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Abstract: The demands on national forest inventories to provide detailed information for
small geographical regions are rising. Two-phase estimators are often employed to obtain
forest resource estimates, yet there is little information on optimal training data selection.
This study evaluates the impact of different training data on two-phase estimators, with
a focus on small area estimators for standing stock and aims to develop guidelines on
selecting appropriate training datasets. Linear regression models were parameterized us-
ing multiple datasets and subsets based on ecological and administrative boundaries. The
models were then applied on varying scales, and their estimates and their confidence in-
tervals were compared to each other as well as to the single-phase, purely terrestrial forest
inventory. Results suggest that the different two-phase models generally yield compara-
ble estimates but differ notably from single-phase estimates. Specifically, differences in-
crease in smaller areas and with correspondingly smaller training datasets, suggesting a
minimum of 100 data points. To ensure robust estimates, we recommend adapting train-
ing sets to local conditions and exercising caution with small training datasets and areas
because implausible results may occur. Pooling appropriate datasets is the preferable so-
lution.

Keywords: national forest inventory; model parameterization; uncertainty; small area
estimation; forest stock volume

1. Introduction

Effective forest management depends heavily on accurate information about current
timber stock and its development over time. To meet this need, forest inventories are con-
ducted at different geographical scales. In many countries, a national forest inventory
(NFI) has been implemented on the country scale. These inventories usually consist of a
large number of field plots, but due to the immense area that they cover, there are still
huge gaps between individual plots. The NFI plots are usually surveyed on a regular basis
with usually 5 to 10 years between visits, adding a coarse temporal resolution to the coarse
spatial resolution [1-3].

To bridge knowledge gaps for highly detailed, localized information, forest enter-
prises, other forest management units, and municipalities conduct specialized surveys for
their immediate information needs in areas that contain little to no NFI field plots (Koi-
vuniemi and Korhonen 2006). However, these surveys come with notably higher costs per
hectare. A cost-effective solution is the two-phase inventory approach [4-6] which
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combines NFI data with more easily obtainable auxiliary data, typically derived from re-
mote sensing, to enhance the estimate.

Remote sensing has proven to be useful for forest inventories ever since it became
available, from early aerial photos in the 1920s [4,7] to state-of-the-art high-resolution dig-
ital satellite images (e.g., Landsat, Sentinel, SPOT, or Pleiades) [8] and airborne laser scan-
ning (ALS) [9]. The availability of wall-to-wall information enables researchers to fill in
the gaps between inventory field plots and generate estimates for arbitrary areas by em-
ploying two-phase models (in this case, often called small area estimators). Due to their
cost efficiency, spatial coverage, and higher temporal resolution, these models are imple-
mented in an increasing number of countries [8,10]. Their outputs are used for critical
management and political decisions across local and global scales, including harvest plan-
ning, resource assessments, and carbon accounting, particularly in the context of climate
change [11-14]. Consequently, numerous studies over the past 15 years have tested vari-
ous data sources, input variables, and model types.

Early studies on biomass and timber stock estimation from ALS data were conducted
for example by Naesset [15] in Norway and Hollaus et al. [9] in Austria. Breidenbach and
Astrup [16] compared two regression estimators from mixed-effect models for above-
ground biomass in Norwegian municipalities with a low number of sample plots. In ad-
dition, in Norway, Gobakken et al. [17] compared a model-dependent estimator and a
model-assisted two-phase estimator using NFI plot data and ALS data of Hedmark
County. They applied different models to analyze the sensitivity of the estimates to model
selection. A follow-up study was conducted by Neesset et al. [18], comparing the precision
of the derived estimates. Magnussen et al. [19] conducted a cross-study in Norway and
Switzerland, further refining the small-area estimators and also testing mixed-effect mod-
els and model averaging.

Maack et al. [20] spatially explicitly modeled the standing stock for the entire German
province Baden—-Wiirttemberg using NFI, ALS, and Landsat data, showing that each ad-
ditional data source improved the models. Stahl et al. [21] compared three different model
frameworks for large-area forest surveys. They also carried out a meta-study on available
studies regarding the different types of models in forest research.

