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Abstract: In this study, an Improved Zebra Optimization Algorithm (ZOA) is proposed
based on the search mechanism of the Sparrow Optimization Algorithm (SSA), the per-
turbation mechanism of the Particle Swarm Algorithm (PSO), and the adaptive function.
Then, Improved Zebra Optimization Algorithm (IZOA) was used to optimize the Deep
Hybrid Kernel Extreme Learning Machine Model (DHKELM), and the IZOA-DHKELM
was obtained. The model has been used to predict the color of heat-treated wood for
different species, temperatures, times, media, and profile types. In this article, the original
DHKELM and the ZOA-DHKELM were compared to verify the validity and accuracy of
the model. The results indicated that the IZOA-DHKELM decreased the mean absolute
error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE)
by 56.2%, 67.4%, and 34.2%, respectively, while enhancing the coefficient of determination,
R2, to 0.9952 compared to the ZOA-DHKELM. This demonstrated that the model was
significantly optimized, with improved generalization ability and prediction accuracy. It
can better meet the actual engineering needs.

Keywords: heat-treated wood; performance prediction; algorithm improvement; DHKELM;
wood color

1. Introduction
Wood is a natural material widely used in construction and furniture production.

However, the wood has many defects, such as poor dimensional stability, poor mechanical
properties, and uneven wood color, which limit the range of applications. Wood modifica-
tion can effectively address these natural defects of wood [1]. Wood heat treatment is the
most common method of modifying wood. Heat-treated wood, as a special wood treated
at high temperatures, has been widely used in outdoor and indoor furniture and other
fields in recent years due to its unique carbonization process and excellent anti-corrosion
and environmental protection properties [2]. In addition, the color change in heat-treated
wood is an important feature of its treatment process, directly affecting the wood’s esthetic
degree and practicality. Therefore, the accurate prediction of color changes in heat-treated
wood is important for improving production efficiency and product quality.

Heat treatment causes the wood to darken, mostly to a dark brown. This is because
heat treatment changes the main chemical composition of the wood. Cellulose, hemi-
cellulose, and lignin are degraded to varying degrees, which leads to an increase in the
concentration of phenolics and redox reactions that darken the color of the wood [3]. Heat-
treated timber boasts a uniform color both inside and out, enhancing its overall esthetic
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appeal. In addition, heat-treated wood has better color stability under ultraviolet light than
non-heat-treated wood [4]. Scholars have conducted many studies on the color change
in heat-treated timber through experiments. A study by Sikora et al. [5] explores how
varying heat treatment temperatures impact the color changes in spruce and oak wood.
They found that the temperature gradually increased during heat treatment. The surface
Lightness (L*) of the wood gradually decreased, and the maximum color difference (∆E)
gradually increased. And the total color difference reached the maximum value at 210◦.
Aydemir et al. [6] investigated the effects of heat treatment on the color change in cypress,
tertiary hazel, pendant, beech, cherry, and juniper, which were shown to be significant.
Jiang et al. [7] experimentally concluded that heat treatment temperature and time are
important factors affecting the color of rubberwood and that the color of rubberwood
deepened gradually with the increase in heat treatment temperature and time. Jin et al. [8]
conducted a study on how heat treatment affects the color change in various tree species,
including pinus pinaster, larch, spruce, and boxwood. The experimental findings high-
lighted that each tree species exhibited a distinct degree of color transformation following
the heat-treatment process. Liu et al. [9] heat-treated samples of eight different color tree
species at different temperatures and times. The results showed that the brightness index
of wood color parameters was more sensitive to the treatment conditions and decreased
with increasing temperature and time, and this trend was the same for all wood samples,
but the magnitude of the differences was greater among different wood species. Chen
et al. [10] investigated the effects of oxygen content and moisture content on chemical and
color changes during the heat treatment of acacia wood. The results show that L∗ decreases
significantly with heat treatment, a∗ and b∗ increase gradually, and the total color difference
(∆E) becomes larger and larger. The studies mentioned above indicate that the process is
time-consuming and mention the material and financial resources required to study the
color change in heat-treated wood by experimental means. Therefore, the color change
in wood during the heat-treatment process can be predicted by mathematical modeling.
The industry’s color requirements for heat-treated wood can be met more quickly and
efficiently in practical applications [11].

At present, some scholars have studied the color change in heat-treated wood using
models. Nguyen et al. [12] predicted the color change in wood in the heat-treatment
process by using an artificial neural network model and obtained good prediction results,
Li et al. [13] effectively used a support vector machine model to predict the color change in
wood during artificial weathering following heat treatment, and Mo et al. [14] successfully
predicted the color change in ash wood, yellow wood, and yellow wood in the process of
heat treatment with the help of an artificial neural network. They successfully predicted the
color changes in ash, boxwood, and red oak during heat treatment. ZOA is characterized
by a strong optimization ability and a fast convergence speed although it is a relatively
new metaheuristic algorithm. The DHKELM has been widely used for prediction in the
past year, and it has been successfully applied in various fields, such as carbon emission
and photovoltaic predictions [15,16]. Despite advancements in predictive modeling, the
use of ZOA and DHKELMs to forecast the color of heat-treated wood has not yet been
explored. Additionally, both ZOA and DHKELMs have certain limitations, and improving
and combining these two can continue to optimize and improve how they work together.

This paper proposes an Improved Zebra Optimization Algorithm (IZOA) based on
the sparrow search mechanism, particle swarm perturbation mechanism, and adaptive
function, which is mainly aimed at the shortcomings of ZOA that it has a high probability of
falling into a local optimum, has low flexibility for the speed of searching for the optimum,
and is unable to verify its optimal solution. Then, the DHKELM was improved using
IZOA, and the IZOA-DHKELM was proposed. This study aimed to effectively predict the
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color changes in heat-treated wood using the advanced IZOA-DHKELM. Additionally, it
sought to showcase the model’s reliability in forecasting the physical properties of heat-
treated wood. In addition, it provided some reference for the construction and furniture
decoration industries.

2. IZOA-DHKELM Prediction Model
2.1. Basic Mechanisms of Deep Hybrid Kernel Extreme Learning Machine Models

The DHKELM [17] is an Extreme Learning Machine (ELM) model that combines deep
learning with kernel methods. In this approach, deep layers are used instead of traditional
basis function mappings to increase the complexity and learning ability of the model while
still maintaining the efficiency and stability of ELM. Specifically, the DHKELM constructs
complex nonlinear mappings through multiple hidden layers, usually parameterized
using kernel functions. The DHKELM is improved by the continuous optimization of the
ELM model.

