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Abstract: Individual tree segmentation is crucial to extract forest structural parameters, 
which is vital for forest resource management and ecological monitoring. Airborne LiDAR 
(ALS), with its ability to rapidly and accurately acquire three-dimensional forest structural 
information, has become an essential tool for large-scale forest monitoring. However, ac-
curately locating individual trees and mapping canopy boundaries continues to be hin-
dered by the overlapping nature of the tree canopies, especially in dense forests. To ad-
dress these issues, this study introduces CCD-YOLO, a novel deep learning-based net-
work for individual tree segmentation from the ALS point cloud. The proposed approach 
introduces key architectural enhancements to the YOLO framework, including (1) the in-
tegration of cross residual transformer network extended (CReToNeXt) backbone for fea-
ture extraction and multi-scale feature fusion, (2) the application of the convolutional 
block attention module (CBAM) to emphasize tree crown features while suppressing 
noise, and (3) a dynamic head for adaptive multi-layer feature fusion, enhancing bound-
ary delineation accuracy. The proposed network was trained using a newly generated 
individual tree segmentation (ITS) dataset collected from a dense forest. A comprehensive 
evaluation of the experimental results was conducted across varying forest densities, en-
compassing a variety of both internal and external consistency assessments. The model 
outperforms the commonly used watershed algorithm and commercial LiDAR 360 soft-
ware, achieving the highest indices (precision, F1, and recall) in both tree crown detection 
and boundary segmentation stages. This study highlights the potential of CCD-YOLO as 
an efficient and scalable solution for addressing the critical challenges of accuracy seg-
mentation in complex forests. In the future, we will focus on enhancing the model’s per-
formance and application. 

Keywords: YOLO; individual tree segmentation; airborne LiDAR; crown detection; 
boundary segmentation 
 

1. Introduction 
Forest ecosystems, which account for approximately 77% of global terrestrial carbon 

stock, are essential for maintaining biodiversity and regulating biogeochemical cycles. As 
the largest carbon sink, forests play a crucial role in maintaining the global carbon balance 
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and mitigating climate change [1]. Precise monitoring and scientific management of forest 
resources are therefore of paramount importance. Traditional forest surveys, which rely 
on field investigations of individual tree parameters, are limited by their time-consuming, 
labor-intensive nature and their inability to scale across vast or inaccessible regions. Li-
DAR (light detection and ranging) technology, particularly airborne laser scanning (ALS), 
offers a rapid and precise alternative for acquiring large-scale three-dimensional forest 
structures. ALS enables the estimation of forest structural parameters such as tree height, 
crown width, biomass, and volume [2]. However, accurate segmentation of individual 
trees remains a critical prerequisite for utilizing this data effectively, as it directly influ-
ences the reliability of derived forest metrics. 

Traditional ALS-based tree segmentation approaches can be broadly categorized into 
2D image-based and 3D point cloud-based approaches. The 2D image methods utilize 
CHM (canopy height model) or DSM (digital surface model) raster data to represent the 
upper contour of the tree crown and identify the local maximum of the treetops to seg-
ment individual trees [3]. Common methods include watershed algorithms with marker-
controlled methods [4], region growing algorithms [5], and others [6]. A key limitation of 
these methods is the difficulty in accurately detecting local maxima from input images, as 
variations in canopy height and tree crown overlap can result in false positives or missed 
detections, reducing the precision of tree segmentation. In contrast, 3D point cloud meth-
ods, such as K-means clustering [7], region growing algorithm [8], mean-shift clustering 
[9], graph segmentation [10], and spectral clustering [11], can leverage the spatial structure 
to improve segmentation but suffer from high computational complexity, sensitivity to 
noise, and reliance on manually tuned parameters, limiting their adaptability to diverse 
forest environments. Moreover, they rely heavily on prior knowledge of forest character-
istics, which limits their ability to adapt to different forest types and datasets, and hinders 
their generalizability and transferability across various forest environments [12]. Machine 
learning-based methods, such as conditional random fields (CRF) [13] and random forests 
(RF) [14], have been applied for tree segmentation in 3D point clouds, effectively identi-
fying tree structures and filtering non-tree points during the coarse segmentation, provid-
ing a foundation for subsequent instance segmentation optimization. However, these ap-
proaches rely heavily on feature engineering and face limitations in handling the irregu-
larity and high dimensionality of point cloud, which restricts their scalability and adapt-
ability to diverse forest environments. The proposed method offers the possibility to avoid 
feature engineering tasks like variable transformation and variable selection. 