Hill et al. [22] implemented the regression estimators designed by Mandallaz and
Mandallaz et al. [23,24] for two small-scale management units using satellite and ALS
data. In 2022, Gschwanter et al. [1] published a comprehensive overview of the history
and the current state of NFIs in Europe, as well as their harmonization and the ongoing
integration of remote sensing to produce spatially explicit forest resource estimates. Re-
cently, Georgakis et al. [25] employed a linear mixed model to improve their estimates
derived from a laser terrain model and satellite images on a >2000 ha test site in Greece.

In most of the mentioned studies, the data for training the models were obtained
within the study area, or only one training dataset was used. The choice of adding external
training data (i.e., data from outside the target area) remains underexplored, raising ques-
tions about how to select appropriate datasets to train the models. This study addresses
this gap by choosing training data based on various administrative and ecological bound-
aries, both within and outside the respective target region, and comparing the respective
results. Although more sophisticated models with nonlinear methods and artificial intel-
ligence are being developed, this study focuses on linear regression models which are
currently operationally employed by the Austrian NFI to generate standing stock esti-
mates. The objectives are as follows: (1) to assess the impact of training data selection on
the model estimates under operational conditions; and (2) to develop guidelines for se-
lecting appropriate training datasets.



Forests 2025, 16, 259

3 of 17

2. Materials and Methods

2.1. Overview

In order to assess the impact of training data selection, a linear regression model us-
ing NFI and remote sensing data was parameterized multiple times with identical auxil-
iaries, but with a different selection of data points. The selection was based on either prov-
inces, ecological regions, or their intersection. For each model, the stock estimate and its
confidence interval for each province and for the entire country were calculated, and the
results were compared. In a final step, small municipalities were analyzed as well.

2.2. National Forest Inventory

Various data sources were used for this study. The target variable (standing stock of
stems in m*ha™) was obtained from the field survey of the Austrian NFI conducted be-
tween 2016 and 2021. The Austrian NFI uses “tracts”, clusters of up to four circular plots,
employing angle count sampling with a maximum distance of 9.77 m, which results in
circles of 300 m?2. The tracts are distributed on a 4 km regular square-shaped grid across
Austria using an interpenetrating panel design, which means that tracts of each year cover
the entire country. Details about this survey methodology are extensively described [3,26—
28].

To align with the NFI sampling framework, data from individual plots were aggre-
gated to the tract level using weighted means for all variables relevant to the modelling.
In the NF], the share of the forest area of the total plot area is measured in tenths of a plot
which was used weight. Therefore, each tract provides one data point, and the respective
weight is the sum of forest area tenths of all four plots within the tract, ranging from 1 to
40.

2.3. Normalized Digital Surface Model

A digital terrain model (DTM) of Austria was derived from an ALS campaign that
was carried out over the span of several years [29]. There is a permanent flight campaign
for aerial photos that covers the entire area of Austria every three years. These images are
used to create a digital surface model (DSM) employing 3D image matching [30]. For this
study, the DSM and the DTM were aggregated to a 1 m resolution. Subtracting the DTM
from the DSM yields a normalized digital surface model (nDSM), known also as the veg-
etation height. Despite the time difference between the field and the remote sensing sur-
veys, the data were treated as if they had occurred simultaneously.

A plot was removed if, compared to the previous NFI, 30% of the stock had been
removed and the flight campaign had occurred before the field survey. A second rule was
to remove plots if the data showed a severe mismatch between the calculated vegetation
height in the remote sensing data and the timber stock volume recorded in the field. Spe-
cifically, the stock in m%ha had to be larger than the average vegetation height in m mul-
tiplied by 8 minus 100 and smaller than the average vegetation height multiplied by 80
plus 150. The first rule removed 13% of the plots, and the second rule removed another
1% of the remaining data. This also covered cases when removals happened after the field
survey and the flight campaign even after that. Apart from removals, the mismatch can
also be due to a shift in the plot location. After the respective plots were excluded, the data
were aggregated to the tract level. The final sample included 3485 tracts (see also Table 2
which provides an overview of the data distribution later in the article).