(1) Hybrid Kernel Extreme Learning Machine
ELM is a machine learning algorithm for single-hidden layer feedforward neural

networks (SLFNs). The network structure of ELM is the same as that of SLFN [18]. Still,
traditional feedforward neural networks have obvious drawbacks, such as a slow training
speed, easy falling into the local minima, and sensitive selection of the learning rate. The
ELM algorithm compensates for these shortcomings by moving away from the tried-
and-tested traditional neural network in the training stage to a gradient-based algorithm
(backward propagation) but chooses to randomly generate the connection weights of the
input layer and the hidden layer and the threshold of the hidden layer neurons. There is
no need to adjust in the training process; you only have to set the number of hidden layer
neurons, and you can obtain the unique optimal solution. Compared with the previous
traditional training methods, the ELM method has the advantages of a fast learning speed
and a good generalization ability.

It is assumed that there are N random sample data (xi, yi), where xi is the input, yi is
the output, and i = 1, 2, 3, . . ., n. The learning process of ELM is characterized by solving
for the least squares solution, as shown in Equation (1).

β∗ = H+Y (1)

where H+ is the Moore–Penrose generalized inverse transform of matrix H, Y is the target
output matrix, and β* is the output weight matrix.

The ELM has limitations when dealing with more complex datasets, manifested in
decreased stability and generalization ability. In contrast, the kernel function’s nonlinear
mapping ability is very powerful, so the kernel function is introduced based on the ELM.
The specific operation is to replace the random matrix with the kernel matrix, map the
low-dimensional input samples to the high-dimensional kernel space, and determine the
output weight matrix through the training samples and the kernel function. The Kernel
Extreme Learning Machine (KELM) [19], constructed by combining kernel function and
ELM, has stronger learning and generalization abilities. In this paper, the kernel function
matrix HHT is introduced, and its expression is as follows:

HHT = KELM

KELM =


K(x1, x1) · · · K(x1, xn)

...
. . .

...
K(xn, x1) · · · K(xn, xn)

####
(2)
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where K(x, y) is the kernel function, and KELM is the kernel matrix.
Therefore, the model output expression of KELM is as follows:

y(x) =


K(x, x1)

...
K(x, xn)

( E
C
+ KELM

)−1
Y (3)

where C is the regularization factor, and E is the unit matrix.
The kernel function is an important factor affecting KELM’s performance. A single

kernel function makes it difficult to adequately learn data with nonlinear characteristics. To
further improve KELM’s performance, the Radial Basis Function (RBF) and the Polynomial
Kernel (Poly) have been chosen and combined with weighted parameters to create a hybrid
kernel function [20].

The RBF can map the input samples to a high-dimensional space with better learning
ability, and its kernel function expression is as follows:

kRBF(x, xi) = exp

(
−‖x, xi‖2

2σ2

)
(4)

where σ is the parameter of the RBF kernel function.
Poly has good generalization ability, and its kernel function expression is as follows:

kPoly(x, xi) = (x·xi + c)d (5)

where c is a constant, and d is the number of polynomials.
The expression of the hybrid kernel function after RBF and poly-weighted summation

is as follows:
Kmix(x, xi) = ω·kPoly + (1−ω)·KRBF, ω ∈ [0, 1] (6)

where ω is the hybrid kernel function weight coefficient.
(2) Deep Hybrid Kernel Extreme Learning Machine
Autoencoder (AE) [21] is a handy unsupervised learning algorithm in deep learning.

Its basic idea is the mapping of input data to a low-dimensional potential space and then
the reconstruction of the original data from this potential space, i.e., data dimensionality
reduction, feature extraction, and data reconstruction. AE has a strong advantage in terms
of learning ability and generalization abilities. The ELM is combined with AE. The Extreme
Learning Machine Auto-Encoder (ELM-AE) is a variant of the ELM, which can efficiently
learn important features from the input data and maintain the symmetry between input
and output. The Deep Extreme Learning Machine (DELM) constitutes the ELM-AE as a
basic cascade unit, which first performs unsupervised deep feature extraction using the
ELM-AE and then supervised classification via the ELM.

The DHKELM combines the features of the DELM and HKELM, and its structure is
schematically shown in Figure 1 Its initialization process is shown as follows:
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Step 1: the randomly initialized input weights ωi and bias bi in the ELM-AE model
are orthogonalized.

Step 2: the output matrix Hi and output weights βi corresponding to the nodes of the
implicit layer can be derived by Equations (7) and (8).

Hi = g(ωi·X + bi) (7)

βi =

(
E
C
+ HT

i Hi−1

)−1
HT

i Hi−1 (8)

where g is the activation function, and X is the input sample.
Step 3: the implied layer output matrix of the ELM-AE for each layer is calculated by

Equation (9).

β =

(
E
C
+ KELM

)−1
Hi (9)

The output of the DHKELM is as follows:

y(x) =


Kmix(x, x1)

...
Kmix(x, xn)

( E
C
+ KELM

)−1
Y (10)

2.2. The Traditional Zebra Optimization Algorithm

In 2022, Trojovská et al. introduced an innovative approach to solve complex opti-
mization problems: the ZOA metaheuristic algorithm [22]. This concept draws inspiration
from the natural behavior of wild zebras. ZOA simulates zebras’ foraging behavior and
defense strategies against predator attacks. Considering that ZOA is characterized by
strong optimization-seeking capability and high speed of convergence, the algorithm is
selected for improvement. Its mathematical modeling process is as follows.



Forests 2025, 16, 253 6 of 23

(1) Initialization
Similar to other optimization algorithms, ZOA starts by randomly initializing the

population in the optimization space:

xi,j = lbj + r
(
ubj − lbj

)
(11)

where xi,j is an individual, lbj is the lower boundary of the search for superiority, ubj is the
upper boundary of the search for superiority, and r is a random number between [0, 1].

(2) Phase I: Foraging Behavior
In the first phase, population members were updated based on the simulations of

zebra behavior when searching for forage. Among zebras, there is a type of zebra called
plains zebra, which is a pioneer herbivore. Plains zebras actively choose harder-to-obtain
and less nutritious foods when feeding and give up easier-to-obtain and more nutritious
foods to other zebras. In ZOA, the best member of the population is considered to be
the pioneer zebra, which is responsible for leading the other members of the population
towards its position in the search space. Therefore, updating the zebra’s position in the
foraging phase can be mathematically modeled using Equations (12) and (13).

xnew,P1
i,j = xi,j + r·

(
PZj − I·xi,j

)
(12)

Xi =

{
Xnew,P1

i , Fnew, P1
i < Fi

Xi, else
(13)

where PZ is the pioneer zebra, r is a random number between the interval [0, 1], and I is a
random value in the set {1, 2}.

