completed using Benjamini and Hochberg false discovery rates [42].
This study only employed ASVs whose relative abundance was >0.001 in analysis. Statis-
tical correlation was identified upon p < 0.05 and Pearson’s r > 0.7, and these standards
were later adopted in co-occurrence network construction [43]. Network topological fea-
tures were determined with “igraph” in R [44]. Network complexity was evaluated using
node/edge numbers and average degree value, with greater node/edge quantities and
higher average degree value representing the higher network complexity [45]. ‘mixOmics’
in R was adopted for computing value importance in projection (VIP) for partial least
squares (PLS) regression [46]. Moreover, it was the predicting factor for assessing impor-
tance of ASV occurrence within this network for βNTI. Typically, we chose ASVs that had
great degrees (5 most significant within this network) and VIP (>1) to be keystone taxa.
Network was visualized by Gephi software (V0.10.1).

2.8. Statistical Analysis

We used SPSS23.0 (IBM, Armonk, NY, USA) to carry out Fisher’s test and one-way
ANOVA upon the thresholds of 95% and 99% confidence intervals (CIs), respectively
(p < 0.05 and p < 0.01). The Circos plot was used for visualizing microbial phylum’s
taxonomic distribution in different succession stages by adopting R software (V4.1.2).
Simultaneously, “vegan” of R was adopted to determine microbial community alpha-
diversity [47]. Moreover, QIIME 2 software (Version QIIME2-202006) was employed for
analyzing the Bray–Curtis measure of dissimilarity in microbial communities, with result
visualization being conducted using nonmetric multidimensional scaling (NMDS) by
“metaMDS” function of R package “vegan” [48]. For obtaining reliable NMDS results,
we performed significance tests with nonparametric multivariate ANOVA (Adonis) and
analysis of similarities (ANOSIM). We utilized NMDS scores for first axis for representing
structures of fungal and bacterial communities. This study carried out linear regression
for analyzing associations of POC and MAOC with microbial community and assembly
processes through R package “ggplot2”. Moreover, we adopted Pearson’s correlation
analysis for evaluating associations of keystone taxa, POC, and MAOC, together with
microbial community assembly, with “corrplot” in R package [49]. At last, we adopted
AMOS (V 21.0) (https://sourceforge.net/projects/amos/) (accessed on 22 December 2024)
to construct structural equation models (SEM) to illustrate how POC and MAOC influence
microbial community assembly.

3. Results
3.1. Soil POC, MAOC, and Microbial Composition in Forest Succession

Relative levels of POC and MAOC were different during forest succession (Figure 1,
p < 0.05). In forest succession, POC and MAOC levels gradually increased. There are
significantly differences across forest succession. According to the 97% sequence sim-
ilarity level, saturated rarefaction curves were smoothed (Figure S2). Differences in
fungal and bacterial strains were detected, accompanied by aggregated distribution in
forest succession (Figure 2). Clustering of soil fungal and bacterial strains was com-
pleted into diverse ecosystems (Figure 2). To be specific, we classified soil bacterial
sequences into 13 phyla upon 97% similarity (Table S4), and dominant phyla included
Actinobacteria, Proteobacteria, and Acidobacteria (relative abundances > 5%), taking up 70%

https://sourceforge.net/projects/amos/
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of total sequences. Additionally, we classified soil fungal sequences into eight phyla
upon 97% similarity (Table S5), and dominant phyla included Ascomycota, Basidiomycota,
and Chytridiomycota (relative abundances > 5%), taking up 70% of total sequences. Fun-
gal and bacterial species had slowly increased Shannon–Wiener indices during forest
succession (Table S5). Compared to the cropland, Actinobacteria had gradually declined
relative abundance in forest succession. Nonetheless, Proteobacteria and Acidobacteria ex-
hibited slowly increased relative abundances in forest succession (Figure 2). Apart from
soil fungal species, Ascomycota and Basidiomycota had increased and declined relative
abundances in forest succession, respectively (Figure 2).
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Figure 1. Particulate and mineral-associated organic carbon during forest succession. One-way
ANOVA was adopted for testing between-succession heterogeneities with one sample t-test. Hori-
zontal bars inside boxes indicate medians. Box tops and bottoms stand for 75th and 25th percentiles,
respectively. Letters are indicative of significant differences (p < 0.05) among forest successions.
Primary forest (PF), secondary forest (SF), and cropland (CL).