2.4. Tree Species Map

Species information was derived from Sentinel-2 satellite images with a 10 m resolu-
tion. A neural network algorithm was used to assign occurrence probabilities to more than
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20 classes of tree species or tree species compositions [31]. A full list of these classes is
provided in Supplementary Table S1. The species information was aggregated to compute
the proportion of deciduous species at the pixel level. The digital forest map published by
the Austrian NFI [32] was used to obtain the forest boundaries. The remote sensing data
were intersected with the forest map, and only pixels within the forest area were used to
derive the auxiliary variables.

2.5. Model Development

Hill et al. [22] published the R-package forest inventory and a comprehensive docu-
mentation. For their package, they use the formulas for two-phase estimators and the re-
spective variances developed and published by Daniel Mandallaz and his scientific group
over several years [23,24]. A two-phase estimator consists of two data collection phases.
The first phase is a large-scale survey (in our case, wall-to-wall) for the model’s auxiliary
variables, and the second phase (in our case, the field survey of the NFI) measures the
target variable which cannot be observed directly in the first phase. These two datasets
are then combined with a model (in our case, a linear regression).

The stock models were created in the statistical software R 4.1.1 using the Im function.
As the first step, the standing stock per hectare on the NFI plot was plotted against the
average vegetation height on the plot according to nDSM, with a distinction between co-
nifer-dominated and deciduous-dominated tracts. Lowess lines were added to visualize
trends within each group, as shown in Figure 1.

Standing Stock over nDSM
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Figure 1. Standing stock against nDSM for two species groups (conifer- and deciduous-dominated).

Lowess lines indicate the trends for both groups.

2.6. Basic Model

It is apparent from the correlation in Figure 1 that nDSM is a good predictor for
stock—as has been found by multiple other studies, e.g., [9,16]. Notably, the relationship
for conifers appears to be nonlinear. Generalized additive models were used to assess the
influence of the auxiliary variables. This revealed that most relationships are linear, as
indicated by the respective polynomial orders. Only ndsm showed a relevant nonlinear
trend, and therefore, ndsm2 was introduced into the model. Table 1 summarizes the final
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variable selection. All auxiliary variables were highly significant except dss, which was
kept in the model because its interaction term with ndsm?2 was highly significant.

Table 1. Overview of the auxiliary variables in the volume stock model.

Variable Description
ndsm The average nDSM
ndsm2 The square of the average nDSM
dss The share of deciduous species
ndsm2xdss The product of the square of the nDSM and the share of deciduous species
slope The average slope
dtm The height above sea level as the average of the DTM

Following the selection of auxiliary variables, the two-phase estimator for national-
level standing stock was implemented as:

6
$ap = bo+ ) bi- vy (1)
i=1

and was referred to as the country model (CM) version. Here, b: are the regression coeffi-
cients calculated by the Im function, vi are the auxiliary variables from Table 1, and y is the
target variable, standing stock. The subscripts 2p and Ip indicate two-phase and one-
phase estimators, respectively, in Formulas (1) and (2). The values of b: are listed in Sup-
plementary Table S2. A residual analysis and a ten-fold cross-validation confirmed that
the model was appropriate.

The model results and the respective confidence intervals were compared to the reg-
ular one-phase NFI estimates based purely on field data. Using the R? of the model, the
standard deviation for the two-phase estimate can be derived as the square root of the
two-phase variance, which is as follows [33]:

Var(9s,) = Var(91,) - (1 - R?) (2)

This simple formula can be used because the remote sensing information is a full
survey. The “one-phase NFI estimate” in this study is not exactly the same value as the
published, official NFI results. The values were adapted to account for the fact that the
forest map includes areas that are not included in the NFI survey, for example inaccessible
forest.