(3) Phase II: Defense Strategies Against Predators
In the second phase, zebra defense strategies against predator attacks were simulated

to update the position of ZOA population members in the search space. Zebras’ main
predators are lions; however, they are also threatened by cheetahs, leopards, wild dogs, and
other animals. Crocodiles can also be the potential predators of zebras when they approach
water. The zebra’s defense strategy changes depending on the predator. When faced with a
lion attack, the zebra choose an escape strategy characterized by fleeing in zigzag routes
and random lateral turning movements. When faced with a small predator, such as a
wild dog, zebras choose a defense strategy, manifested by other zebras in the population
approaching the attacked zebra and working together to build a defense structure against
the predator. In the ZOA design, it is assumed that the above two situations occur with
equal probability. In this paper, we mathematically model the two defense strategies of
zebras, as shown in Equation (14).

xnew,P2
i,j =

{
S1 : xi,j + R·(2r− 1)·

(
1− t

T
)
·xi,j, Ps ≤ 0.5

S2 : xi,j + r·
(

AZj − I·xi,j
)
, else

(14)

where S1 denotes the zebra’s escape strategy against lions, S2 denotes the fending-off
strategy against cheetahs and wild dogs, t is the number of iterations, T is the maximum
number of iterations, R is a constant of 0.01, Ps is the switching probability of the two
strategies with a random value between [0, 1], and AZ is the state of the attacked zebra.

When updating the zebra’s position, if the zebra has a better target value in the new
position, it accepts the new position. If the zebra’s target value in the new position is not
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as good as the target value in the original position, the zebra still maintains the original
position. This update condition can be modeled by Equation (15).

Xi =

{
Xnew, P2

i , Fnew,P2
i < Fi

Xi, else
(15)

2.3. The Improved Zebra Optimization Algorithm
2.3.1. Introduction of a Sparrow Search Mechanism

In the traditional ZOA, the foraging behavior of the zebra herd is drawn from the
pioneer zebra, and this exploitation pattern accelerates the convergence of ZOA during
the mid and late stages. However, when pioneer zebras are poorly positioned or trapped
in local optimalit, the refined search around ZOA will result in the population moving
toward early maturity. To address this problem, this paper chooses to refine the search
mechanism. Sparrow Optimization Algorithm (SSA) [23] has been proven to have a strong
global exploration ability and is widely used in various optimization scenarios. In this
paper, based on ZOA, the foraging process of sparrow searchers in SSA is introduced to
supplement ZOA, and the proportion of explorers is set to be 70%. The leader position
update rule for the SSA can be found in Equation (16):

xnew = xbest − r1 × |xbest − xcurrent| (16)

where xnew is the current best position, xcurrent is the individual’s current position, and r1 is
a random number in the range of [0, 1].

In addition, the safety of the foraging process can be ensured by utilizing the early
warning mechanism of SSA, avoiding natural enemies. The position update rule of SSA
avoiding natural enemies is shown in Equation (17):

xnew = xcurrent + r3 × (xcurrent − xworst) (17)

where xworst is the worst position in the population, representing the position where the
natural enemy may appear, and r3 is a random number in the range of [0, 1].

The introduction of the sparrow foraging mechanism enriches the search strategy of
ZOA, and its S-exponential step is conducive to expanding the search range of the current
solution. This solves the problem that ZOA can easily fall into the local optimum.

2.3.2. Introducing an Adaptive Exponential Function Instead of the Escape Factor R

The search speed of ZOA greatly affects its search quality. In the traditional ZOA,
its speed is mainly affected by the evasion factor R. And R is a constant of 0.01, which
leads to the search speed not being adjusted with the search process. It is considered that
ZOA has different requirements for the search speed at different search stages. In the early
search stage, searching as many solutions as possible in the largest possible search range
at a fast speed is necessary. When entering the middle and late stages of the search, the
search quality needs to be improved by reducing the search speed to avoid omitting the
better solutions. Therefore, in this paper, the evasion factor R is adjusted from a constant to
a nonlinearly decreasing exponential function, as shown in Equation (18):

R(t) = 0.5·e−0.01t + 0.1 (18)

As shown in Figure 2, the escape factor R decreases gradually from 0.6 to converge to
0.1 as t increases.
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2.3.3. Introduction of Particle Swarm Perturbation Mechanism

In the search optimization process, ZOA consistently explores the search space to
identify improved solutions based on the existing ones. However, whether the current
solution is optimal at the moment and whether the new solution searched afterward is
better than the current optimal solution cannot be verified. The particle swarm perturbation
mechanism can achieve the verification of the ZOA solution through the reverse search and
has been applied many times in previous algorithm improvements. Therefore, the speed
update rule of the Particle Swarm Algorithm is introduced to verify the optimal solution
instantly, as shown in Equation (19) [24]:

vk+1
id = ωvk

id + c1r1

(
pk

id,pbest − xk
id

)
+ c2r2

(
pk

d,gbest − xk
id

)
(19)

where ω is the inertia weight, r1r2 are random numbers in the interval [0, 1], vk
id is the

velocity vector of particle i in the dth dimension in the kth iteration, c1 is the individual
learning factor, c2 is the population learning factor, pk

id,pbest is the historical optimal position

of particle i in the dth dimension in the kth iteration, xk
id is the particle i in the kth iteration

position vector in the dth dimension, and pk
d,gbest is the historical optimal position of

population i in the dth dimension in the kth iteration.
In summary, the Improved Zebra Optimization Algorithm (IZOA) is quoted by combin-

ing the search mechanism of SSA, the adaptive exponential function, and the perturbation
mechanism of PSO in the improvement of the traditional ZOA in terms of three perspectives
of globalization, search speed, and optimal solution verification.

2.4. The IZOA-DHKELM

This research introduces an enhanced Zebra Optimization Algorithm aimed at optimiz-
ing a Deep Hybrid Kernel Extreme Learning Machine Model, developed using MATLAB
(2020b). The process is as follows. Firstly, the inputs and outputs of the model are deter-
mined. To effectively organize your sample data, it should be divided into two distinct
categories: a training set and a testing set. Then, 70% of the data for training purposes and
30% for testing should be allocated. The entire dataset should be normalized to ensure
consistent and meaningful results. Next, the parameters are set, the number of hidden
layers of the model is set to three layers, the type of ELM-AE activation function is sig-
moid, the two types of kernel function of the top hybrid kernel limit learning machine
are RBF kernel function and Poly kernel function, and the parameter optimization range
is determined according to the type of kernel function. Then, the population parameters
are optimized using the Improved Zebra Optimization Algorithm, setting the number of
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populations to 30 and the maximum number of iterations to 50, calculating the fitness
values of the populations, and updating their speed, position, and other parameters to
determine the end conditions of the optimal parameters. The IZOA-DHKELM’s prediction
performance is thoroughly evaluated using the test dataset. If the predicted values meet
the set requirements, they will be the output. If not, the parameters will continue to be
optimized until the end conditions are met. The process is shown in Figure 3.
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Figure 3. IZOA-DHKELM flowchart.