The present work utilized a taxon–taxon co-occurrence network to visualize com-
plex microbial community networks in forest succession (Figure 3). Thus, PF had larger
microbial communities as well as greater average node connectivity degrees (in terms
of node/edge numbers) (Figure 3). Microbial communities within PF had remarkably
increased node connectivity degrees as well as integrated positive (85.8%) and negative
(14.2%) connections. PF had an average microbial connectivity degree of clustering coeffi-
cient of PF increased, suggesting a lower community network complexity with increasing
environmental stress.

3.2. Soil Microbial Assembly in Forest Succession

βNTI was used to analyze how forest succession affected microbial assembly according
to phylogenetic tree and community abundance data in forest succession. Consequently,
deterministic processes (|βNTI| > 2), especially homogeneous selection, exerted a key
effect on fungal and bacterial community assembly at two depths (Figure 4). Relative to
PF, microbial communities in CL showed lower deterministic assembly processes. The
stages of succession suggested the gradual alteration of βNTI in forest succession, and
strongest deterministic assembly could be observed from PF relative to others. Nonetheless,
stochastic assembly processes had vital impact, while deterministic assembly processes of
CL were gradually weakened. On the whole, in later succession, deterministic processes
(homogeneous selection) of microbial communities became weaker than those in early
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succession (Figure 4). Drift and dispersal limitations had important effects on fungal and
bacterial stochastic processes in forest succession.
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increased relative to within-group differences, thus determining the significance of grouping. Primary
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Figure 3. Microbial community cross-kingdom co-occurrence network in forest succession. Colors
in this network indicate different phyla. The node size (ASVs) is in direct proportion to connection
number. Nodes with mutual significant (p < 0.05) and strong correlation (Spearman’s > 0.7) were
linked (edges). Edge thickness is in direct proportion to Spearman’s correlation coefficients. Red
edges stand for positive connections, whereas green edges represent negative interactions. Primary
forest (PF), secondary forest (SF), and cropland (CL).
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3.3. Links Between POC, MAOC, and Microbial Community

Linear regressions showed strong associations between POC, MAOC, and assembly
of microbial communities (Figure 5). Pearson analysis revealed that SOC fractions were
positively related to microbial community (Figure 6). Moreover, Acidobacteria relative
abundance exhibited positive association with POC, and negative correlation with MAOC.
The Proteobacteria relative abundance showed negative association with POC. Ascomycota
and Basidiomycota exhibited positive correlation with MAOC. Furthermore, POC potently
suggested alterations in microbial community assembly relative to MAOC. Soil pH is the
main driving factor related to microbial communities.
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Figure 6. Pearson correlations between the relative abundance of the dominant microbial phyla and
soil carbon fractions. The orange color indicates negative correlations, while the green color indicates
positive correlations (dark orange, r = −0.80, dark green, r = 0.80), with correlation coefficients
(Perason ρ) represented by the scale to the right. *, p < 0.05; **, p < 0.01. SM: soil moisture; TN: soil total
nitrogen; TP: soil total phosphorus; MBC: soil microbial biomass carbon; MBN: soil microbial biomass
nitrogen; MBP: soil microbial biomass phosphorus; AG: α-1,4-glucosidase; AP: acid phosphatase;
NAG: β-N-acetylglucosaminidase.

SEM was performed to determine SOC fractions’ regulation of microbial community
assembly (Figure 7 and S3). We put forward the final SEM by adopting a knowledge-
based priori model, depicting relevant flows regarding the causal relations of environ-
mental variables with microbial community assembly. Following SEM, forest succession
negatively affected MAOC, but positively affected POC. More specifically, MAOC neg-
atively affected fungal community assembly, while POC positively affected bacterial
community assembly.
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((B,C) POC and MAOC effects on bacterial assembly processes; (D,E) POC and MAOC effects
on fungal assembly processes) on microbial community assembly (p = 0.03, χ2 = 7.65, CFI = 0.98,
AIC = 198.1, RSMEA = 0.001, 89.5% explained variation). Green and orange arrows stand for remark-
ably positive and negative pathways, respectively. Data near arrows represent standardized path
coefficients, which are close to relative regression weights, and indicate size effect on relationship.
Arrow thickness is in direct proportion to covariation coefficient or standardized path coefficient mag-
nitude. R2 was determined following 999 bootstraps, representing variance interpreted percentage of
every dependent variable within this model. * p < 0.05, ** p < 0.01.