Recent advances in deep learning (DL), using the original 3D points or its derived 
products from 3D point clouds, have shown great potential for individual tree segmenta-
tion. These innovations have enabled more accurate and efficient analysis of forest struc-
ture, enhancing the ability to monitor tree growth, biodiversity, and ecological changes. 
For the former, it begins by segmenting or classifying the 3D point cloud into distinct parts 
using multilayer perceptron (MLP), followed by clustering to further refine the segmen-
tation. Krisanski et al. [15] leveraged PointNet++ to directly perform classification, locali-
zation, and semantic segmentation tasks on point cloud. They combined this with cluster-
ing algorithms to effectively identify individual trees within dense terrestrial laser scan-
ning (TLS) data. Similarly, Kang and Wang [16] utilized PointNet++ on multi-sensor fu-
sion data to successfully segment fruit in natural orchards. However, the high point den-
sity requirement inherent in these methods restricts their widespread applicability. 
Wielgosz et al. [17] developed Point2Tree, a modular framework combining semantic seg-
mentation, instance segmentation, and hyperparameter optimization. It classifies point 
clouds and uses graph-based methods with Dijkstra’s algorithm to assign tree points to 
instances. Henrich et al. [18] proposed the TreeLearn model, an automated tree segmen-
tation method using a 3D U-Net sparse convolutional network. It predicts tree points and 
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offsets, with clustering and post-processing for instance generation, achieving high accu-
racy and robustness without complex hyperparameter tuning. However, the high dimen-
sionality and irregularity of the 3D point cloud increase computational complexity and 
make the training and inference more challenging [19]; these methods are often applied 
to terrestrial or mobile LiDAR systems. To address these dimensionality challenges, a 
method for creating a multi-feature point cloud map is introduced for the proposed 
method. For the latter, a convolutional neural network (CNN) [20] is applied to the seg-
mented 2D images derived from 3D point clouds. These networks, by leveraging well-
established CNN architectures, are capable of automatically learning and extracting com-
plex spatial features, allowing for precise segmentation of the upper tree canopy. Addi-
tionally, they capture important information from the mid and lower layers of trees, 
thereby providing a robust foundation for automated tree segmentation tasks. In the task 
of crown segmentation, methods can be broadly categorized into pixel-level segmentation 
and instance segmentation. For the pixel-level segmentation methods, such as fully con-
volutional networks (FCN) [21], U-Net [22], and the DeepLab [23], classify each pixel to 
achieve precise delineation of crown boundaries, making them suitable for tasks with rel-
atively simple targets and homogeneous backgrounds. U-Net is used for individual tree 
crown delineation in high-resolution remote sensing imagery [24], while DeepLab and 
domain-adaptive networks have been used to detect palm trees in the Amazon and South-
east Asia [25,26]. Additionally, the multi-task end-to-end optimized deep neural networks 
(MEON) has been used for oak and pine tree detection [27]. Durgut et al. [28] optimized 
tree detection by combining methods such as Swin Transformer [29], RCNN [30], Faster 
RCNN [31], YOLO [32], and DETR [33] using weighted box fusion, addressing the limita-
tions of individual approaches. However, in complex scenarios such as tree overlap or 
occlusion, pixel-level segmentation methods often fail to achieve ideal results. Moreover, 
these methods cannot simultaneously detect tree positions and segment tree crowns. The 
instance segmentation methods have proven to be more effective than pixel-level segmen-
tation methods for tree crown delineation. This is because they not only perform pixel-
level segmentation but also identify and distinguish multiple individual instances, such 
as trees. There methods can be broadly classified into two-stage and single-stage models. 
Two-stage models, such as R-FCN [34] and Faster R-CNN [35], first generate candidate 
regions that potentially contain objects and then classify these regions while predicting 
their bounding boxes. These models typically achieve high detection accuracy but are con-
strained by slower inference speeds. In contrast, single-stage models, such as SSD [36] and 
YOLO [37], streamline the detection process by simultaneously predicting bounding 
boxes and class probabilities, offering faster inference at the cost of slightly reduced accu-
racy while maintaining good accuracy. Santos et al. [38] evaluated three object detection 
models for tree identification. Their findings revealed that the two-stage Faster R-CNN 
model, while achieving high detection accuracy, incurred the highest computational cost 
and the slowest inference speed. Furthermore, in tasks involving estimating the geo-
graphic distribution and identifying tree species, single-stage models have demonstrated 
superior performance in both detection accuracy and processing speed. 

Recently, researchers extended object detection methods to perform pixel-level seg-
mentation for individual tree crowns. This involves detecting all target instances within 
the input image and assigning pixel-level labels corresponding to each instance’s cate-
gory. Consequently, there has been a growing interest in leveraging YOLO models and 
other single-stage models for tree crown segmentation. These models offer faster execu-
tion speeds, facilitating the rapid completion of detection and segmentation tasks [39]. To 
improve detection speed and accuracy, the YOLO models [40] and its improvements [41–
48], especially multi-scale detection, attention mechanisms, loss function optimization, 
and data augmentation [49–53], underwent various enhancements, making them highly 
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effective for tree crown detection. However, these models still face challenges in accu-
rately capturing small-object details, managing interference from complex backgrounds, 
and accommodating the diverse characteristics of tree crowns. To obtain simultaneously 
the individual tree detection and tree crown segmentation results, researchers have ex-
plored the YOLO framework [54–57]. However, these approaches often face challenges 
arising from variations in tree crown color and texture, local lighting changes, and signif-
icant crown overlap. These factors can lead to uneven illumination within images, making 
it difficult to accurately locate tree tops and precisely delineate crown boundaries. Ulti-
mately, these challenges can significantly impair the accuracy of crown delineation [58]. 
Consequently, a detailed and robust input data representation is crucial for the effective 
application of these methods, especially in dense forest environments. 

To address the challenges of crown, overlap, and complex backgrounds in dense for-
ests, a novel deep learning-based network, named CCD-YOLO, is proposed to segment 
individual trees with ALS point clouds. The key contributions are as follows: 

(1) A new individual tree segmentation dataset is constructed, covering high-density ar-
eas, overlapping crowns, and complex backgrounds. The dataset consists of a multi-
feature point cloud map derived from ALS point clouds, effectively capturing tree 
morphological features while reducing background interference. 

(2) Integration of advanced modules, including the CReToNeXt backbone to enhance 
focus on critical regions, and CBAM attention mechanism to improve feature extrac-
tion efficiency and multi-scale feature fusion capabilities. 

(3) A dynamic head is introduced to optimize feature layer weight and fusion strategies, 
improving the detection accuracy for target positions and boundary changes. 

The main contribution of this study is to construct a novel model that can improve 
detection and segmentation accuracy in the complex forest, reducing both false positives 
and false negatives. Following the introduction, the materials are listed in Section 2, and 
the proposed CCD-YOLO and the new construct dataset are discussed in Section 3, The 
results are presented in Section 4, and a discussion is provided in Section 5, followed by 
conclusions. 

2. Materials 
2.1. Study Area 

The study area (Figure 1) is located in the Epe Nature Reserve of Gelderland, Neth-
erlands. It experiences a temperate maritime climate, characterized by mild and humid 
conditions. Annual precipitation typically ranges from 700 to 900 mm, and the average 
annual temperature falls between 9 and 11 °C. The topography of the region is character-
ized by gentle hills, with elevations ranging from 40 to 90 m. Forest cover typically ranges 
between 30% and 35%. The dominant tree species include Scots pine, Douglas fir, beech, 
and oak, forming a characteristic mixed forest ecosystem. 

