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Abstract: Given the construction challenges and the impacts of industrial waste generation
and the implications of using chemical adhesives, this study aims to evaluate epoxy
as an alternative resin, whose application in the production of wood particleboards is
still underexplored. In this regard, its results were compared with those of widely used
adhesives, such as urea-formaldehyde (UF). Pine wood particles were used, and epoxy
resin was applied as a binder in 5%, 10%, and 15% proportions. Panels were manufactured
under pressing parameters of 5 N/mm2 for 10 min at 110 ◦C. Physical and mechanical
properties of panels were evaluated using Brazilian, European, and American standards.
The results showed that epoxy resin is potentially convenient for the particleboard industry,
as the 15% trait panels met the P4 class criteria in the Brazilian and European standards
and D-2 for the American code, and the 10% trait panels achieved the M-3i class for the
American document. Although 5% adhesive was insufficient to envelop wood particles,
these traits with greater percentages reached high enveloping ratings in the scanning
electron microscopy (SEM) test, making epoxy resin viable for the panel industry as a
potential alternative to formaldehyde-based adhesives.

Keywords: wood panel; particleboard; pine; epoxy resin

1. Introduction
Wood-based particleboards have gained prominence in the industry due to their rela-

tively low cost and ease of production, being widely used in applications such as furniture,
construction, and packaging. Global production of these materials reached 102 million
cubic meters in 2020, reflecting the growing demand for their favorable mechanical and
physical properties, as reported by the Food and Agriculture Organization [1]. With increas-
ing environmental awareness and the pursuit of wood products free of harmful volatile
organic compounds (VOCs) such as formaldehyde, new approaches have been explored to
optimize particleboard production using more sustainable adhesives [2,3].
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In 2023, the global particleboard market was USD 23 billion, with a projected growth
to USD 31.3 billion by 2032, with a 3.4% compound annual growth rate. This growth under-
scores the urgent need to develop alternative materials that combine superior performance
with a lower environmental impact [4].

Particleboards are manufactured using urea-formaldehyde (UF)-based resins, widely
utilized due to their commercial availability and lower costs. However, these adhesives
have considerable limitations, such as low moisture resistance and limited durability, mak-
ing them suitable only for indoor applications [5,6]. Furthermore, conventional adhesives
like phenol-based compounds are often associated with the emission of formaldehyde
and other VOCs, raising significant health and environmental concerns, thus elevating
worries about the safety and environmental impact of these materials [7]. Given these risks,
several international regulations, including those from the European Chemicals Agency
(ECHA), are intensifying efforts to reduce the consumption of formaldehyde-based adhe-
sives to mitigate the negative effects on human health and the environment [8], including
respiratory diseases and cancer. This growing concern has driven the industry to seek
alternatives that offer greater safety and sustainability and performance benefits, promoting
solutions that meet the most stringent standards and the expectations for environmentally
responsible materials [9].

In this context, epoxy resin, known for its excellent properties, becomes an efficient
alternative to traditional adhesives due to its market growth and broad application across
multiple sectors [10]. According to projections, the market value of epoxy resin, which
was USD 10.5 billion in 2020, is expected to double by 2031 [11]. The growth of the
epoxy resin market is not limited to established industries but is also expanding rapidly
in regions such as Asia, particularly China, India, and Taiwan, where the development
of the steel, petrochemical, and automotive industries significantly drive the demand
for epoxy coatings. Government incentives and the availability of skilled and affordable
labor create a favorable environment for the expansion of epoxy production and usage.
Countries such as Taiwan and Indonesia, with a focus on the shipbuilding and automotive
industries, also show robust growth in epoxy usage, reinforcing its importance in the global
markets. At the same time, the demand for sustainable buildings in North America has
driven the epoxy coatings’ usage, valued for their durability, moisture resistance, and lower
environmental impact [12]. These factors make epoxy resin a strategic and promising option
as an alternative adhesive, aligned with sustainability needs and market demands, though
its uses remain underexplored [13]. Epoxy does not require heat for curing and, despite
the lack of studies on volatile emissions with this adhesive, it is important to mention that
there is no formaldehyde release, contributing to safety in the panel industry.

This study aims to evaluate the epoxy resin usage in wood particleboard production,
proposing it as an alternative to traditional formaldehyde-based adhesives that aligns with
global market demands for more sustainable materials. This research seeks to determine
the physical and mechanical properties of the prototypes, analyzing the influences of the
percentage of adhesive through scanning electron microscopy (SEM) and statistical assess-
ment. This study also evaluates the feasibility, from codes, of epoxy resin for manufacturing
more environmentally friendly panels.