2.7. Large Scale: Provinces and Growth Regions

Accurate standing stock information is also required for smaller areas, such as Aus-
tria’s nine provinces, presented in Figure 2. The Austrian NFI has traditionally reported
results at this level. There are several options to obtain results in this case. For the most
part, the provinces are large enough to contain sufficient field plots to create independent
models. Therefore, the first options are either completely separate models (version PS) or
a single model for the entire country, with bias correction to adjust the estimates for the
individual provinces (version PB). The results of PS and PB differ because in PB all data
points influence the solutions for all provinces and the province-specific adjustments are
not as big as the differences between the independent models of PS. Both options were
carried out and compared. Version PS is basically the extension of the single-phase NFI
estimates for the provinces because only data from within the respective province are
used.
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Forest map of Austria - Provinces
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Figure 2. The forest map of Austria overlayed with the boundaries of the provinces.

For the separate models, the same formulas used for the country-wide estimate ap-
ply, each having their individual R2. The independent variables were kept the same across
all models for comparability reasons, even if they were not significant in one of the mod-
els.

An alternative implementation of the bias correction is to introduce the provinces as
a categorical variable (or factor) into the model. Applying this model to the individual
provinces directly yields the respective results. In this case, the R? of the model is the R2
of the global model and is the same for all provinces. Finally, for comparison purposes,
the estimates for the provinces j»i were used to calculate country estimates jc by using a
weighted mean with the share of each province’s forest area relative to the country forest
area as weights wi so that the weights sum to 1:

9
5= Wi Iy &)
i=1

The variance of those country estimates was calculated by assuming that the province
estimates are independent—so all the covariances are 0—and then using a weighted sum
with the same wi as in the previous formula:

9
Var@) = ) wi - Var(9,) @
i=1

Austria is also divided into nine distinct natural regions which are called Haupt-
wuchsgebiete (main growth regions; [34]). As they are ecologically defined, they are ex-
pected to be better suited for stratification than political boundaries such as provinces. It
is evident in Figure 3 that their boundaries match the forest land structure better than the
administrative boundaries of the provinces in Figure 2.
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Figure 3. The forest map of Austria overlayed with the boundaries of the growth regions.

Thus, stocks for the provinces were calculated in three additional ways. First, the
provinces and the growth regions were intersected to create 34 disjoint regions because
not all growth regions occur in all provinces. Each province contains parts of two to six
different growth regions. The provinces, growth regions, and their intersections differ
greatly in size, and consequently, in the number of data points they contain. Table 2 pro-
vides an overview of the overlaps between provinces and growth regions, as well as the
distribution of data points across intersections.

Table 2. Number of data points in provinces and growth regions as well as their intersections.

Growth Region
1 2 3 4 5 6 7 8 9 Sum
1 0 0 0 0 34 0 0 90 0 124
2 95 0 185 0 4 203 0 0 0 487
3 0 0 0 215 123 0 30 124 211 703
2 4 0 1 0 184 0 0 123 0 166 474
E 5 114 77 0 97 0 0 14 0 0 302
& 6 64 89 221 134 188 0 0 153 0 849
7 158 135 29 112 0 5 0 0 0 439
8 0 21 0 76 0 0 0 0 0 97
9 0 0 0 0 6 0 0 4 0 10
Sum 431 323 435 818 355 208 167 371 377 3485

In the next step, different versions for stock models were created based on the growth
regions. One version was a set of separate models for each intersection (version IS), an-
other consisted of one model per growth region (version GS), and the third was a model
parameterized on the entire country (version GB). The latter used bias correction as PB for
the provinces, and consequently, GB also differs from GS. Table 3 provides an overview
of the different model versions investigated in this study.
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Table 3. Overview of the different model versions.

Model Description
CcM Full country model, using all available data
PS Separate models for each province, using only data within the province
PB One model using all available data, including bias correction for provinces
GS Separate models for each growth region; aggregated to the province level
GB One model using all available data, including bias correction for growth region; aggregated

to the province level
Separate models for each intersection of growth region and province, if possible; aggregated

15 to the province level

If fewer than 10 data points were available in the intersection, a synthetic model
trained on the entire growth region was used. This means that no bias correction was used
due to the lack of data within that intersection on which a bias correction could be based.
For the variance estimation, the entire training dataset was used. Consequently, these es-
timators underestimated the variance but no other reliable information was available with
which the estimate for the variance could be improved [22].