3. Experimental
3.1. Data Collection and Pre-Processing

The literature [25] provided test data for this paper. The literature tested pinus pinaster
and eucalyptus wood for changes in wood color under different heat treatment conditions.
The color data before heat treatment are shown in Appendix A, Table A1, and the dataset
after heat treatment is shown in Appendix A, Table A2.

The experimental procedure in the literature [25] is as follows. Test samples of pinus
pinaster and eucalyptus cubes with edges of about 40 mm were cut from radial boards
with smooth surfaces, with a total of 150 samples of each species. The samples were
sandpapered and kept in a conditioned room at a temperature of 20 ◦C and 50% relative
humidity until stabilized. Before heat treatment, the color of the samples was measured
radially, tangentially, and cross-sectionally. The specimens were then heat-treated as follows:
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(1) in an oven with air and (2) in an autoclave without air for steam heat treatment. The
air heat treatment was carried out in an electric oven with natural convection exhaust of
hot air through the ko ports in the oven wall, at temperatures ranging from 170 to 200 ◦C,
for a treatment time of 2–24 h. Treatments were started at ambient temperature with a
ramp-up time of approximately 1 h. Four replications were performed for each treatment
time/temperature condition. Steam heat treatment was performed in an autoclave at
190–210 ◦C for 2–12 h. The autoclave had a capacity of 0.5 m3 and an area of 1.0 m2

and was heated by regulating the entry of a mixture of superheated steam (370–380 ◦C)
and saturated steam (150–160 ◦C). The temperature was controlled by assisted heating
by a stream of superheated steam in the autoclave sleeve, with three replicates for each
time/temperature treatment condition.

In predicting lumber color using the IZOA-DHKELM, we utilized the initial 70% of
the data from Table A2 in Appendix A as the training set. The other 30% was used as
the test set. Tree species, heat-treatment temperature, heat-treatment time, heat-treatment
medium, and test timber profile type were the input parameters, and total color change
(∆E) was used as an output parameter. Since the size of the data is different between the
four input parameters of the model, the input data were standardized in this article using
the min–max normalization method. Equation (20) performs a linear transformation on the
original data to map the resultant values to the specified range [26].

X∗ =
Xi − Xmin

Xmax − Xmin
(20)

Xi is the normalized original data, X* is the normalized value, Xmax is the maximum
value of the initial data, and Xmin is the minimum value. The process of data normaliza-
tion involves scaling data so that the data consistently fit within the [0, 1] range. This
method helps preserve the original data distribution pattern, ensuring accurate analysis
and interpretation [27].

3.2. Color Measurement

The following measurements were made in the literature [25] for wood color. The
final color of the wood is measured after stabilization in a room at 20 ◦C and 50% relative
humidity radially, tangentially, and cross-sectionally. The Minolta cm-3630 Colorimetric
Spectrophotometer is calibrated with the white standard for 0% color and the black stan-
dard for 100% color. The color parameters L*, a*, and b* were measured by the CIELAB
method [28]. And their changes ∆L∗, ∆a∗, and ∆b∗ before and after heat treatment were
calculated. The total color change (∆E) has been computed according to the formula
as follows:

∆L∗ = L2
∗ − L1

∗ (21)

∆a∗ = a2
∗ − a1

∗ (22)

∆b∗ = b2
∗ − b1

∗ (23)

∆E =

√
∆L∗2 + ∆a∗2 + ∆b∗2 (24)

where ∆L*, ∆a*, and ∆b* represents the changes in color coordinates. L1
*, a1

*, and b1
*

denote the luminance, red-green coordinate, and yellow-blue coordinate of the untreated
specimen, and L2

*, a2
*, and b2

* denote the luminance, red-green coordinate and yellow-blue
coordinate of the treated specimen.
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3.3. Model Parameter Setting
3.3.1. Metaheuristic Algorithm Parameterization

To assess the effectiveness of IZOA, we conducted a performance comparison with
traditional ZOAs and popular metaheuristics (MAs). The preferred algorithm features
are as follows: the Golden Jackal Optimization Algorithm (GJO) [29], the Nighthawk
Optimization Algorithm (NGO) [30], the Gray Wolf Optimization Algorithm (GWO) [31],
and the Honey Badger Optimization Algorithm (HBA) [32]. Table 1 provides the detailed
parameter settings for each metaheuristic algorithm. In order to ensure equity, each
metaheuristic algorithm was configured with a maximum of 500 iterations and a population
size of 30.

Table 1. Parameter settings of MHA.

Algorithm Parameter Setting

GJO c1 1.5
E1 Linear reduction from 1.5 to 0

NGO I 1 or 2

GWO Convergence factor
a Linear reduction from 2 to 0

HBA C 2
ZOA Escape factor R 0.01
IZOA C1 and C2 0.5

Escape factor R Nonlinear decrease from 0.6 to 0.1

3.3.2. IZOA-DHKELM Parameter Setting

In this study, the IZOA-DHKELM adopts a three-layer structure, including the input,
implied, and output layers. The input layer consists of five nodes, each representing a
different heat treatment temperature, heat treatment time, heat treatment tree species,
heat treatment medium, and profile type. The output layer consists of a single node
that represents the wood’s color. The model’s population is 30, the maximum number
of iterations is 50, and the implicit layer is set to three layers. Determining the type of
activation function for the model is also one of the most important steps in the construction
of the model. The activation function is essential in a neural network model as it introduces
nonlinearities. This ability allows the network to effectively learn and depict intricate
patterns and relationships. If there is no activation function, the neural network can
only represent linear transformations, greatly restricting the ability of neural networks to
express themselves. Commonly used activation functions in the model are tansig, relu,
sigmoid, purelin, and so on. This paper highlights the selection of the sigmoid activation
function, a popular choice for neural networks. The sigmoid function is chosen for its
ability to constrain output values between 0 and 1, making it an ideal tool for addressing
nonlinear problems.

When developing a model, it is crucial to establish the optimization boundaries, deter-
mine the number of nodes for each layer within the implicit layer, and select the appropriate
kernel function. These factors will significantly influence the optimization dimension. Thus,
the optimization range should be set in segments. The first is to set the number of nodes
in each layer; the number of nodes in the hidden layer determines the complexity and
learning ability of the network, and the final setting range is an integer between 1 and 100.
The second is the setting of regularization coefficients and weighting coefficients, adding
the boundaries of ELM-AE regularization coefficients, HKELM penalty coefficients, and
Kernel weighting coefficients, setting the minimum value of 0.001, the maximum value
of 1000, and weighting coefficients in the range of 0 to 1. The tuning coefficients help
prevent superficial overfitting and improve the model’s ability to generalize. Finally, in the
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kernel function settings, you need to set the optimization range of the kernel parameters
according to the type of the selected kernel function, and you can dynamically adjust the
parameter range according to the needs of different combinations. The model constructs a
very systematic mechanism for setting the range of nuclear parameters, which is selected
by combining various types of atomic functions, specifically RBF kernel and RBF kernel
combination, RBF kernel and linear kernel combination, RBF kernel and poly kernel com-
bination, RBF kernel and fluctuation kernel combination, linear kernel and linear kernel
combination, linear kernel and poly kernel combination, linear kernel and fluctuation
kernel combination, polynomial kernel and polynomial kernel combination, polynomial
kernel and fluctuation kernel combination, and fluctuation kernel and fluctuation kernel
combination, by assigning the parameters in this way, and it is ensured that the correct
kernel parameters and control terms are used. After training on the dataset of this paper,
the RBF kernel function and poly kernel function are selected; the RBF kernel can handle
complex classification problems, and the poly kernel forces complex nonlinear problems.