2. Materials and Methods
2.1. Proposed Traits

Three traits were established with different mixtures for panel production, where
the adhesive proportions were adjusted to 5, 10, and 15% (relative to the dry mass of
pinewood), as considered by Herradon et al. [13]. A 500 kg/m3 nominal density for the
panels was adopted regarding mass calculations of particles and resin, with approximate
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values adopted by Gilio et al. [14] and Cazella et al. [3]. Although this value may be
considered low for the target density, the choice is justified by the need to adjust the final
density due to the high density of the epoxy adhesive. The produced dimensions were
350 × 350 × 20 mm, adjusted to the size of the press plates, totaling 1225 g as the total mass
for each panel. The proposals are detailed in Table 1.

Table 1. Proposed traits.

Mixture Traits Pine (%) Epoxy (%)

5EP 100 5
10EP 100 10
15EP 100 15

2.2. Materials

Pinewood residues, generated during industrial processing with surface planers, were
sourced from Brazilian sawmills (LMS 400, Rocco, Limeira, Brazil). In the laboratory, these
residues were ground in a knife mill (Model 500, Metalúrgica Trapp, Jaragúa do Sul, Brazil)
equipped with a 12 mm screen to reduce and classify size, following the methodology used
by Campos et al. [2], producing particles with sizes ranging from 1 to 6 mm (Figure 1a,b).
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Figure 1. Laboratory processes: (a) pine shavings; (b) wooden particle processing using knife mill;
and (c) epoxy resin and hardener.

The adhesive used was Epoxy Resin 2004, a two-component resin consisting of
Resin 2004 (1120 kg/m3 density and viscosity from 600 to 900 cPs) and Hardener 3154
(1005 kg/m3 density and 200 cPs max viscosity) (Figure 1c). According to the manufacturer,
the resin is composed of epichlorohydrin and bisphenol-A, while the hardener is based on
modified polyamine. Its use is prescribed in a ratio of 2 parts resin to 1 part hardener, with
respective densities of 1120 kg/m3 and 1005 kg/m3.

2.3. Evaluation of Materials and Compositions

To characterize the granulometric wood composition, an adaptation of the standard
code ABNT NM 248 [15] was performed, as described by Herradon et al. [13] and Souza
et al. [16]. The procedure consisted of testing a 35 g sample in a set of sieves with mesh
sizes of 6.30, 4.76, 2.38, 1.19, 0.595, and 0.297 mm (Figure 2).

To determine the specific mass of pinewood particles, two standards were used:
ABNT NBR 6458 [17] and ABNT NBR 6457 [18], employing the volumetric flask method
(Figure 2c). The test was conducted using a pycnometer No. 2, with a 500 mL volume, a
mercury thermometer calibrated to a precision of 0.1 ◦C and capable of measuring within
a range of −10 ◦C to 100 ◦C, and a high-precision analytical balance. Considering that
conifer wood, e.g., pine, usually exhibits a comparatively lower specific density than water,
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absolute alcohol (with a 99.3% concentration and a 789 kg/m3 specific mass) was utilized
as an alternative to water, as recommended by Cazella et al. [3] and Bispo et al. [19].
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Figure 2. Laboratory processes: (a) weighing of pinewood used for the granulometric test;
(b) granulometric test of the particles; and (c) determination of specific mass of pinewood particles.

2.4. Panel Production

A moisture analyzer (Model i-Thermo G, BEL, Monza, Italy) was used to calculate the
moisture content of the particles, which were initially exposed to open air until reaching a
moisture level below 5% (Figure 3).
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Figure 3. Laboratory processes: (a) air-dried particles; and (b) moisture content test of the particles.

Epoxy resin was weighed according to the manufacturer’s recommendations, using a
2:1 ratio (resin/hardener) in proportion to the dry mass of the particles (Table 1). Prior to
application, the manufacturer recommends an initial manual mixing of the components for
5 min to improve adhesion. After mixing, the resin was manually applied to the pinewood
particles, which were then placed in a mechanical rotative mixer (Model 120L cv, CSM,
Jaragúa do Sul, Brazil) for final homogenization with the epoxy resin. The entire process is
illustrated in Figure 4.