Finally, the estimates for the provinces were calculated using weighted means anal-
ogously to Equation (3). For each of the 34 intersections, the variance was obtained as well,
and the estimate for the variance of the province can be calculated analogously to Equa-
tion (4). Again, country estimates were derived from the province estimates.

2.8. Small Scale: Municipalities

On the other end of the spectrum, Austria is divided into 7850 cadastral municipali-
ties, 7773 of which contain forested areas as identified in the forest map used for this study.
However, these municipalities are so small that none contain sufficient data points for
model training. To address this, all six developed versions of the stock model were ap-
plied as synthetic models across these cadastral municipalities. The results were com-
pared. Pair-wise, the standard deviation of the weighted differences between the esti-
mates was calculated, the weight being the municipality’s share of the total forest area.
Thus, the weights sum to one which simplifies the formula for the standard deviation to:

sd(x) = %z w;(x; — JE)Z, ®)
=

where 7 is the number of municipalities containing forest, wj are the weights, x is the vec-
tor of the differences, xj are the elements of x, and x  is the weighted mean of x.

3. Results
3.1. Large-Scale Estimates

The results of the different modelling versions for the nine provinces and the entire
country, the NFI estimates, and all respective confidence intervals are summarized in Fig-
ure 4. The black symbols show the estimate, while the according smaller gray symbols
denote the respective 95% confidence interval. CM has no confidence intervals in the prov-
inces because it is not a proper estimate. The CM value is biased and is included in the
figure to illustrate how much the bias correction changes the estimate. The red horizontal
lines show the estimates (full lines) and confidence intervals (dashed lines) of the one-
phase NFI. The values of all estimates are presented in Table 4 and Supplementary Table
S3 contains all estimates and all confidence intervals displayed in Figure 4.
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Figure 4. Two-phase estimates for the standing stock of different versions for the provinces and the
entire country. The red lines indicate the one-phase NFI estimates.

Table 4. Standing stock estimates (in m>ha™) of all versions for provinces and the entire country,

rounded to one decimal place.

Province NFI CM PB PS GB GS IS
1 268.6 271.4 267.5 268.3 270.4 271.3 272.3
2 333.7 324.1 316.8 312.0 317.4 314.2 311.5
3 306.6 300.3 307.2 307.9 307.5 310.0 309.4
4 340.8 318.2 314.8 315.5 316.6 318.4 317.1
5 294.9 291.6 304.9 309.1 305.1 306.4 310.4
6 321.5 329.3 325.0 326.7 325.1 325.7 329.7
7 262.1 268.8 263.8 259.8 263.6 264.1 259.8
8 289.5 327.3 351.7 349.7 351.0 353.3 340.2
9 369.7 270.8 364.8 323.7 270.8 285.4 285.4

Country 310.0 308.1 308.1 307.8 308.4 309.1 308.9

The overall stock lies between 307.8 and 309.1 m3ha! for all versions, whereas the
single-phase NFI estimate is 310.0 m*ha. Even though the two-phase estimates are all
lower, they fall well within the confidence interval of the NFI estimate, as well as within
each other’s confidence interval. The estimates for the entire country are very precise, with
a standard deviation of only 0.89 m*ha! for the CM and the standard deviations ranging
from 1.7 to 1.8 m*ha-! for the versions that first calculated province estimates.

At the province level, the picture is more diverse. With the exception of province 9,
again, all two-phase estimates lie within the confidence intervals of the others and within
the confidence intervals of the NFI estimate, but sometimes near the edge (provinces 2, 4,
and 8). As such, in several cases, the confidence interval of the two-phase estimate does
not contain the NFI estimate.
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3.2. R? of Models

The models were parameterized on diverse regions and thus vary in quality. The
model for the entire country reaches an R? of 0.752, and Figure 5 presents an overview of
the R>-values for the models developed for PS, GS, and IS. There are no boxplots for CM,
PB, and GB because each consists of just one model.

Comparison of R? of Versions

0.90 0.95
| |
(o)

0.85
|

0.80
|

0.75
|

0.70
|

0.65
|

I I I
PS GS IS

Version

Figure 5. Boxplots of the R?-values of the versions PS, GS, and IS.