The study area is divided into Area 1 (A1) and Area 2 (A2), which can be used for the 
performance and generalization ability of the proposed model A1, a larger and ecologi-
cally diverse region, that encompasses varying tree densities—ranging from sparse distri-
butions to densely overlapping crowns—and a wide variety of tree species. A2, located at 
a significant distance from A1, is smaller but characterized by higher forest density, pro-
nounced crown overlaps, and reduced species diversity, highlighting distinct ecological 
differences compared to A1. 
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Figure 1. Overview of the study area. The true color image (right) of the study area captured by the 
drone, highlights the boundaries of Area 1 (in red) and Area 2 (in yellow). The blue region (Epe) in 
the bottom-left corner indicates the specific study area in Gelderland, while the map in the upper-
left corner provides a scaled location map of the Netherlands. 

2.2. Data Collection 

The airborne LiDAR point cloud used in this study is part of the Netherlands geo-
graphic dataset and is publicly available from GeoTiles.nl (https://www.geotiles.nl/, ac-
cessed on 15 October 2023). It was collected on June 11, 2021, using the RIEGL VQ1560II 
LiDAR scanner in conjunction with high-precision DGPS and an inertial navigation sys-
tem (IMU) to ensure data acquisition accuracy within 0.1 m. The point clouds have a den-
sity of 34.49 points per square meter, effectively capturing the intricate details of both ter-
rain and vegetation. The point clouds, as illustrated in Figure 2, have been pre-processed 
and include RGB color information, making it easier to analyze and visualize the terrain 
features. 

 

Figure 2. Visualization of ALS point clouds used in the study, colored by height. 

3. Methods 

This study aims to perform individual tree instance segmentation and object detec-
tion by the proposed CCD-YOLO; the pipeline is illustrated in Figure 3. It encompasses 
three key components that are individual tree segmentation (ITS) dataset generation (Sec-
tion 3.1), CCD-YOLO model reconstruction (Section 3.2), and model training and accuracy 
evaluation (Section 3.3). 
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Figure 3. Workflow of the proposed approach using ALS point clouds. 

3.1. Individual Tree Segmentation (ITS) Dataset Generation 

The construction of the ITS dataset necessitates a series of processing steps for the 
downloaded point clouds, namely noise and outlier removal, extraction of non-ground 
point clouds, and the generation of multi-feature point cloud maps, as illustrated in Figure 
3. For noise and outlier removal from the ALS point cloud, a statistical outlier removal 
(SOR) filtering [59] algorithm is applied. This algorithm identifies and removes points 
that deviate significantly from the local point distribution. To extract non-ground point 
clouds, the cloth simulation filtering (CSF) [60] algorithm implemented in an open-
sourced software (CloudCompare, https://www.danielgm.net/cc/, accessed on 1 Novem-
ber 2023) is employed. This method optimizes the point cloud filtering process by simu-
lating the physical properties of fabrics, thereby accurately extracting vegetation point 
clouds. In addition, a normalization operation [61] is applied to CSF results, which can 
remove the influence of terrain undulations. 

For the multi-feature point cloud maps, these processed point clouds are vertically 
partitioned based on height, and the point density and intensity values are calculated for 
each height range. The height values assist in distinguishing trees at different vertical lay-
ers, while point density reflects the spatial distribution characteristics of the trees, and 
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point intensity provides detailed information about the surface structure of the trees. 
Based on these calculations, density-colored and intensity-colored point clouds are gen-
erated and visualized by color mapping. The RGB mean values of the two-colored point 
clouds are then fused to construct a multi-feature colored point cloud, enabling the ex-
traction of comprehensive multidimensional information and enhancing the effectiveness 
and precision of feature extraction. Finally, these colored point clouds are mapped to the 
ground to generate a complete point cloud image that reflects the three-dimensional struc-
tural features, resulting in an individual tree segmentation (ITS) dataset. 

These projected images, derived from the 3D point clouds, are further cropped into 
512 × 512-pixel plots. To ensure continuity and consistency during subsequent processing, 
a 64-pixel overlap is maintained between adjacent plots, effectively preserving edge infor-
mation. 

Moreover, these images were annotated by LabelMe tool (https://github.com/wken-
taro/labelme, accessed on 10 November 2023), generating a JSON file that contains tree 
position, anchor box size, and labels. To mitigate potential overfitting, data augmentation 
operations including flip-ping, rotation, contrast adjustment, and Gaussian noise addition 
were performed. The augmented dataset was randomly split into a training/validation 
dataset (70%) and a test dataset (30%). The training/validation was further divided into 
training data (80%) and validation data (20%) using a two-step training approach. By con-
vention or without loss of generality, the dataset was constructed based on two different 
regions considering the diverse characteristics of the study area. A1 provides a controlled 
and diverse environment, divided into training, validation, and testing, which are used 
for model training, hyperparameter adjustment, and performance evaluation, respec-
tively. A2, exhibiting certain environmental differences compared to A1, serves as a ded-
icated testing ground to assess the model’s robustness and adaptability under challenging 
conditions and novel data distributions. This area division facilitates a comprehensive 
evaluation of the model’s ability to generalize across different forest environments, ensur-
ing its applicability and effectiveness in real-world scenarios. An example of a multi-fea-
ture point cloud map is shown in Figure 4. 

  
(a) 

  
(b) 

Figure 4. The labeled maps derived from the 3D point cloud and the original RGB image. (a) RGB 
point cloud map and mask result. (b) Multi-feature point cloud map and mask result. 
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3.2. CCD-YOLO Model Reconstruction 

The proposed CCD-YOLO is built from YOLO v8, as illustrated in Figure 5, which 
effectively extracts tree locations and edge information within dense forested areas, where 
tree crowns frequently overlap and obscure each other. This model can be further en-
hanced by integrating a CReToNeXt module for improved feature extraction and multi-
scale feature fusion, incorporating a convolutional block attention module (CBAM) to em-
phasize crown features and suppress background noise, and employing a dynamic head 
to enable adaptive multi-layer feature fusion. 

 

Figure 5. The proposed CCD-YOLO network architecture. 