3.4. Model Performance Evaluation

In this paper, mean square error (MSE), mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R2)
have been selected as key indicators for assessing the model’s accuracy and precision. The
scores for each evaluation metric were calculated using the following Equation (25)–(29) [33].

MAE =
1
N
·

N

∑
i=1
|pi − p̂1| (25)

MSE =
1
N
·

N

∑
i=1

(pi − p̂1)
2 (26)

MAPE =
1
N
·

N

∑
i=1

(
|pi − p̂1|

pi

)
·100 (27)

RMSE =

√√√√ 1
N
·

N

∑
i=1

(pi − p̂1)
2 (28)

R2 = 1− ∑N
i=1(pi − p̂1)

2

∑N
i=1(pi − p)2 (29)

where pi is the actual value of the experimental sample, p̂1 is the predicted value, N
represents the volume of data, and p is the average of all actual values.

4. Results and Discussion
4.1. Validation of the Effectiveness of the IZOA

To accurately evaluate IZOA compliance and determine the success of IZOA enhance-
ment strategies, we conduct performance testing using the widely recognized 23 sets of
test functions [34]. These evaluations ensure that IZOA delivers optimal results and meets
industry standards. F1 to F7 are unimodal benchmark test functions, F8 to F13 are multi-
modal benchmark test functions, and F14 to F23 are composite benchmark test functions.
Among them, F1 to F13 dimensions are 30, and F14 to F23 dimensions vary from 2 to 6. In
this paper, 4 of the 23 groups of test functions are selected for demonstration. These include
the spherical function F1, which is a simple and representative benchmark test function
commonly used to test the performance of algorithms on simple convex optimization prob-
lems; the cumulative sum of squares function F3, which exists multiple local optimizations,
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increasing the difficulty of the optimization algorithm, and requires the process to obtain a
good global searching due to the discontinuity of the gradient information; the maximum
function F4 is a nonsmoothed function whose goal is to find the element of the input vector
with the largest absolute value, and although the function itself is relatively simple, solving
the maximum problem requires a global search strategy; and hybrid function F13, which
has complex nonlinear interactions and requires the optimization algorithm to consider
both global and local search strategies, which can effectively evaluate the ability of the
algorithm. The detailed description of the selected test functions is shown in Table 2.

Table 2. Specific information about the test function.

Function Formula Dim Search Range

F1 f (x) =
n
∑

i=1
x2

i
30 [−100, 100]

F3 f (x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100, 100]

F4 f (x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100,= 100]

F13

f (x) =

0.1
{

sin2(3πx1) +
n
∑

i=1
(x i − 1)2

[
1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi , 5, 100, 4)

30 [−50, 50]

In the experiments, the IZOA has been in comparison with the unenhanced ZOA and
several other algorithms with superior performance, including GJO, NGO, GWO, and HBA.
The population size was set to 30, with a maximum of 500 iterations, and each algorithm
underwent a single independent run. The results of the analysis are shown in Figure 4.
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Figure 4 visualizes each algorithm’s convergence curves in different dimensions and
test functions. During the testing process, it becomes evident that GJO, NGO, GWO, and
HBA stop iterating before finding the optimal solution, indicating that these algorithms
are easily affected by the local optimum. ZOA outperforms the previous algorithms but is
also affected by the local optimum, decreasing the solution accuracy. IZOA has the fastest
converging speed and highest converging accuracy, with an almost linear convergence
process, showing a superior convergence speed. It shows a superior convergence speed for
the GJO, NGO, GWO, HBA, and ZOAs. As the IZOA nears the optimal solution, significant
enhancements become evident. The remaining algorithms continue to iterate towards the
best solution, showcasing IZOA’s remarkable convergence rate.

Meanwhile, IZOA can be very close to the optimal solution for these test functions
after reaching the final number of iterations. Simultaneously, after finishing the last set
of iterations, the alternative algorithms continue to show a notable difference from the
optimal solution. This example highlights the exceptional accuracy and stability of IZOA
when tackling high-dimensional problems. It should be discovered how IZOA consistently
delivers superior performance in complex scenarios.

4.2. Model Prediction Results

When evaluating algorithm performance, the enhanced IZOA demonstrates an excep-
tional convergence speed, impressive solution precision, and remarkable stability, especially
when addressing high-dimensional problems. The next step is to verify the effectiveness
of the IZOA-DHKELM proposed in this paper. Figure 5 shows the fitting curves compar-
ing the predicted and true wood color levels for the IZOA-DHKELM, ZOA-DHKELM,
and DHKELMs.
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larged view.

Figure 5 shows that, overall, the IZOA-DHKELM predicts the wood color closest to
the actual value, which is better than the ZOA-DHKELM and DHKELMs. This indicates
that the model has a high predictability. Local predictions from the IZOA-DHKELM
are also closer to the actual values. Of the two models used as comparisons, the fit
between the expected and actual values of the ZOA-DHKELM is slightly better than that
of the DHKELM, and there is an important gap between DHKELM’s forecast and actual
values. This indicates the value of optimizing the predictive model using the original
heuristic algorithm.

Figure 6 shows the histogram of the prediction error of the IZOA-DHKELM. The error
histogram visualizes the error between the predicted output and the target output. In
the error histogram, the horizontal coordinate represents the error value, and the vertical
coordinate represents the number of samples corresponding to the error value. Through the
error histogram, we can see the error distribution at a glance, which can help us understand
and solve the possible problems in the training course. As illustrated in the accompanying
figure, the error histogram of the improved model does not show a skewed distribution,
i.e., the number of samples on both sides of the zero value is not significantly different,
which indicates that the model is well fitted and there is no overfitting or underfitting.
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Figure 7 shows the error behavior of the IZOA-DHKELM on the training and test sets,
including absolute and relative errors. The absolute error is the difference between the
predicted and actual values, which can visualize the size of the prediction error. Relative
error measures the difference between predicted and actual values, highlighting the size of
the prediction error across various datasets. When evaluating the prediction model, the
absolute error size and the relative error level should be considered, and the combination
of the two is more effective. As you can see from Figure 8, in the training process, the
IZOA-DHKELM demonstrates absolute and relative errors ranging between −5 and 5;
in the testing process, the absolute error of the model is between −2.5 and 2.5, and the
relative error is between −0.5 and 0.5, both of which are improved very significantly. The
comparison between the training and testing processes shows that, after training, the error
control of the IZOA-DHKELM is very impressive, and it is a more stable and trustworthy
prediction model.
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4.3. Comparative Analysis of Model Performance

To confirm the effectiveness of the proposed IZOA-DHKELM in accurately predicting
the color of heat-treated wood, further validation is required. This paper evaluates the
model more accurately using four evaluation indexes. They are MAE, RMSE, MAPE, and
R2. Detailed findings for each evaluation metric are presented in Table 3.