No statistically significant difference can be observed between the medians of the
three versions. They are all greater (but not significantly greater) than those of CM. The
circles show outliers with extremely high R?, stemming from models with less than 30
data points each. A full list of the model coefficients for all versions, their R? and the re-
spective number of data points is detailed in Supplementary Table S2.

3.3. Results on Municipalities

Figure 6 presents the results for the synthetic application of all versions for the ca-
dastral municipalities. The straight line is the identity line, and the standard deviations in
m?ha! from Equation (5) are presented in the upper-right half of the matrix.
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Comparison of Stock Estimates on Municipality Level
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Figure 6. Comparison of the stock estimates of the different versions in m*ha™ for the cadastral mu-
nicipalities. The line indicates the identity line, and the standard deviation is an indicator of dissim-
ilarity between two versions.

The standard deviations in Figure 6 serve as a measure of dissimilarity between the
versions. The mean of the standard deviations associated with a version reflects the degree
of similarity in estimates produced by that version relative to other versions. While results
across all versions are highly correlated, notable differences are evident in some munici-
palities and sometimes the estimated stock per hectare is even negative. The means of the
standard deviations and the number of negative estimates per version are presented in
Table 5. Version IS exhibits the highest mean SDs by a large margin, followed by CM. In
contrast, the remaining versions exhibit relatively similar mean SD values that range from
14.3 to 14.9.

Table 5. Average standard deviation and number of negative estimates for the different versions.

Version CcM PB PS GB GS IS
Mean of SDs 15.8 14.3 14.9 14.5 14.4 18.8
Negative estimates 76 71 44 64 27 27

4. Discussion
4.1. Model Performance

With an R? of about 0.75, the model CM performs on par with the best model in
Maack et al. [20]. The unexplained variance could stem from the following aspects: (i) the
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inherent limitations of independent variables in fully describing vegetation characteristics;
and (ii) uncertainties associated with field sampling methods at the single plot and single
tree level, which were analyzed for the Austrian NFI by Berger et al. [28] and Berger et al.
[35], respectively. Additional uncertainties stem from the processing and correction pro-
cedures applied to the dss and nDSM, as well as from the minor inaccuracies in the exact
coordinates of the field plots and the remote sensing data. Given these constraints, achiev-
ing notably higher R? values with current technologies and data is unlikely.

At the national scale, all tested versions yield consistent estimates, with minor devi-
ations between the NFI and two-phase estimates. The deviations were expected due to the
following factors: (i) differences in timing of field and remote sensing data collection; and
(ii) the exclusion of certain field plots from the model, for example plots without species
information or those affected by disturbances such as harvesting or calamities between
the remote sensing and the field surveys. Despite these possibilities, the national-level es-
timates align remarkably well.

At the provincial level, the estimates across all versions consistently fall within the
95% confidence interval of the one-phase estimate, although minor differences between
provinces exist. This suggests that the versions agree on the overall stock but sometimes
allocate the stock differently across different provinces. However, all model versions gen-
erally agree on whether the one-phase estimate is too small, too large, or appropriate.
While the country-wide NFI estimate is highly accurate (with a much smaller confidence
interval in the two-phase system), the estimates for some provinces (and particularly even
smaller areas) can be improved with the two-phase system.

The fact that the versions produce similar results on the province level indicates that
training data from locations that differ considerably from the area of interest neither im-
prove nor worsen the estimate, provided that appropriate bias corrections are imple-
mented and no influential points of leverage are present. Depending on the specific data
structure, these data points from different locations can impact the model’s R? value and
thus alter the confidence interval. Therefore, caution is warranted when using synthetic
estimators because it is impossible to add a bias correction, as there are no data available
for this purpose [10,22,36].

4.2. Small Datasets

For provinces with fewer data points, more differences emerge between the model
versions. Province 9, which has the smallest forest area and fewest field plots, shows un-
usual effects. Due to the small number of field plots, the NFI confidence interval is huge,
and the upper bound is not visible in Figure 4.