3.2.1. Improved Backbone with CReToNeXt 

To enhance the efficiency of feature extraction and to capture multi-scale features and 
fine-grained details, this study introduces the CReToNeXt [62] module as a replacement 
for the original C2f module in the backbone network. CReToNeXt, an advanced deep 
learning module derived from Alibaba DAMO Academy’s DAMO-YOLO model, inte-
grates multiple innovative techniques. These enhancements significantly improve feature 
extraction capabilities and model efficiency. Its architecture incorporates depth-wise sep-
arable convolution (RepConv), residual connections, and multi-scale feature fusion mech-
anisms, enabling robust multi-level feature capturing. The RepConv reduces computa-
tional complexity while maintaining effective feature extraction, and the residual connec-
tions facilitate the flow of information across layers, improving training stability and en-
abling the network to learn deeper representations. In addition, the multi-scale feature 
fusion mechanisms can effectively capture features at different scales, enhancing the 
model’s ability to detect objects of varying sizes. 

As illustrated in Figure 6, the CReToNeXt module comprises two layers of CBSW 
modules integrated with the Swish activation function and three layers of basic block re-
sidual (BBR) modules. The input feature map first undergoes initial feature extraction 
within a CBSW structure. Subsequently, it is processed through a series of BBR modules. 
Within each BBR module, feature enhancement is achieved through the combined action 
of RepConv and residual connections. Feature maps that have undergone zero to three 
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BBR module operations are then concatenated. Finally, the concatenated feature map is 
fed into another CBSW structure for further feature extraction. 

 

Figure 6. CReToNeXt module structure. 

3.2.2. Improved Backbone with CBAM 

To enhance focus on key regions and suppress irrelevant background information in 
dense forest environments, this study introduces the convolutional block attention mod-
ule (CBAM) [63] into the backbone network. By refining the attention allocation, CBAM, 
as shown in Figure 7, emphasizes important features, ensuring that the model concen-
trates on target regions, thereby enhancing the precision of individual tree segmentation. 
It is a lightweight and efficient attention mechanism that adaptively enhances the feature 
map along both the channel and spatial dimensions, thereby improving the feature repre-
sentation ability of the network. 

 

Figure 7. CBAM module structure. 

As depicted in Figure 7, the CBAM module comprises two key components: the chan-
nel attention module (CAM) and the spatial attention module (SAM). In the CAM, two 
feature maps are generated by performing global maximum pooling and global average 
pooling on the input feature map. These two feature maps are then passed through a fully 
connected neural network, named multi-layer perceptron (MLP), which consists of one or 
more fully connected layers, followed by ReLU activation, batch normalization, and a sig-
moid function to model the inter-channel dependencies effectively. These features are 
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then summed to produce the channel attention feature ( )CM F  through a sigmoid acti-
vation, as listed in Formula (1). It effectively emphasizes the target regions in the feature 
map, enhancing the model’s ability to recognize relevant details: 

( ) ( ( ( )) ( ( )))CM F MLP AvgPool F MLP MaxPool Fσ= + , (1)

In the spatial attention module (SAM), denoted by ( )SM F , average and maximum 
pooling are first applied to the input feature maps separately, producing two 1 × H × W 
feature maps. These feature maps are then concatenated along the channel dimension. 
Next, a 7 × 7 convolution is applied to the concatenated feature map to generate a single 
output feature map. Finally, a sigmoid activation function is applied to this output, yield-
ing the spatial attention-oriented feature map. This process enhances the representation 
of spatial attention by emphasizing target locations and capturing detailed information 
effectively: 

7 7( ) ( ([ ( ); ( )]))SM F f AvgPool F MaxPool Fσ ×= , (2)

Finally, the feature maps generated by the channel attention module and the spatial 
attention module are combined into a single feature map, which is then multiplied ele-
ment-wise with the original feature map. This process effectively reweights the original 
feature map, emphasizing target regions and significant features while suppressing irrel-
evant information and background noise. As a result, the model is better equipped to fo-
cus on task-relevant regions or channels within the image, resulting in improved perfor-
mance in tree position detection and canopy boundary segmentation in dense forests. 

3.2.3. Improved Detection Head with Dynamic Head 

Due to the limited number of parameters in the prediction head, its expressive power 
is weak, making it difficult to fully exploit spatial information within the features, which 
limits the model’s performance in multi-scale object detection. A dynamic head [64], as 
illustrated in Figure 8, was introduced, which can integrate contextual information and 
adjust the weight of feature layers for dense forests. 

 

Figure 8. Dynamic head module structure. 

The dynamic head module employs a self-attention mechanism to unify scale-aware, 
spatial-aware, and task-aware attention. This approach enhances the performance of the 
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model’s object detection head without adding significant computational overhead. It in-
tegrates scale perception at the feature level, spatial perception at specific spatial posi-
tions, and inter-channel attention for task awareness. This attention mechanism is applied 
to the detecting head and can be stacked multiple times to enhance the model’s perfor-
mance. Given a three-dimensional feature tensor in the detection layer, the attention cal-
culation is defined as follows: 

( ) ( ( ( ) ) )C S LW F F F F Fπ π π= ⋅ ⋅ ⋅ , (3)

where F  represents a 3D tensor input L × S × C, Lπ , Sπ  and Cπ  represents the scale-
aware attention module, spatial-aware attention module, and task-aware attention mod-
ule, respectively. They act only on dimensions L (level), S (space), C (channel) and the 3D 
tensor F. 

Scale-aware attention Lπ  (level-wise)—To solve the fusion problem of different 
scale features based on semantics, scale-aware attention is introduced: 

1
,

( ) ( ( ))L SC S C
F F f F Fπ σ⋅ = ⋅ ,

 (4)

where ( )f ⋅  corresponds to using a 1 × 1 convolutional approximation of linear functions, 
while ( )σ ⋅  represents a hard S-shaped activation function. 