Table 3. Evaluation indicators for each model.

Model MAE RMSE MAPE/% R2

DHKELM 1.6194 0.1920 1.9802 0.9172
ZOA-DHKELM 1.4867 0.1443 1.7185 0.9685
IZOA-DHKELM 0.6519 0.0471 1.1305 0.9952

The smaller the MAE, RMSE, and MAPE, the smaller the gap between the model’s
predicted and actual values. This indicates that the higher the prediction accuracy of the
model, the index of determination R2 is generally between 0 and 1. The closer the value is
to 1, the better the model’s predictions align with the actual outcomes, resulting in higher
prediction accuracy. The table gives specific information about the various evaluation
metrics for different models. The prediction performance of the DHKELM was enhanced
to varying degrees by optimizing different metaheuristic algorithms. Nevertheless, the
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IZOA-DHKELM surpassed all other models in its ability to accurately forecast the color of
heat-treated wood. The IZOA-DHKELM was evaluated against the ZOA-DHKELM. Its
MAE, RMSE, and MAPE are reduced by 56.2%, 67.4%, and 34.2%, respectively. At the same
time, R2 is improved to 0.9952. This suggests that the IZOA has better tweaking features
and can better optimize the DHKELM, thus making the IZOA-DHKELM more suitable
for predicting the color of heat-treated wood. This paper highlights the effectiveness of
three proposed improvements to ZOA, showcasing the dominance of the IZOA. Further-
more, it proves the IZOA-DHKELM’s superiority in accurately predicting the color of
heat-treated wood. The number of parameters in a model significantly influences its predic-
tive performance. Generally, a higher number of parameters enhances a model’s capability
to process data effectively. In this article, we explore how the IZOA-DHKELM features
more parameters than both the ZOA-DHKELM and DHKELMs, leading to improved
outcomes. Notably, compared to the ZOA-DHKELM, the IZOA-DHKELM incorporates
an additional escape factor “R”, and compared to the DHKELM, it adds specific parame-
ters like c1 and c2. These enhancements considerably boost the model’s predictive ability,
highlighting the importance of parameter optimization for advanced data processing. In
addition, Table 4 is a table of the comparative analysis of the IZOA-DHKELM with some
published studies on the modeling of color changes during heat treatment of wood from
the literature [11,35]. The results indicate that the IZOA-DHKELM outperforms several
other models, showcasing significantly improved RMSE and R2 (correlation coefficient)
values. It is a trustworthy prediction model.

Table 4. Performance comparison with published models.

Model RMSE R2

IZOA-DHKELM 0.0471 0.9952
ANN 0.776 0.977

PSO-SVM 0.97504 0.87627
IPSO-SVM 0.9166 0.90127

Figure 8 shows the RMSE and R2 analysis of the IZOA-DHKELM and ZOA-DHKELMs.
(a) and (b) visualize the difference between the RMSE of the two models. (b) is well fitted
and no significant difference between the true and predicted values occurs, while (a) shows
substantial differences between the true and predicted values at multiple nodes. The
IZOA-DHKELM demonstrates exceptional accuracy, and the ZOA-DHKELM shows poor
precision in the prediction process. (c) and (d) are the R2 analysis plots of the two models.
It is clear from the plots that (c) has a much better fit; there are no obvious discrete points,
and the relationship between predicted and actual values is very strong. In (d), there are
multiple points with large deviations, and the fitting effect is reduced. Here, R2 is mainly
used to compare the performance of these two models on the same dataset, and it is obvious
that the IZOA-DHKELM performs significantly better than the ZOA-DHKELM in this
metric of R2 and is more trustworthy.

The results of (a), (b), (c), and (d) reinforce the previous affirmation of the IZOA-
DHKELM. In conclusion, the IZOA-DHKELM demonstrates outstanding performance
in accurately predicting the color of heat-treated wood, making it a reliable choice for
industry professionals.

5. Conclusions
In this paper, the IZOA-DHKELM was constructed to predict the color change in

heat-treated wood. The main conclusions are as follows:

• As result of the research conducted, we obtained IZOA. First, IZOA’s global search
capability is significantly better than ZOA’s. Second, IZOA’s search speed is adapted
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to the whole search process, which makes IZOA’s search efficiency significantly higher
than ZOA’s. Finally, IZOA’s search accuracy is also higher than ZOA’s.

• The CEC test results reveal that IZOA exhibits a superior local unfolding ability
compared to other models. It approaches the optimal solution more quickly and
achieves faster convergence. In addition, the fitting accuracy of IZOA is significantly
better than several different algorithms and maintains good accuracy and stability
when solving high-dimensional problems.

• This study presents an innovative model for forecasting the performance of heat-
treated wood. As the first of its kind, this model marks a significant advancement
in the field. This is the innovation of this paper. Meanwhile, the results of the
comparative analysis of model performance show that, in comparison with the model
before improvement, the IZOA-DHKELM has the lowest MAE, RMSE, and MAPE
and the highest R2. This shows that the prediction error of the IZOA-DHKELM is
relatively small, and the prediction accuracy is relatively high. And it can better meet
the performance requirements of heat-treated wood color prediction. In comparison
with some published models for predicting the color change in heat-treated wood, the
IZOA-DHKELM has the smallest RMSE and the largest R2. The model in this paper
still has obvious performance advantages.

• However, there are some limitations to this study. Despite the fact that the proposed
model has been shown to be superior to other algorithms in the color prediction of
heat-treated wood by using metric measures and comparing different algorithms,
there is still a lack of relevant statistical tests. The computational cost of adding the
enhancements has not yet been analyzed, although IZOA significantly improves the
optimization performance. In further research, we aim to continue to improve the
model by comparing it with as many metaheuristics as possible. And we will also
try to use the model to predict other properties of heat-treated wood, for example,
mechanical properties and moisture content. This will help ensure that the model is
used in a productive environment.
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Appendix A

Table A1. Color parameters of wood before heat treatment.