After homogenizing the wooden particles with the resin, they were prepared for cold
pre-pressing in a 350 × 350 × 20 mm wooden form. Subsequently, the particles were
subjected to a press with a 110 ◦C temperature and a 5 N/mm2 pressure as described by
Herradon et al. [13]. The total pressing time was 10 min, with a 30 s pause after the first
5 min to prevent gas concentration and bubble formation inside the panel [2,19]. After
pressing, the panels were left to stabilize at room temperature for over 7 days, according to
the resin manufacturer’s specifications, to ensure complete adhesive curing, with a relative
humidity at 65 ± 2% (Figure 5).
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2.5. Performance Tests

According to the ABNT NBR 14810-2 [20] standard, 10 specimens were used for
each test. After the adhesive had fully cured, the produced panels were cut into
50 × 50 × 20 mm samples, totaling 40 specimens for each mixture, in order to evaluate
their physical properties, such as density, moisture content, water absorption, and swelling
after 24 h. Figure 6 illustrates the preparation of the specimens for the physical tests.
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(b) measurement with a caliper; and (c) samples submerged in deionized water.

For the analysis of mechanical properties, they were conducted using a universal
testing machine (GR048, EMIC, São José dos Pinhais, Brazil), the modulus of rupture (MOR)
and modulus of elasticity (MOE) tests were conducted using specimens with a 50 mm width
and a 350 mm length, with thicknesses from 10 to 16 mm. For the perpendicular tensile (PT)
tests, the specimens had dimensions of 50 × 50 mm. Figure 7 illustrates the preparation of
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the specimens for the mechanical tests. Regarding panel performance, they were classified
according to ABNT NBR 14810-2 [20], ANSI A208.1 [21], and EN 312 [22].
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2.6. Scanning Electron Microscopy

Scanning electron microscopy (SEM) aims to analyze the interaction between epoxy
and the wood particles, observing the adhesive’s behavior under pressing temperature
and pressure, as well as studying the particle encapsulation with increasing adhesive
content. The samples, prepared from the rupture region of the specimens (1 × 1 × 0.4 cm),
were mounted on Stub holders with carbon tape, coated with gold (Quarum Q150TE),
and analyzed using SEM (ZEISS EVO LS15 with EDS from OXFORD Instruments, model
INCAx-act, Oberkochen, Germany).

The interaction between the panel’s components was analyzed through visual ex-
aminations, where voids and surface roughness were assessed based on the addition of
adhesive. Regarding the voids, it was observed that the wood particle fibers exhibit a cer-
tain degree of spacing, whereas the roughness demonstrates the filling or encapsulation of
the particles. The colors in the microscopic images indicate that lighter shades correspond
to a greater degree of encapsulation, while darker tones signify voids or low filling levels.

2.7. Statistical Analysis

A statistical evaluation of the results was carried out using the Tukey mean comparison
test with a 5% significance level, alongside the Anderson–Darling normality test (also at 5%
significance) to confirm the validity of the analysis of variance (ANOVA, 5% significance).
This procedure aimed to assess the impact of incorporating epoxy resin (5%, 10%, and 15%)
on the physical and mechanical properties of the produced panels.

In the Tukey test, the designation “A” corresponds to the mixture with the highest
mean value, “B” indicates the second highest, and so forth. Identical letters signify mixtures
with statistically similar mean outcomes. It is noteworthy that, for these analyses and the
computation of descriptive statistics, ten experimental data points were collected for each
property across the different mixture types.

3. Results and Discussion
The results were initially presented based on the statistical analysis, highlighting

whether the increase in adhesive quantity produced significant results according to its
incorporation. Subsequently, the physical and mechanical properties were analyzed and
compared with the literature to determine if epoxy is superior to conventional resins.
Finally, a verification of compliance with the minimum requirements established by the
standards was conducted.
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3.1. Statistical Analysis of Results

Table 2 presents the statistical values for each percentage of epoxy resin. It is possible
to observe that, for the density test (D), the adhesive had an influence (A) starting from
10% incorporation, maintaining the same statistical mean (A) for 15% incorporation. As for
the water absorption (WA) and thickness swelling (TS) tests, the amount of incorporated
adhesive influenced the results, with statistically different values for each mixture, suggest-
ing that the increase positively contributes to better resistance. The results obtained for the
moisture content (MC) test showed that the epoxy adhesive had statistically different means
starting from 15% incorporation, which represents better values for the test conducted.

Table 2. Tukey test results for mean value contrast across all studied properties.