Spatial-aware attention Sπ  (spatial-wise)—This increases spatial awareness atten-
tion to highlight the ability to distinguish different spatial locations. Due to the large size 
of S, it is decoupled into two stages—first, sparse attention learning is achieved through 
the use of deformable convolution, and then accomplished by integrating features at dif-
ferent scales: 

1
,1 1

( ) ( ; ; )
k k

L K
S l k k p mL l k
F F w F l p cπ

= =
⋅ = ⋅ + Δ ⋅ Δ  ,

 (5)

where 
kk pp + Δ  is a shifted location by the self-learned spatial offset 

kp
Δ  to focus on a 

discriminative region, and K  represents the count of sparsely selected positions. The re-
maining parameter details are similar to those in deformation convolution, which ,l kw  
denotes a bias importance factor and 

km
Δ  stands for an adaptive weighting importance 

factor, which is excluded here for conciseness. 
Task-aware attention Cπ  (channel-wise)—To promote collaborative learning and 

enhance the scalability of target representation capabilities, and help completely different 
tasks by dynamically adjusting feature channels as needed: 

1 1 2 2max( ( ) ( ), ( ) ( ))C c cF F F F F F Fπ α β α β⋅ = ⋅ + ⋅ + , (6)

As with DyReLU, hyperparameters are essential for regulating activation thresholds. 
α  and β  were used for rescaling and reorienting, respectively. Multiple instances of 
the previously mentioned attention mechanism can be stacked by applying it successively 

3.3. Accuracy Evaluation 

To evaluate the performance of the model, this study comprehensively adopts met-
rics such as precision, recall, F1-score, and average precision (AP) for both object detection 
and instance segmentation in dense forests [65]. Precision is the proportion of correct pos-
itive predictions out of all predicted positives. Recall is the proportion of correct positive 
predictions out of all actual positives. The F1-score is the harmonic mean of precision and 
recall, offering a balanced evaluation. AP represents the average precision calculated over 
different recall rates across varying levels of confidence thresholds equivalent to the area 
of the precision–recall curve. In particular, AP@0.5 is computed at an intersection over the 
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union (IoU) threshold of 0.5. Higher values of these metrics indicate superior model per-
formance. These metrics are as follows: 

100%TPPrecision
TP FP

= ×
+

 (7)

100%TPRecall
TP FN

= ×
+

 (8)

21 Precision RecallF
Precision Recall
× ×=

+
 (9)

1

0
( )AP P R dR=   (10)

where TP (true positive) denotes the number of correctly detected (segmented) trees. FP 
(false positive) and FN (false negative) represent the number of incorrectly and missed 
detected (segmented) trees. P and R refer to precision and recall, respectively. 

4. Results 
A novel dataset was created, and the proposed method was primarily evaluated on 

two distinct airborne laser scanning (ALS) datasets acquired from dense forest environ-
ments. The performance of individual tree segmentation was rigorously assessed using a 
suite of internal consistency metrics, proving the effectiveness of the proposed approach. 

4.1. Results of the ITS Dataset 

A comprehensive individual tree segmentation dataset, derived from the ALS point 
clouds, is constructed for the proposed method. It can effectively mitigate interference 
from solar radiation variations and phenological texture features while preserving crown 
morphological characteristics. The details of the ITS datasets are listed in Table 1. 

Table 1. The description of ITS dataset. 

Area Usage Image Size (Pixel) Number of Images Number of Trees 

A1 
Training 512 × 512 96 1901 

Validation 512 × 512 24 582 
Test 1 512 × 512 52 1071 

A2 Test 2 512 × 512 4 144 

These generated new datasets are in two parts, located in various regions. The one 
named A1 contains 173 images and is used for CCD-YOLO training and validation, while 
the A2 dataset is only used for CCD-YOLO testing. Moreover, the constructed dataset is 
visualized in Figures 9 and 10. 
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(a) (b) 

Figure 9. Visualization of the ITS dataset (parts of A1). (a) Multi-feature point cloud map. (b) ITS 
dataset with labeled mark (A1). 

  
(a) (b) 

Figure 10. Visualization of the ITS dataset (A2), and its corresponding 3D point cloud. (a) ITS da-
taset with labeled mark (A2). (b) 3D tree point cloud. 

4.2. Results of Individual Tree Segmentation 

The proposed CCD-YOLO model is built upon the YOLOv8 framework, leveraging 
PyTorch 1.12 and an NVIDIA GeForce RTX 3080 for training and inference. For model 
training, we employed the Adam optimizer with the following default hyperparameters: 
momentum of 0.937, an initial learning rate of 0.01, and weight decay of 0.0005. The train-
ing process was conducted over 300 epochs. The obtained segmentation results by the 
proposed approach are illustrated in Figure 11, where each tree is visually distinguished 
by assigning it a unique random color. 
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(a) (b) 

 
 

(c) (d) 

Figure 11. View of individual tree segmentation results in A1. (a) Prediction box result. (b) Mask 
result. (c) Top view of the segmentation result. (d) Oblique view of segmentation result. 

It can be seen from Figures 11 and 12 that the neighboring trees are rendered in dis-
tinct colors, clearly defining boundaries between them. This indicates the algorithm’s abil-
ity to accurately distinguish and segment individual trees, resulting in point clouds that 
closely reflect their natural morphology. Moreover, the method effectively preserves the 
spatial structure of each tree while avoiding over-segmentation and under-segmentation. 
This ensures the successful extraction of complete individual tree point clouds. In addition, 
the results of individual tree segmentation across varying stand densities, ranging from 
low to medium and high tree density, are presented in Figure 13. 

  
(a) (b) 
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(c) (d) 

Figure 12. View of individual tree segmentation results in A2. (a) Prediction box result. (b) Mask 
result. (c) Top view of the segmentation result. (d) Oblique view of segmentation result. 

 
(a) (b) 

Figure 13. Results of individual tree segmentation in low to medium tree density and high tree 
density regions. Extraction of low to medium tree density and high tree density region in A1. (a) 
Low to medium tree density region. (b) High tree density region. 

What is more, we visualized these individual tree segmentation results from the re-
gions in various tree densities, as shown in Figure 14. 
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(a) (b) 

Figure 14. Visualization of the individual tree segmentation results across various densities. (a) 
Low to medium tree density region. (b) High tree density region. 

4.3. Results of Accuracy Evaluation 

To assess the effectiveness and feasibility of the proposed CCD-YOLO model, we 
conducted an accuracy evaluation to analyze the impact of varying environmental densi-
ties in different regions on the network’s performance. The quantitative results are pre-
sented in Table 2. 