For version PS in province 9, only ten data points were available to parameterize a
model with seven coefficients. This leads to a vastly inflated R? value of almost 0.98, which
clearly indicates overfitting (a similar effect is observed in two IS models; see Supplemen-
tary Table S2 and Figure 5). The estimate aligns with other estimates, but the confidence
interval is severely underestimated due to the overestimated R2 In contrast, the confi-
dence interval for version PB is much larger and a lot more plausible. The confidence in-
tervals of the versions relying on growth regions are even narrower because subdividing
the already small province further into two main growth regions requires the use of a
synthetic estimator. These estimators contain no ground truth information in the area of
interest. Consequently, the variation between field plots is unavailable, and the confidence
are underestimate [22]. Similar effects were observed in three other provinces. However,
these provinces are larger, and because the subdivisions of the provinces are summed up
using the forest area as weight, the effect of the small subdivisions becomes negligible
when aggregated at the province level. Nonetheless, the estimates and confidence
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intervals for province 9 remain unreliable and are retained solely for completeness and
illustrative purposes.

4.3. Growth Regions and Municipalities

It was expected that the models trained on the main growth regions would be trained
on more homogenous data and thus have a higher R?, but this could not be confirmed.
Possibly, the auxiliary variables altitude above sea level and slope captured much of the
variability between the growth regions. In fact, the model with the lowest R? is based on
growth regions, and overall, the versions demonstrate comparable quality. An exception
is CM, which has a known and uncorrected bias at the province level. For the other ver-
sion, no clear preference emerges as they generally performed similarly.

The means of the standard deviations in Table 5 indicate that the province (PB, PS)-
and growth region (GB, GS)-based models are quite similar to each other and distinct from
CM and particularly IS. CM has no bias correction and therefore misses details, while
some IS models rely on very small training datasets and produce unreliable results. The
other four models are based on datasets that were each selected in a different way but are
of comparable size (triple digits, except for province 9). Despite the different selection re-
gime for training data, they produce the most similar results, implying that a sweet spot
for dataset size has been found and any of the four models can be applied in practice
(except PS for province 9), allowing for the consideration of local characteristics while still
using sufficient data for robust estimation.

Another possible indicator for choosing training data and model type is the number
of negative estimates at the municipality level. In this regard, the individual models have
a slight advantage, in particular GS and IS. However, the municipalities with negative
estimates all have low average vegetation height, potentially including young regenerat-
ing forest, temporarily unstocked forest land, and limited forest area (all under 10 ha). For
comparison, the average forest area in Austrian municipalities is approximately 500 ha,
and the median is 181 ha.

Supplementary Table S2 shows that the large majority of the models have a negative
intercept; for CM, it is ca. -85 m3ha™, and others have triple digits. On the other hand, the
coefficient for ndsm (vegetation height—the auxiliary variable with the most influence) is
positive, which yields a positive timber stock for a regularly stocked forest. However, in
the case of none or low vegetation, the negative intercept may dominate the result for this
particular area. Some of the negative values may also be caused by local data errors which
can have a large effect if the total forest area of the municipality is small. If negative values
need to be avoided on the municipality level, the modelling approach needs to be
changed. For example, nonlinear models that can only asymptotically approach 0 could
be used. However, in exchange, one would lose the advantages of linear regression model,
for example the very efficient calculation of estimates and easily obtainable, symmetrical
confidence intervals.

The comparison of version PB with others (Figure 6) reveals a line of points parallel
to the main data cloud. These points are associated with province 9, where the bias cor-
rection in PB is derived from just 10 data points. In contrast, PS utilizes these points to
parameterize the entire model, leading to the observed scatter around the main point
cloud. This discrepancy suggests that in cases of limited data points, pooling geograph-
ically adjacent provinces to create a single combined model would be more appropriate
to generate reliable outputs. The value of a comprehensive NFI becomes evident in this
context as it offers an invaluable and unique source of data, where diverse forest condi-
tions and locations are surveyed in a consistent and homogeneous way, allowing the use
of data from geographically distant but structurally and ecologically similar forest plots,
thus enhancing the reliability and generalizability of model predictions.
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Version IS, trained on the most split up datasets, exhibits deviations from the other
versions in the scatterplot matrix. This could be due to the fragmentation and the resulting
small intersections of provinces and growth regions, a similar issue as observed with
province 9 in PS. Province 9 does not cause issues in the models based on growth regions,
because it is split up, and due to the even further reduced number of plots per fragment,
synthetic models trained on bigger datasets are used. The versions GB and GS have no
such problems because the minimum number of used data points is 167 (see Table 2).