Transverse Radial Tangential

L* a* b* L* a* b* L* a* b*

Eucalypt
Average 54.1 7.4 15.7 63.8 8.0 19.9 61.5 8.5 18.9

Minimum 48.1 5.4 14.3 56.9 6.8 16.2 53.7 6.7 16.3
Maximum 63.6 9.6 20.3 67.4 10.1 23.0 69.9 11.7 30.4

Standard deviation 2.7 0.9 0.9 1.9 0.7 0.9 2.7 1.1 1.4
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Table A1. Cont.

Transverse Radial Tangential

L* a* b* L* a* b* L* a* b*

Pinus pinaster
Average 76.1 6.9 24.1 74.3 7.6 23.3 67.3 7.2 16.3

Minimum 57.7 5.5 17.8 56.9 5.3 17.4 48.1 5.8 13.8
Maximum 80.4 9.1 27.6 78.7 11.4 28.5 72.0 8.7 19.6

Standard deviation 4.4 0.6 2.1 4.6 1.1 3.0 5.1 0.6 1.2

Table A2. Changes in color parameters of heat-treated wood.

Tree
Species

Treatment
Medium

Treatment
Temperatures/°C

Treatment
Time/h

Profile
Direction ∆L*/% ∆a*/% ∆b*

Eucalypt Air 170 2 Tranv −17.1 9.0 −8.6
Eucalypt Air 170 2 Radial −10.3 23.7 −1.5
Eucalypt Air 170 2 Tang −18.0 16.1 −5.6
Eucalypt Air 170 6 Tranv −27.9 7.8 −15.5
Eucalypt Air 170 6 Radial −25.0 17.3 −9.1
Eucalypt Air 170 6 Tang −35.0 10.9 −19.7
Eucalypt Air 170 12 Tranv −39.6 −10.1 −33.6
Eucalypt Air 170 12 Radial −38.4 11.7 −24.2
Eucalypt Air 170 12 Tang −44.4 −9.3 −32.0
Eucalypt Air 170 24 Tranv −45.5 −8.4 −35.1
Eucalypt Air 170 24 Radial −50.1 −5.6 −40.4
Eucalypt Air 170 24 Tang −50.8 −4.0 −37.4
Eucalypt Air 180 2 Tranv −19.6 13.3 −0.2
Eucalypt Air 180 2 Radial −17.3 22.2 −1.7
Eucalypt Air 180 2 Tang −19.4 8.0 −1.2
Eucalypt Air 180 6 Tranv −38.7 −18.9 −37.4
Eucalypt Air 180 6 Radial −38.3 12.4 −19.6
Eucalypt Air 180 6 Tang −43.3 −1.9 −33.3
Eucalypt Air 180 12 Tranv −44.8 −16.4 −39.3
Eucalypt Air 180 12 Radial −45.6 8.1 −28.2
Eucalypt Air 180 12 Tang −50.2 −17.8 −44.8
Eucalypt Air 180 24 Tranv −51.5 −28.3 −54.1
Eucalypt Air 180 24 Radial −51.7 1.1 −42.1
Eucalypt Air 180 24 Tang −55.6 −35.0 −69.5
Eucalypt Air 190 2 Tranv −33.9 2.8 −23.5
Eucalypt Air 190 2 Radial −34.2 21.5 −13.6
Eucalypt Air 190 2 Tang −42.3 2.9 −33.7
Eucalypt Air 190 6 Tranv −45.6 −26.2 −45.6
Eucalypt Air 190 6 Radial −49.3 1.2 −37.3
Eucalypt Air 190 6 Tang −51.2 −22.4 −56.9
Eucalypt Air 190 12 Tranv −50.2 −40.5 −64.2
Eucalypt Air 190 12 Radial −54.4 −18.6 −59.9
Eucalypt Air 190 12 Tang −54.3 −41.2 −65.7
Eucalypt Air 190 24 Tranv −50.8 −29.2 −58.4
Eucalypt Air 190 24 Radial −56.3 −37.0 −70.1
Eucalypt Air 190 24 Tang −55.3 −40.8 −72.2
Eucalypt Air 200 2 Tranv −38.9 −8.0 −31.2
Eucalypt Air 200 2 Radial −36.6 16.9 −18.8
Eucalypt Air 200 2 Tang −43.6 −7.6 −37.1
Eucalypt Air 200 6 Tranv −50.5 −49.6 −67.9
Eucalypt Air 200 6 Radial −51.6 −13.5 −46.7
Eucalypt Air 200 6 Tang −56.0 −38.7 −69.8
Eucalypt Air 200 12 Tranv −52.7 −45.5 −70.8
Eucalypt Air 200 12 Radial −56.2 −28.6 −66.3
Eucalypt Air 200 12 Tang −59.2 −60.2 −85.6
Eucalypt Vapor 190 2 Tranv −41.7 −4.9 −38.4
Eucalypt Vapor 190 2 Radial −41.6 10.2 10.2
Eucalypt Vapor 190 2 Tang −36.6 10.5 −22.7
Eucalypt Vapor 190 6 Tranv −43.8 −6.2 −37.7
Eucalypt Vapor 190 6 Radial −47.0 2.8 2.8
Eucalypt Vapor 190 6 Tang −45.5 6.6 −33.4
Eucalypt Vapor 190 12 Tranv −44.0 −14.5 −45.7
Eucalypt Vapor 190 12 Radial −46.0 −4.0 −4.0
Eucalypt Vapor 190 12 Tang −44.8 −4.0 −36.5
Eucalypt Vapor 200 2 Tranv −36.5 3.5 −25.9
Eucalypt Vapor 200 2 Radial −36.3 9.7 −24.6
Eucalypt Vapor 200 2 Tang −37.2 16.1 −22.2
Eucalypt Vapor 200 6 Tranv −50.7 −16.1 −50.3
Eucalypt Vapor 200 6 Radial −51.6 −13.0 −52.6
Eucalypt Vapor 200 6 Tang −52.7 −7.7 −46.6
Eucalypt Vapor 200 12 Tranv −51.5 −39.0 −62.9
Eucalypt Vapor 200 12 Radial −54.4 −23.1 −58.6
Eucalypt Vapor 200 12 Tang −54.1 −26.1 −58.4
Eucalypt Vapor 210 2 Tranv −49.6 −21.7 −43.9
Eucalypt Vapor 210 2 Radial −50.4 −7.5 −43.7
Eucalypt Vapor 210 2 Tang −49.0 −22.5 −45.8
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Table A2. Cont.