Table 2. Results of CCD-YOLO between different stages. 

Testing Actual 
Trees 

Tree Crown Detection Tree Boundary Segmentation 
TP FP FN TP FP FN 

A1 1071 677 157 237 675 144 252 
63.2% 14.7% 22.1% 63.1% 13.4% 23.5% 

High density 
in A1 143 

83 23 37 85 22 36 
58.0% 16.1% 25.9% 59.4% 15.4% 25.2% 

Low density 
in A2 121 

87 11 23 87 13 21 
71.9% 9.1% 19.0% 71.9% 10.7% 17.4% 

A2 144 106 18 20 106 17 21 
73.6% 12.5% 13.9% 73.6% 11.8% 14.6% 

For the tree extraction, the proposed CCD-YOLO will simultaneously work on tree 
crown detection and boundary segmentation. As can be seen from Table 2, there are 1071 
and 144 trees in the dataset A1 and A2, respectively, and the fully extracted trees are 677 
(63.2%) and 106 (73.6%). Furthermore, these improvements for CCD-YOLO can be 
adapted for both two-stage detectors and different forest densities. A visual map for these 
assessment metrics is illustrated in Figure 15. 
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Figure 15. Comparison of evaluation metrics of different stage. 

As shown in Table 2 and Figure 15, the model’s performance in detecting and seg-
menting trees varies significantly across regions with different tree densities. The model 
performs well in simpler environments (such as low density), achieving high detection 
and segmentation accuracy with low false detection and missed detection rates. Benefiting 
from the large spacing between trees and minimal crown overlap, the model effectively 
minimizes FP and FN, accurately locating individual trees and precisely segmenting 
crown boundaries. However, in complex environments (such as A1 and high density), 
trees grow closer together, their canopies overlap and block each other, and background 
noise further complicates the task, making it harder to tell individual trees apart. This 
makes it more difficult for the model to accurately detect and separate individual trees. 
As a result, the model misses more trees, leading to a lower recall rate and increased FP 
and FN values. The results indicate that as tree density increases, the complexity of the 
forest environment rises, leading to a decrease in the model’s segmentation performance. 

In addition, A1, the main study site, is a large area with a mix of forests, from sparse 
to dense. The model’s performance in this area was average. A2 is a separate test site far 
away, with a moderate number of trees and fewer overlapping tree canopies. The fact that 
the model performed well in A2, which is different from A1, indicates that it can adapt to 
new environments, or generalize well. 

Variations in environmental factors can lead to differences in tree growth density and 
forest vegetation complexity. In dense forests, overlapping tree canopies may affect the 
accuracy of extracting tree crown boundaries and the positions to some extent. By provid-
ing diverse environmental settings and conducting experiments in two distinct regions, 
the effectiveness of the proposed method can be further validated. The experimental re-
sults demonstrate that the method remains effective across different environmental con-
ditions, highlighting its robustness and applicability. 
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5. Discussion 
5.1. Comparison with Commonly Used Approaches 

To validate the accuracy and reliability of the proposed approach for individual tree 
segmentation, this study compared it with commonly used single-tree segmentation 
methods, including the watershed algorithm [66] and the commercially available Li-
DAR360 software (https://www.lidar360.com/, accessed on 15 September 2024) [8]. We 
compared these methods across low-to-medium tree-density regions, high-tree-density 
regions, and the overall study area. The metrics for these three methods are the precision, 
recall, and F1 score, as illustrated in Figure 16. 

 

Figure 16. Comparison of the segmentation performance of individual trees. 

Seen from Figure 16, the proposed CCD-YOLO method exhibits superior perfor-
mance in detection and segmentation tasks, showing good generalization ability and sta-
bility in all the testing experiments. It significantly outperforms watershed (F1 score = 
66.2%) and LiDAR360 (F1 score = 55.2%) in overall performance, achieving the highest 
precision (82.4%), recall (72.8%), and F1 score (77.9%). It can be seen that the proposed 
CCD-YOLO has achieved the highest score in areas with various forest densities, and can 
accurately locate tree positions and segment crown boundaries, preserving the complete 
and natural shape of tree crowns. In low-to-medium tree density regions, CCD-YOLO 
demonstrated exceptional performance, achieving a precision of 87.5% and an F1 score of 
83.9%. Even in areas with severe crown overlap and occlusion, the proposed model 
demonstrates strong robustness, achieving an F1 score of 74.3%, respectively, which effec-
tively reduces false positives and false negatives, addressing the issue of blurred bound-
aries. However, watershed was limited by its performance in dense areas, with a sig-
nificant drop in F1 score from 71.2% to 61.9% due to issues in seed point extraction 
and boundary delineation. LiDAR360 consistently underperformed, especially in 
dense areas (F1 = 45.8%), failing to effectively address crown overlap and occlusion. 
The method often resulted in incomplete crown shapes or missed trees due to incor-
rect merging or omission of tree point clouds. 

Moreover, visualization comparison results are shown in Figure 17. 
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CCD-YOLO Watershed LiDAR360 Software 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 17. Comparison of individual tree segmentation results in various forest densities. (a–c) The 
oblique and top views of the individual tree segmentation results obtained by the three methods in 
regions with low to medium tree density; (d–f) The oblique and top views of the individual tree 
segmentation results obtained by three methods in regions with high tree density. (a) Results 
(oblique and top view) in forests with low-medium density using CCD-YOLO. (b) Results (oblique 
and top view) in forests with low-medium density using watershed. (c) Results (oblique and top 
view) in forests with low-medium density using LiDAR360 software. (d) Results (oblique and top 
view) in forests with high density using CCD-YOLO. (e) Results (oblique and top view) in forests 
with high density using watershed. (f) Results (oblique and top view) in forests with high density 
using LiDAR360 software. 

5.2. The Effectiveness of the Introduced Modules 

To evaluate the efficacy and feasibility of the proposed CCD-YOLO, we conducted 
multiple repeated ablation experiments to carefully examine the impact of different com-
ponents, as listed in Table 3. 
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Table 3. Details of CCD-YOLO with different modules. 