When considering all of the above, version GS is most preferred. However, the suit-
ability of other versions should not be discounted, as they may perform equally well or
even surpass GS in certain contexts. Specifically, localized models often adapt better to
local characteristics, but this study suggests that, to optimize model performance, a mini-
mum of 75 to 100 data points should be targeted. For example, province 8 with 97 data
points still exhibited more variation than ideal. Most critical are the models with 30 data
points or less, for example the three outliers visible in Figure 5 which are the result of
overfitting. Using such models leads to false confidence in the results.

In this study, the mentioned number of 75 to 100 tracts corresponds to an area of
roughly 1000 km? of forest area. However, for countries with different landscape struc-
ture, forest conditions or sampling regimes compared to Austria, these numbers may need
tobe adjusted. However, there is limited literature from other countries that offers insights
into such modelling thresholds. Most studies referenced utilized datasets containing over
600 plots, often in the thousands. An exception is a study of Breidenbach and Astrup [16],
in which they worked with only 145 plots distributed over 14 municipalities, each con-
taining from 1 to 35 plots. This smaller dataset constrained their ability to construct sepa-
rate models and led to the use of mixed-effect model estimators, which resembled syn-
thetic estimators. Their findings reinforced the notion that more data are generally bene-
ficial, particularly for smaller municipalities where bias correction remains challenging.

Georgakis et al. [25] had to cluster the forest management units in order to success-
fully apply their model because they contained mostly fewer than three plots. The clusters
had an average of 11.6 plots which is substantially lower than what is suggested in this
article, but they never created models for single clusters and they had over 200 plots avail-
able in total. Despite the more sophisticated method (mixed-effects model and data pre-
processing), they reached an R? of 0.71 which is lower than that of CM. This is likely due
to the smaller sample size and, even more importantly, because their auxiliary variable
“vegetation height” was obtained from satellite images instead of aerial photography.

For very small datasets, model estimates can become unreliable, also due to issues of
extrapolation. Ideally, the training data should cover the full range of conditions present
in the target area, a goal that becomes increasingly difficult to achieve in small datasets.
The modelling approach presented here underscores the importance of using a proper
probability sample [21]. Given that the choice of training data can significantly affect
model outcomes, transparency and rigor in the modelling process are essential to ensure
robustness and reliability of the results.

5. Conclusions

The two-phase estimators are gaining prominence in the field of forest inventory and
monitoring due to their demonstrated capacity to enhance the precision of the estimates,
especially for smaller areas. Moreover, these methods enable NFIs to extend their analyt-
ical capabilities and services both spatially and temporally to address evolving manage-
ment and policy needs. Generally, there are several legitimate ways to parameterize mod-
els for estimating standing stock. When applied to sufficiently large and representative
datasets, these approaches typically yield comparable results. However, the presence of
influential outliers can cause significant deviations in outcomes. The authors recommend
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using training datasets that comprise at least 75 to 100 data points, ensuring they cover
the full range of environmental conditions relevant to the target area. For very small areas,
it may become necessary to take local particularities into account and choose the training
dataset accordingly to avoid artifacts such as negative estimates. However, such cases are
rare, and excessive manual selection risks introducing bias. Therefore, any modifications
to the training dataset must be well justified and transparently documented. This study
demonstrates that pooling geographically distant data points from ecologically similar
areas offers a robust alternative to relying on small or incomplete datasets. It shows the
flexibility of two-phase estimation approaches in adapting to diverse and challenging data
constraints, making them an invaluable tool for forest resource monitoring and manage-
ment.

Supplementary Materials: The following supporting information can be downloaded at:
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