4. Discussion
4.1. Soil POC and MAOC During Forest Succession

Many articles support the first hypothesis that POC substantially increases after forest
succession [7,50]. This is because that POC contains different structural compounds that
have decreased N contents, thus resisting soil microbial attacks via physical protection
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and internal biochemical resistance within aggregates [51]. Therefore, the POC was higher
than MAOC during forest succession (Figure 1). In forest succession, plant biomass-
derived primary C (mostly below-ground) input in POC increases, causing the deposition
of POC [51,52]. Based on Six et al. [53], POC exerted its physical protection through
SOC sequestration. As reported by Garcia-Franco et al. [54], soil aggregation associated
with changes in microbial communities modulated SOC sequestration after semi-arid
shrubland afforestation. Forest succession may result in fast and excess macroaggregate
generation [55], leading to POC protection and deposition [18,51]. Different from POC,
MAOC, the mineral matrix-related stable SOC pool, exhibits greater physical protection
and is less susceptible to mineralization [1,8,16]. In some studies, MAOC increases owing to
vegetation restoration [18,56,57]. Likewise, the MAOC level increases in forest succession
(Figure 1). Relative to the increased POC ratio, labile POC shows higher sensitivity to
grassland restoration than MAOC, demonstrating the second hypothesis.

4.2. Microbial Diversity and Composition in Forest Succession

Alpha-diversity indicators (Chao and Shannon indices) slowly increased in forest
succession (Tables S4 and S5), suggesting furious microbial community competition for
resources in later forest succession. Competition can enhance species diversity, which
also causes the increased diversity during later forest succession [33]. Such findings
are consistent with previous reports in diverse ecosystems [31,33,34]. As confirmed by
null deviation analysis and neutral community modeling results, stochastic and selection
changes had a key role in ecosystem recovery, resulting in the community structural
trajectory succession [58]. When heterogeneities of microbial diversity, richness, and
main species in forest succession were identified, this work examined the taxon–taxon co-
occurrence network for dealing with complex associations among microbial communities
(Figure 3). Consequently, the microbial community co-occurrence network of PF exhibited
increased complexity compared with CL. Typically, PF had greater resources, causing a
greater ASVs co-occurrence degree of diverse modules. Given the growing node/edge
quantities, modularity and negative correlation ratios in succession, this microbial network
was stable and complex in later succession. In addition, a higher modularity revealed that
this network was more stable by limiting the role of taxa loss in communities [59].

4.3. Microbial Assembly Processes in Forest Succession

Here, Acidibacter and Ascomycete (the dominant microbes) are acid-tolerant and
suitable in acidic soils, and pH was significantly different during forest succession. Both
Acidibacter and Ascomycete were strongly linked to soil pH (Figure 6). Soil pH might affect
microbes by selective pressure on fitness and survival of soil microorganisms under strongly
acidic soil conditions in tested forests [58]. The succession increased soil pH, whereas
microbial communities were under the negative impact of soil pH since many bacterial
taxa have narrower growth tolerances [21]. In addition, soil pH is a rigid environmental
filter causing phylogenetic clustering, despite successional age, which has been recognized
as an important abiotic factor for community assembly [50,51]. Therefore, there was a large
pH difference among different succession stages (p < 0.05) (Table S3), and this may induce
the gradual shift from deterministic to stochastic processes.

Our observed dominance of deterministic processes during early succession aligns
with our hypothesis, and suggests strong environmental filtering during initial community
establishment. Determinism greatly affected fungal community assembly in early succes-
sion (Figure 4), while stochasticity became predominant in later succession, conforming
to previous findings [31,60,61]. Plant community composition markedly affects fungal
communities [62]. Due to the close relation of fungi with plants, like mutualism, alterations
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in plant composition directly affect fungi as the strong filters, causing the different fungal
communities [63]. Additionally, plants may indirectly affect fungi, inducing alterations in
fungal communities in succession via heterogeneous litter biochemistry [20]. Following
niche-based theory, deterministic processes are dominant in community structure. The
strong deterministic processes in the case of poor available resource and extreme envi-
ronmental conditions are common, which is the greater determinism (low βNTI) in early
succession [64]. Early stages had diverse plant community proportions in succession. Con-
sequently, the role of plant community-induced fungal assembly processes is related to
selection pressure (for example, low nutrient resources leads to higher symbiont proportion)
on soil fungal fitness and survival in different plant communities within our analyzed
forests during early succession; therefore, deterministic processes have relative impor-
tance in modulating fungal community structure [65,66]. However, the plant community
becomes stable in later succession, thereby promoting environmental homogeneity [67].
Stochastic processes modeling fungal community structure in late succession are crucial
to ecosystems within a homogenous environment [68,69]. Based on macroecological the-
ory, stochasticity shows more and more relative impact according to resource availability,
because nutrient supplement enhances stochastic processes and decreases niche selec-
tion [64,66]. As succession proceeds, alterations of plant communities may result in higher
nutrient availability, including the higher SOC in later succession, therefore suppressing
symbiotic fungus–plant relations [65,70]. Such results can promote stochastic processes to
remodel fungal communities in later succession.