Property
Epoxy Contents

p-Value (AD)
5% 10% 15%

Density (D) B A A 0.341
Water absorption (WA) A B C 0.523
Thickness swelling (TS) A B C 0.064
Moisture content (MC) A A B 0.473

Modulus of rupture (MOR) C B A 0.261
Modulus of elasticity (MOE) C B A 0.063

Perpendicular tensile (PT) C B A 0.452
Identical letters (A, B, and C) in the rows indicate mixtures with statistically equivalent mean results.

In the mechanical tests, the increase in adhesive percentage had a positive effect on
the performance of each mixture, resulting in statistically distinct means as the adhesive
percentage was increased.

3.2. Granulometry of Mixtures

Pinewood particles were predominantly retained in sieve No. 8 (66.52%) and sieve
No. 16 (24.56%), with openings of 2.38 mm and 1.19 mm, respectively, indicating greater
efficiency in the grinding process for these dimensions (Table 3). Sieve No. 4, with an
opening of 4.76 mm, retained 6.59% of the material. Summing the results of sieves No. 4,
8, and 16, a total of 97.67% of the 35 g tested mass was obtained. This particle size range,
from 4.76 mm to 1.19 mm, demonstrates a good distribution, with only a small fraction
of smaller particles, presenting a fineness modulus of 3.81. This distribution favors better
adhesive bonding, as the efficiency of its application increases when the proportion of fine
particles is reduced [23]. Sieve No. 50 and the bottom sieve did not retain any mass, having
no impact on the granulometric composition of the mixtures. Similar results were found by
Cazella et al. [3] when using the same species of pinewood.

Table 3. Granulometry compositions and fineness module (FM).

Type Hole (mm) Average Retained Mass (g) Retained Material (%)

1/4” 6.30 0.41 1.18
4 4.76 2.31 6.59
8 2.38 23.28 66.52
16 1.19 8.60 24.56
30 0.60 0.33 0.93
50 0.30 0.00 0.00

FM - - 3.81
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For the specific mass results through testing, the value was 570 kg/m3. The value
found for pine particles is similar to that specified by the ABNT NBR 7190 [24] standard,
which establishes approximately 560 kg/m3 as the apparent specific mass of pine particles.

3.3. Physical Properties

The physical results obtained through the tests are summarized in Table 4.

Table 4. Physical results.

Property
Epoxy Contents

5% 10% 15%

D (kg/m3) 840 880 890
WA (%) 102.34 51.94 38.64
TS (%) 55.53 28.45 15.84

MC (%) 7.89 7.59 6.80
Density (D), water absorption (WA), thickness swelling (TS), and moisture content (MC).

The ABNT NBR 14810-2 [20] code establishes that low-density panels must have
a density below 551 kg/m3, medium-density panels around 551 and 750 kg/m3, and
high-density panels above 750 kg/m3. However, the density measurements achieved here
exceeded these guidelines, even with a nominal density of 0.5 g/cm3, due to the use of
epoxy resin, which has a high specific mass (1.12 g/cm3 for the resin and 1.005 g/cm3 for
the hardener).

In a study led by Herradon et al. [13], pressing pinewood panels with 10% and
15% epoxy at a pressure of 4 N/mm2 resulted in 800 and 850 kg/m3. This shows that
the pressing pressure and the use of epoxy resin significantly contribute to the increase
in density.

Thickness swelling and water absorption results indicated that increasing the percent-
age of epoxy resin significantly improved performance in both tests. However, the increase
in resin did not have a significant impact on moisture content. These results are superior to
those found by Sozim et al. [25] who produced pinewood particleboards bonded with 10%
urea-formaldehyde, 3.92 N/mm2, and 160 ◦C, achieving values of 90.02% and 31.47% for
absorption and swelling, respectively. Similarly, Carvalho et al. [26] obtained absorption
and swelling results inferior to those of 10% and 15% epoxy resin, although their panels
were produced with a pressure of 3 N/mm2, 10% urea-formaldehyde, and a temperature
of 180 ◦C.

The significant reduction in water absorption and swelling at higher epoxy resin con-
tents (10% and 15%) demonstrates not only the technical feasibility but also the potential
for advancing composite material science. This improvement provides a pathway for man-
ufacturing panels suitable for humid environments, broadening the scope of applications
compared to conventional adhesives.

While the performance of epoxy resin in this study is superior under controlled
laboratory conditions, future studies should investigate its long-term durability under
varying environmental conditions, such as extreme temperatures or prolonged exposure
to moisture. Such studies would provide deeper insights into the viability of replacing
formaldehyde-based adhesives at an industrial scale.