Basic  
Models 

New Modules Box (%) 
(For Tree Crown Detection) 

Mask (%) 
(For Tree Boundary Segmentation) FPS 

CReToNeXt CBA
M 

Dynamic 
Head Precision Recall F1 Score AP@0.5 Precision Recall F1 Score AP@0.5 

YOLO V8 

   78.9 70.9 74.7 80.0 77.9 71.8 74.7 79.9 85 
√   80.5 74.0 77.1 82.0 80.9 75.4 78.1 82.4 68 
 √  77.5 66.5 71.6 76.3 79.9 68.3 73.6 78.9 84 
  √ 77.2 68.6 72.6 78.7 79.0 70.3 74.4 79.7 97 
√ √  80.1 71.1 75.3 80.4 80.7 72.9 76.6 81.2 67 
√  √ 80.2 72.2 76.0 81.2 80.9 74.2 77.4 82.3 64 
 √ √ 75.4 69.5 72.3 77.1 77.8 71.0 74.2 79.3 83 

Proposed √ √ √ 81.2 74.1 77.5 82.9 82.4 72.8 77.9 83.0 64 
YOLO V11    79.0 72.8 75.8 80.1 81.0 74.5 77.6 82.3 79 

As can be seen from Table 3, the individual contributions of the CReToNeXt, CBAM, 
and dynamic head modules, coupled with their synergistic interactions during joint opti-
mization, are crucial for achieving the highest accuracy in tree crown detection and tree 
boundary segmentation, significantly enhancing the performance of the original YOLO 
model. 

The CReToNeXt module replaces the original C2f module within the YOLO back-
bone. By employing re-parameterized convolutions and a residual connection, CReToN-
eXt significantly enhances feature extraction efficiency and multi-scale fusion. In object 
detection tasks, precision, recall, and F1-score improved by 1.6%, 3.1%, and 2.4%, respec-
tively, demonstrating a substantial improvement in target localization and resulting in 
fewer missed and false detections. For segmentation, precision and recall increased by 
3.0% and 3.6%, respectively, highlighting the model’s superior ability to accurately cap-
ture tree crown regions and delineate their boundaries. However, this improvement 
comes with a reduction in inference speed, as the FPS decreased from 85 (baseline 
YOLOv8) to 68 due to the added complexity of re-parameterized convolutions. 

Integrating the CBAM attention mechanism effectively focuses the model on critical 
regions, emphasizing features relevant to tree locations and crown edges while suppress-
ing background noise. In segmentation tasks, this significantly improves feature extrac-
tion accuracy, with recall increasing by 3.4% and the F1 score by 2.1%. This optimization 
effectively enhances the segmentation of tree crown regions and demonstrates excellent 
performance in detail handling and feature extraction for key areas. Moreover, the CBAM 
module maintains a competitive inference speed of 84 FPS, demonstrating minimal com-
putational overhead while improving performance. 

Furthermore, the model incorporates a dynamic head in its detection head, replacing 
the traditional decoupled head structure. This module enables the adaptive fusion of 
multi-layer features, enhancing the model’s adaptability to subtle boundary variations 
and improving the precision of tree crown boundary delineation. In segmentation tasks, 
the dynamic head optimizes feature representation and boundary capture, resulting in a 
1.5% improvement in recall and a 0.3% increase in the F1 score. This effectively strength-
ens the model’s ability to handle target region edges with greater accuracy. The inference 
speed for this module is 97 FPS, reflecting a slight increase compared to the baseline 
YOLO v8, while demonstrating its computational efficiency in achieving high perfor-
mance for boundary detection. 

Combining the CReToNeXt module with the CBAM attention mechanism, the CRe-
ToNeXt module with the dynamic head, or the CBAM attention mechanism with the dy-
namic head yields significant synergistic improvements. Notably, the combination of the 
CReToNeXt module and the dynamic head delivers the most outstanding performance in 
instance segmentation, achieving a 3.0% increase in precision, a 2.4% increase in recall, 
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and a 2.7% increase in the F1 score. This combination significantly enhances the model’s 
ability to delineate tree crown boundaries and effectively reduces both omission and com-
mission errors. These results highlight the synergistic effects of integrating these two mod-
ules, demonstrating their collective potential to enhance the detection performance of the 
original YOLO. However, the inference speed drops to 74 FPS, which is inferior to the 
other two combinations, highlighting the trade-off between accuracy and computational 
cost. 

When the CReToNeXt, CBAM, and dynamic head modules are integrated simulta-
neously into the YOLO model, their synergistic effects lead to significant performance 
improvements. Compared to the baseline YOLO model, object detection precision in-
creased by 3.4%, recall by 4.0%, and the F1 score by 4.3%. In instance segmentation, pre-
cision improved by 3.5%, recall by 4.4%, and the F1 score by 4.1%. Despite these substan-
tial performance gains, the proposed CCD-YOLO model maintains an acceptable infer-
ence speed of 64 FPS, balancing accuracy improvements with computational efficiency. 

In addition, we compared the improved network with YOLOv11 to evaluate its per-
formance enhancements. YOLOv11 [67] represents the latest advancement in the Ultralyt-
ics YOLO series, building upon and improving YOLOv8. Compared to YOLOv8, the 
model replaces the C2f module with C3K2 and incorporates a C2PSA module after the 
SPPF layer to enhance feature representation capabilities. Additionally, the detection head 
integrates two DWConv layers, and the model’s width and depth parameters have been 
significantly adjusted, resulting in improved detection accuracy and inference efficiency. 
Compared to YOLOv11, CCD-YOLO demonstrates significant advantages in detection ac-
curacy. Notably, in the box category, precision, F1 score, and AP@0.5 are improved by 
2.2%, 1.7%, and 2.8%, respectively. Additionally, in the mask category, AP@0.5 shows an 
improvement of 0.7%. These advancements highlight that CCD-YOLO delivers higher ac-
curacy and reliability in object detection and segmentation tasks. Although CCD-YOLO 
achieves an inference speed of 64 FPS, slightly lower than YOLOv11’s 72 FPS, it prioritizes 
accuracy, making it particularly suitable for accuracy-critical applications such as ecolog-
ical studies that require detailed tree crown segmentation and precise boundary detection. 
In scenarios where speed is critical, like real-time monitoring, adjustments to reduce com-
putational complexity could enhance CCD-YOLO’s applicability. 