4.4. Linking POC and MAOC with Microbial Community Assembly

Carbon resource availability might affect microbial community assembly, and the latter
was examined through the changing environment in forest succession (Figures 5 and 6).
Alterations of the determinism–stochasticity balance are related to alterations in soil carbon
fractions [58,71]. Higher SOC might promote environmental heterogeneity through increas-
ing available resource diversity for soil communities and plant–microorganism feedbacks,
which can thus enhance deterministic selection [72]. Thus, we further discussed the relation
of microbial composition with POC and MAOC (Figure 5), finding that microbial com-
munities were significantly positively or negatively related to different SOC compositions
(Figure 6). SOC composition changed during forest succession, leading to heterogenous
resource availability. It induced alterations in community and species structures, as well as
microbial diversity, affecting microbial assembly [58,71]. As indicated by Pearson correla-
tion, Actinobacteria was markedly positively related to methyl carbon (Figure 6). However,
Acidobacteria was negatively related to methyl carbon, which might be related to microbial
affinity for diverse carbon sources. Soil microbial communities may be mostly associated
with labile SOC that is tightly linked with microbial taxa, and is ready for microbial miner-
alization, which indicates alterations in early soil C pools [21,73]. Thus, it mostly affects
microbial communities. Consequently, long-time vegetation succession increases microbial
network complexity and stability. Additionally, microbial community networks are mostly
associated with labile SOC. This is because that soil microbial metabolic growth requires a
lot of available nutrients and labile SOC; Thus, the structure of the microbial network is
more complex in sufficient nutrients [72].

We utilized SEM to investigate microbial assembly mechanisms during long-time
succession (Figure 7). POC accounted for a main driving factor for microbial community
assembly, more than MAOC, confirming the second hypothesis. MAOC negatively af-
fected fungal community assembly, while POC positively affected bacterial community
assembly. It may be because that POC is ready for microorganisms to use, and influences
the community composition and structure [21,73]. Key taxa are important controllers of
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community assembly because they greatly affect microbial communities as the tightly re-
lated microorganisms [74,75]. For instance, key taxa showed a positive relation with βNTI,
confirming these results. Overall, this work sheds more light on relations between microbial
communities and labile SOC at a long-time scale. Thus, we consider that primary forest
recovery could optimize POC and MAOC contributions to long-term carbon sequestration.

5. Conclusions
This work comprehensively analyzes the drivers, assembly mechanisms, and alter-

ations of microbial community ecological functions during forest succession. Forest suc-
cession changes compositions and structures of bacterial and fungal communities, which
are related to possible functional changes. Additionally, forest succession enhances the
dispersal limitation processes in bacterial communities, but weakens fungal communities.
Stochastic processes are crucial to model bacterial community assembly in succession,
whereas deterministic processes are predominant during fungal community assembly,
and stochastic selection slowly increases during succession. The POC and MAOC drive
microbial assembly by influencing microbial keystone taxa, which provide new targeted
treatment and indicators of the soil microenvironment. Consequently, future studies can
measure critical taxa by metatranscriptomic and metagenomic approaches.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/f16010027/s1, Table S1. Characteristics of vegetation of study sites during
forest succession. Table S2. Extracellular enzymes, assayed from soil samples, and their abbreviations
used in this study, enzyme commission numbers, corresponding substrates, and incubation times.
Table S3. Soil physical and chemical characteristics during forest succession. Table S4. Illumina MiSeq
sequenced bacterial data and diversity indices (at 97% sequence similarity) based on the 16S gene for
grassland sites with year since forest succession. Table S5. Illumina MiSeq sequenced fungal data
and diversity indices (at 97% sequence similarity) based on the ITS rRNA gene with year since forest
succession. Figure S1. Map showing the location of the study area. Figure S2. Rarefaction curves of
sequence number at 97% similarity: A, soil bacterial community; B, soil fungal community. Figure S3.
The index of co-occurrence network microbial communities during forest succession. The horizontal
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25th percentiles, respectively. Letters indicate significant differences (p < 0.05) among forest succession.
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