3.4. Mechanical Properties

Table 5 presents the mechanical properties results of the panels obtained through
testing. It is observed that as the epoxy resin content increased, better results were obtained
for all tests. This occurs because, by increasing the percentage of adhesives, a larger surface
area of the particles adheres to the adhesive, thus providing better performance. The
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increase in the mechanical strength of the panels from 5% to 10% epoxy resin usage was
82.45%, 97.85%, and 236.67% for MOR, MOE, and PT, respectively.

Table 5. Mechanical results.

Property
Epoxy Contents

5% 10% 15%

MOR (N/mm2) 9.05 16.52 26.92
MOE (N/mm2) 1354 2679 3051

PT (N/mm2) 0.30 1.01 1.43
Modulus of rupture (MOR), modulus of elasticity (MOE), and perpendicular tensile (TS).

The progressive increase in MOR and MOE values with higher epoxy contents (10%
and 15%) reflects a significant improvement in mechanical bonding. This suggests that
epoxy resin facilitates superior load distribution among wood particles, a phenomenon
corroborated by Herradon et al. [13], who highlighted the critical role of pressure in
enhancing resin performance. These findings provide a deeper understanding of the
interaction between resin content and mechanical strength, which is pivotal for designing
optimized composite materials.

The results demonstrate the potential of epoxy resin to meet industrial demands for
stronger and more durable wood panels. When compared to 10% urea-formaldehyde
adhesives, as observed by Sozim et al. [25] and Carvalho et al. [26], epoxy resin offers
a viable alternative, particularly in applications requiring high mechanical performance
(MOR and MOE). However, the higher perpendicular tensile (PT) values in previous
studies highlight a limitation that warrants further optimization of the epoxy formulation.
This finding is relevant to the industry, as Lee et al. [27] reported that resin costs can
account for up to 30% of the production cost of panels. This cost percentage represents a
significant challenge for industrial scalability, particularly in markets where cost-efficiency
is a priority. Nonetheless, the superior mechanical properties achieved with higher epoxy
resin contents suggest potential for value-added applications where performance outweighs
raw material costs.

3.5. Scanning Electron Microscope Images

The micrographs through SEM allowed the analysis of the interaction between the
wood particles and the epoxy resin following the rupture of the specimens during me-
chanical testing. Figure 8 illustrates a progressive filling of particles voids with increasing
adhesive content, which accounts for the observed rise in panel density. This filling is
essential, as a high number of voids facilitates water percolation, reducing the panel’s
resistance to moisture, swelling, and absorption, as demonstrated by the physical results.
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In the 5EP mixture, the system was more prone to water percolation due to the lower
encapsulation of the wood particles. In the 10EP and 15EP mixtures, this percolation was
reduced, which is attributed to better coating of the particles by the adhesive. Although
epoxy is water-resistant, the wood particles are hydrophilic, and the lack of proper encap-
sulation increases water absorption, resulting in higher swelling and absorption values in
panels with lower adhesive content, negatively impacting their physical properties. The
images confirm that increasing the adhesive content provided a more uniform coating
between the particles, improving bonding and, consequently, the mechanical properties. In
panels with 5% epoxy, there were still voids without proper resin interaction, weakening
these areas. In contrast, panels with 10% and 15% epoxy showed superior coverage, with
better mechanical results due to the larger adhesive area between the particles.

3.6. Classifications According to Standard Codes

Table 6 shows the requirements of the ABNT NBR 14810 [20], ANSI A208.1 [21], and
EN 312 [22] standards, along with the panel classifications.

Table 6. Panel classification according to the standard codes.

Standard
Code Class. TS (%) PT

(N/mm2)
MOR

(N/mm2)
MOE

(N/mm2)
Classified

Panels

ABNT NBR
14810 [20] P4 16 0.40 16 2300 15EP

A208.1 [21] M-3i - 0.50 15 2500 10EP
A208.1 [21] D-2 - 0.55 16.5 2750 15EP
EN 312 [22] P4 16 0.40 16 2300 15EP

Thickness swelling, perpendicular tensile (TS), modulus of rupture (MOR), and modulus of elasticity (MOE).

The panel with 10% epoxy resin achieved the M-3i classification according to the ANSI
A208.1 [21] standard, while the panel with 15% resin obtained classifications across all
evaluated standards. On the other hand, the panel with 5% epoxy resin did not achieve
classification in any of the standards, primarily due to the low values obtained in the
perpendicular tensile (PT) and thickness swelling (TS).