These results demonstrate that integrating these three enhanced modules signifi-
cantly strengthens the original YOLO model’s detection and segmentation capabilities. 
The model’s performance progressively improved with the addition of each module, 
achieving optimal performance after their combined optimization. The combination of 
these three modules substantially enhances the model’s ability to accurately capture tree 
positions and boundaries, leading to improved detection precision and segmentation per-
formance while reducing both omission and commission errors. This highlights the 
model’s increased robustness and adaptability. 

Figure 18 presents the local results obtained using different methods. From the fig-
ure, it is evident that the visualization results of the improved model show significant 
enhancements compared to the original network. The CReToNeXt module improves fea-
ture extraction and multi-scale fusion capabilities, enabling more accurate tree position 
and shape segmentation. The CBAM attention mechanism suppresses background noise 
and highlights tree crown boundaries, resulting in clearer boundary segmentation. The 
dynamic head module adaptively fuses multi-layer features, dynamically optimizing 
boundary processing to achieve more refined tree crown delineation. The synergy of these 
modules significantly enhances both the overall quality and the detailed performance of 
the segmentation results. 
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(a) (b) 

Figure 18. Results of individual tree segmentation between YOLO v8 and CCD-YOLO. (a) YOLO 
V8 model. (b) The proposed CCD-YOLO. 

5.3. Application of Tree Segmentation in Forest Management 

The precise individual tree segmentation results obtained from the proposed model 
provide robust support for in-depth forest resource exploration. These results establish a 
reliable foundation for extracting structural parameters at the individual tree level, such 
as tree height, crown width, and crown projection area. These parameters not only reveal 
the microstructural characteristics of forests but also provide critical data for ecological 
studies and forest resource management at a macro scale. Their applications include forest 
health assessment, biomass and carbon stock estimation, and precision forestry manage-
ment. The specific methodological workflow is illustrated in Figure 19, taking tree height, 
crown width, and crown volume as examples to demonstrate the key steps and logical 
framework for parameter extraction. 

 

Figure 19. Framework for extracting individual tree structural parameters. 
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5.4. Limitation 

The proposed method, by combining different modules, emphasizes the 
characterization ability of multi-scale tree morphological features and achieves excellent 
results in various aspects. However, the model exhibits certain limitations in practical 
applications, particularly in densely forested areas with complex backgrounds. 
Challenges such as crown overlap, occlusion, and noise interference can lead to 
segmentation inaccuracies in these regions. As illustrated in Figure 20, the red-highlighted 
areas in the left panel indicate instances of erroneous segmentation, while the right panel 
presents a detailed visualization of these errors. 

 

  
(b) 

(a) (c) 

Figure 20. Results of the erroneous segmentation. (a) Erroneous segmentation. (b) Missed detec-
tion. (c) False detection. 

Areas with high-density, severe crown overlaps and occlusion lead to blurred crown 
boundaries, causing some adjacent trees to be easily identified as a single crown object. 
Thus, some failures were observed in the testing areas. The main reason for these failed 
examples involves not only the misclassification of shrubs (non-trees) but also the detec-
tion of a single large crown as multiple crowns, as illustrated in Figure 21. 

   
(a) (b) (c) 

Figure 21. Results of the incomplete and failed segmented trees. (a) Adjacent trees are identified as 
a single crown object. (b) A single large crown as multiple crowns. (c) Misclassified shrubs (non-
trees). 
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To address these challenges, future research could focus on introducing more ad-
vanced feature extraction mechanisms, coupled with sophisticated error-handling strate-
gies and improved loss functions, to enhance model performance and effectively address 
challenges such as crown overlap and occlusion. Additionally, integrating richer semantic 
information (e.g., tree species classification) and multimodal data (e.g., multispectral and 
hyperspectral imagery) could provide comprehensive input, reducing misclassification in 
complex scenarios. Expanding the scale and diversity of training datasets to include var-
ying forest densities, tree species, and terrain characteristics can further improve model 
robustness. Moreover, leveraging stronger pretraining strategies, such as self-supervised 
learning or pretraining on large-scale datasets, could significantly enhance the model’s 
generalization capabilities under limited labeled data conditions. These improvements are 
expected to elevate the model’s performance in complex forest environments while broad-
ening its applicability to various real-world scenarios. 

6. Conclusions 
This paper presented CCD-YOLO, a novel deep learning-based method for tree de-

tection. The key contributions of this work include the development of a dedicated single-
tree segmentation dataset and the introduction of key architectural improvements. Spe-
cifically, the substitution of the C2f module with CReToNeXt, the incorporation of the 
CBAM attention mechanism, and the implementation of a dynamic head within the de-
tection head collectively contribute to enhanced feature extraction, refined attention allo-
cation, and optimized target localization. These modifications enable the CCD-YOLO to 
effectively capture both tree position and canopy boundary simultaneously, resulting in 
improved detection accuracy and addressing the prevalent issues of over- and under-seg-
mentation in complex forest environments. Experimental comparisons with commonly 
adopted methods, along with evaluations using various internal consistency metrics, re-
veal the proposed model’s superior performance, demonstrating strong adaptability and 
high detection and segmentation accuracy in complex forests. 

CCD-YOLO has a few limitations, causing failures for the individual tree segmenta-
tion, which includes the misclassification of shrubs (non-trees) and over-segmentation. To 
address these challenges, future research could focus on optimizing feature extraction 
techniques and loss function design while integrating advanced error-handling strategies 
to improve the model’s ability to handle crown overlap and occlusions, thus mitigating 
over-segmentation. In addition, integrating semantic information and multi-modal data 
would provide richer features, helping to reduce misclassification. Expanding the dataset 
and leveraging pretraining strategies (e.g., self-supervised learning) can significantly en-
hance the model’s robustness and generalization capabilities, enabling its application in 
more complex scenarios. Moreover, an automatic method for extracting crown base height 
requires further investigation. 
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