Tree
Species

Treatment
Medium

Treatment
Temperatures/°C

Treatment
Time/h

Profile
Direction ∆L*/% ∆a*/% ∆b*

Eucalypt Vapor 210 6 Tranv −53.1 −42.5 −64.8
Eucalypt Vapor 210 6 Radial −54.7 −33.9 −62.9
Eucalypt Vapor 210 6 Tang −55.8 −39.0 −64.4
Eucalypt Vapor 210 12 Tranv −54.5 −53.2 −72.7
Eucalypt Vapor 210 12 Radial −56.8 −38.0 −67.8
Eucalypt Vapor 210 12 Tang −56.7 −38.3 −63.5

Pinus pinaster Air 170 2 Tranv −9.4 −12.4 19.5
Pinus pinaster Air 170 2 Radial −10.5 22.8 12.2
Pinus pinaster Air 170 2 Tang −12.8 26.5 22.7
Pinus pinaster Air 170 6 Tranv −19.0 −5.9 25.1
Pinus pinaster Air 170 6 Radial −17.7 48.3 14.7
Pinus pinaster Air 170 6 Tang −20.7 41.7 27.1
Pinus pinaster Air 170 12 Tranv −25.2 −7.9 31.5
Pinus pinaster Air 170 12 Radial −28.7 83.3 14.7
Pinus pinaster Air 170 12 Tang −52.4 20.6 −21.6
Pinus pinaster Air 170 24 Tranv −32.1 11.5 31.8
Pinus pinaster Air 170 24 Radial −44.7 87.2 −6.5
Pinus pinaster Air 170 24 Tang −45.3 71.5 −8.0
Pinus pinaster Air 180 2 Tranv −15.2 −0.7 24.9
Pinus pinaster Air 180 2 Radial −14.1 27.7 12.2
Pinus pinaster Air 180 2 Tang −19.4 55.5 23.7
Pinus pinaster Air 180 6 Tranv −24.3 7.4 38.3
Pinus pinaster Air 180 6 Radial −34.7 83.2 11.1
Pinus pinaster Air 180 6 Tang −32.8 72.9 19.2
Pinus pinaster Air 180 12 Tranv −36.1 18.7 27.8
Pinus pinaster Air 180 12 Radial −44.3 77.2 −6.4
Pinus pinaster Air 180 12 Tang −47.0 76.6 −8.7
Pinus pinaster Air 180 24 Tranv −40.5 32.1 29.1
Pinus pinaster Air 180 24 Radial −52.5 66.9 −27.2
Pinus pinaster Air 180 24 Tang −52.1 37.8 −35.0
Pinus pinaster Air 190 2 Tranv −19.4 −6.4 27.1
Pinus pinaster Air 190 2 Radial −23.9 70.3 21.9
Pinus pinaster Air 190 2 Tang −25.7 66.2 26.8
Pinus pinaster Air 190 6 Tranv −32.8 14.1 33.4
Pinus pinaster Air 190 6 Radial −43.1 79.4 −4.4
Pinus pinaster Air 190 6 Tang −38.1 72.5 15.9
Pinus pinaster Air 190 12 Tranv −45.4 12.3 −0.9
Pinus pinaster Air 190 12 Radial −57.4 52.4 −43.8
Pinus pinaster Air 190 12 Tang −56.3 39.0 −45.8
Pinus pinaster Air 190 24 Tranv −49.4 8.1 −20.7
Pinus pinaster Air 190 24 Radial −58.5 30.8 −53.2
Pinus pinaster Air 190 24 Tang −58.8 14.6 −57.8
Pinus pinaster Air 200 2 Tranv −28.4 −0.8 31.2
Pinus pinaster Air 200 2 Radial −35.3 87.4 2.6
Pinus pinaster Air 200 2 Tang −33.9 64.8 12.2
Pinus pinaster Air 200 6 Tranv −44.6 9.7 3.1
Pinus pinaster Air 200 6 Radial −52.1 68.6 −28.2
Pinus pinaster Air 200 6 Tang −54.0 40.3 −38.1
Pinus pinaster Air 200 12 Tranv −52.9 4.9 −25.2
Pinus pinaster Air 200 12 Radial −59.5 38.8 −49.4
Pinus pinaster Air 200 12 Tang −60.4 3.3 −63.4
Pinus pinaster Vapor 190 2 Tranv −19.2 82.4 42.2
Pinus pinaster Vapor 190 2 Radial −38.6 33.5 −9.7
Pinus pinaster Vapor 190 2 Tang −24.4 52.3 13.1
Pinus pinaster Vapor 190 6 Tranv −28.1 63.1 26.7
Pinus pinaster Vapor 190 6 Radial −41.2 33.6 −12.4
Pinus pinaster Vapor 190 6 Tang −34.6 94.0 19.1
Pinus pinaster Vapor 190 12 Tranv −29.9 70.3 32.4
Pinus pinaster Vapor 190 12 Radial −40.3 30.9 −13.6
Pinus pinaster Vapor 190 12 Tang −34.8 78.6 5.7
Pinus pinaster Vapor 200 2 Tranv −20.3 51.6 33.7
Pinus pinaster Vapor 200 2 Radial −37.6 25.4 −6.3
Pinus pinaster Vapor 200 2 Tang −30.3 37.4 2.6
Pinus pinaster Vapor 200 6 Tranv −30.7 64.1 21.4
Pinus pinaster Vapor 200 6 Radial −43.4 42.0 −11.1
Pinus pinaster Vapor 200 6 Tang −37.3 62.9 −0.5
Pinus pinaster Vapor 200 12 Tranv −34.1 59.9 18.3
Pinus pinaster Vapor 200 12 Radial −45.2 43.1 −13.6
Pinus pinaster Vapor 200 12 Tang −39.8 54.5 −5.0
Pinus pinaster Vapor 210 2 Tranv −34.6 50.7 11.0
Pinus pinaster Vapor 210 2 Radial −44.8 48.0 −16.8
Pinus pinaster Vapor 210 2 Tang −40.0 83.0 0.9
Pinus pinaster Vapor 210 6 Tranv −39.5 66.6 9.8
Pinus pinaster Vapor 210 6 Radial −52.9 40.4 −30.7
Pinus pinaster Vapor 210 6 Tang −47.6 54.6 −13.5
Pinus pinaster Vapor 210 12 Tranv −40.8 56.2 9.0
Pinus pinaster Vapor 210 12 Radial −50.9 44.3 −21.9
Pinus pinaster Vapor 210 12 Tang −47.5 49.6 −17.7
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2. Jirouš-Rajković, V.; Miklečić, J. Heat-Treated Wood as a Substrate for Coatings, Weathering of Heat-Treated Wood, and Coating

Performance on Heat-Treated Wood. Adv. Mater. Sci. Eng. 2019, 2019, 8621486. [CrossRef]
3. Liu, M.; Zhang, L.; Chen, J.; Chen, S.; Lei, Y.; Chen, Z.; Yan, L. Response relationships between the color parameters and chemical

compositions of heat-treated wood. Holzforschung 2024, 78, 387–401. [CrossRef]
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