4. Conclusions
From the results obtained, the conclusions are as follows:

• Based on the tests conducted, it was confirmed that particleboards using epoxy resin
can replace urea-formaldehyde and other adhesives, offering superior performance
in some cases, such as physical and mechanical tests. Additionally, epoxy has the
advantage of being less harmful to the environment and human health, making it a
more sustainable option;

• The statistical analysis demonstrated that the epoxy resin content significantly influ-
ences all evaluated physical and mechanical properties;

• The scanning electron microscopy (SEM) analysis confirmed that the addition of 5%
epoxy resin is not sufficient to adequately fill the voids in the panel or to provide good
encapsulation of the particles, compromising protection against moisture. Panels with
10% and 15% present better resin encapsulation of the particles, which is sufficient to
provide better protection in physical and mechanical tests;

• Panels met the parameters of both Brazilian and international standard codes for
furniture applications under conditions of humid and not severe conditions.

The search for more sustainable materials for particleboard production represents an
important step toward a more ecological future. To better understand the potential of epoxy
resin, further research is needed to investigate its properties under different parameters,
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such as variations in temperature, pressure, and time. Additionally, it is essential to
conduct studies exploring the application of epoxy-based panels in environments where
urea-formaldehyde panels are already widely used.

Author Contributions: A.J.S.J.: Writing—review and editing, Writing—original draft, Resources,
Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data cura-
tion, Conceptualization. M.P.H.: Writing—review and editing, Visualization, Methodology, Valida-
tion, Investigation, Formal analysis, Data curation. M.V.d.S.: Writing—review and editing, Visualiza-
tion, Validation, Investigation, Formal analysis, Data curation. S.A.M.d.S.: Writing—original draft, Vi-
sualization, Validation, Supervision, Resources, Project administration, Methodology, Funding acqui-
sition, Formal analysis, Conceptualization. V.A.D.A.: Writing—review and editing, Writing—original
draft, Visualization, Validation, Supervision, Formal analysis. D.H.d.A.: Writing—original draft,
Methodology, Investigation, Formal analysis, Data curation. H.F.d.S.: Writing—original draft,
Methodology, Investigation, Formal analysis, Data curation. A.L.C.: Writing—review and edit-
ing, Visualization, Validation, Supervision, Software, Investigation, Formal analysis. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior—Brasil (CAPES)—Código de Financiamento 001.

Data Availability Statement: No data are shared, as most data were presented in the result sections.

Acknowledgments: The authors gratefully acknowledge the financial support from the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Funding Code 001, and
the institutional support provided by the MAC Group (Alternative Materials for Construction),
headquartered at the Ilha Solteira campus of São Paulo State University (UNESP).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. FAO. Global Production of Wood-Based Panels: Trends and Statistics; Food and Agriculture Organization of the United Nations: Rome,

Italy, 2021; Available online: https://www.fao.org/faostat/en/#home (accessed on 11 November 2024).
2. Campos, P.H.S.; Santos Junior, A.J.; de Souza, M.V.; Herradon, M.P.; Libera, V.B.L.; Dezen, L.E.; da Silva, É.V.; Silva, A.G.B.P.;

Rodrigues, F.R.; Bispo, R.A.; et al. Evaluation and production of high-strength wood composite panels with polyethylene
terephthalate (PET). BioResources 2023, 18, 8528–8535. [CrossRef]

3. da Silva Cazella, P.H.; de Souza, M.V.; Rodrigues, F.R.; da Silva, S.A.M.; Bispo, R.A.; Araujo, V.A.; de Christoforo, A.L. Polyethylene
terephthalate (PET) as a recycled raw material for particleboards produced from pinus wood and biopolymer resin. J. Clean. Prod.
2024, 447, 141460. [CrossRef]

4. IMARC Group. Particleboard Market: Global Industry Trends, Share, Size, Growth, Opportunity, and Forecast 2023–2032; IMARC
Group: New York, NY, USA, 2023; Available online: https://www.imarcgroup.com/particle-board-market (accessed on
11 November 2024).

5. Mansouri, H.R.; Pizzi, A.; Leban, J.M. Improved water resistance of UF adhesives for plywood by small pMDI additions. Holz Als
Roh-Und Werkst. 2006, 64, 218–220. [CrossRef]
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