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Abstract: The accurate extraction of individual tree positions is key to forest structure
quantification, and Unmanned Aerial Vehicle (UAV) visible light data have become the
primary data source for extracting individual tree locations. Compared to deep learning
methods, classical detection methods require lower computational resources and have
stronger interpretability and applicability. However, in closed-canopy forests, challenges
such as crown overlap and uneven light distribution hinder extraction accuracy. To ad-
dress this, the study improves the existing Revised Local Maxima (RLM) method and pro-
poses a Multi-Source Local Maxima (MSLM) method, based on UAV visible light data,
which integrates Canopy Height Models (CHMs) and Digital Orthophoto Mosaics
(DOMs). Both the MSLM and RLM methods were used to extract individual tree positions
from three different types of closed-canopy stands, and the extraction results of the two
methods were compared. The results show that the MSLM method outperforms the RLM
in terms of Accuracy Rate (85.59%), Overall Accuracy (99.09%), and F1 score (85.21%),
with stable performance across different forest stand types. This demonstrates that the
MSLM method can effectively overcome the challenges posed by closed-canopy stands,
significantly improving extraction precision. These findings provide a cost-effective and
efficient approach for forest resource monitoring and offer valuable insights for forest
structure optimization and management.

Keywords: individual tree position; local maxima method; improved algorithm; multi
source; closed-canopy stands

1. Introduction

The quantification of forest structure has emerged as a prominent focus in modern
forest management research, with the accurate acquisition of individual tree positions
serving as a critical component [1,2]. Accurate individual tree position monitoring plays
a crucial role in quantifying forest structure; uncovering the relationships between forest
structure, tree competition, and the spatial diversity of tree species; and facilitating the
development of targeted strategies for optimizing forest structure [3,4]. Due to the com-
plexity of forest environments and terrain, traditional field measurements face challenges
such as large workloads, high costs, low efficiency, and poor timeliness, making them
unsuitable for modern precision forestry requirements [5]. In contrast to traditional field
measurements, satellite remote sensing allows for the collection of broader spatial data in
a shorter time frame, improving fieldwork efficiency. However, it is constrained by issues
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such as low resolution, long revisit cycles, and cloud cover affecting clarity [6]. In recent
years, the parallel development of Unmanned Aerial Vehicle (UAV) technology, sensors,
and computer vision has facilitated the application of low-altitude UAV remote sensing
in forestry resource monitoring [7]. Although airborne Light Detection and Ranging (Li-
DAR) data from UAVs provide high accuracy, their widespread use is limited by high
costs and technical complexity [8]. In comparison, UAV visible light remote sensing data
offer advantages such as simplicity in processing and low acquisition costs, making it the
primary data source for individual tree position extraction [9].

The key to accurately extracting individual tree positions lies in the precise identifi-
cation of tree crown apices [10]. Currently, mainstream approaches encompass deep
learning and classical detection methods, each excelling in different scenarios. Deep learn-
ing methods leverage multi-source data to extract key features and accurately locate tree
crown apices, but they require significant computational resources and extensive, high-
quality training samples, with their accuracy being highly dependent on sample quality
[11-13]. In contrast, classical detection methods require fewer computational resources,
do not rely on large datasets, and offer better interpretability and broader applicability
[14]. Widely used classical detection methods include the local maxima method [15],
marker-controlled watershed segmentation method [16], template matching method [17],
region-growing method [18], and edge detection method [19]. Classical detection methods
excel in simple scenarios, such as orchards, urban street trees, and artificial young forests,
where trees are sparsely distributed, have clear contours, and lack crown overlaps [20-
23]. However, in closed-canopy stands with canopy closure exceeding 0.7, challenges such
as crown overlap and uneven lighting significantly hinder existing classical detection
methods, highlighting the need for further refinement [24-26].

The local maxima method is one of the most commonly used classical detection meth-
ods, with its core challenge being the identification of the pixel with the highest value
within a localized image area. Traditional local maxima methods employ a moving win-
dow to search for local maxima; however, when the window size is too small, misclassifi-
cation is likely to occur, whereas an overly large window may result in omissions. The
window size thus requires repeated trial and error, making parameter selection a persis-
tent difficulty [27]. The Revised Local Maxima (RLM) method proposed by Xu et al. [24]
replaces the moving window approach with the identification of local maxima along fea-
ture curves. This allows users to visually inspect and set parameters, optimizing the pa-
rameterization process. However, this method utilizes only single-band data, which leads
to significant commission and omission errors when processing complex closed-canopy
stands. Extensive research has demonstrated that using a single type of remote sensing
data for individual tree detection yields limited performance. Combining RGB imagery
with additional spectral or structural information has proven effective in addressing er-
rors caused by overlapping tree crowns, shadows, and background noise [28]. For exam-
ple, Qin et al. [29] used a combination of UAV LiDAR, hyperspectral, and ultra-high-res-
olution RGB data to detect individual trees in subtropical broadleaf forests. This approach
achieved an accuracy improvement of 10.2% to 19.0% compared to using single-source
data alone. Similarly, Chen et al. [10] integrated spectral imagery with LiDAR data for
individual tree detection in mixed needleleaf and broadleaf forests. They reported an ac-
curacy of 96% when combining the two data sources, as opposed to 83% when using only
LiDAR data. These results highlight the potential of multi-source data to significantly en-
hance the accuracy of individual tree position extraction.
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Canopy Height Models (CHMs) and Digital Orthophoto Mosaics (DOMs) are com-
monly used data sources for individual tree position extraction through the local maxima
method. These datasets can be derived from UAV visible light imagery using photogram-
metric processing techniques, such as Structure from Motion (SfM) and Multi-View Stereo
(MVS) [30]. Zhang et al. [31] generated CHM and DOM data from UAV visible light im-
agery and combined these datasets to extract individual tree positions in six different ur-
ban green spaces, achieving an overall extraction accuracy of 95.3%. They emphasized
that CHM provides vertical structural information on trees, while DOM captures clearer
crown textures and morphological features. By integrating these two data sources, the
complementary strengths of different data types can be utilized to enhance the accuracy
of individual tree position extraction. While this study achieved promising results, its
scope was limited to urban green spaces and relied on deep learning methods. Currently,
there is no research on employing the local maxima method combined with CHM and
DOM for individual tree position extraction in mountainous closed-canopy forests.

Therefore, based on the hypothesis that integrating CHM and DOM can effectively
improve the accuracy of individual tree position extraction in closed-canopy forests, this
study improves the existing RLM method and proposes a Multi-Source Local Maxima
(MSLM) method that integrates CHM and DOM. Three different types of mountainous
closed-canopy forests were selected as study areas. UAV visible light imagery from these
regions was used to generate CHMs and DOMs. Both the MSLM and RLM methods were
employed for individual tree position extraction, and the resulting extractions were eval-
uated and compared against measured data. This study aims to validate the aforemen-
tioned hypothesis and address the limitations of the existing local maxima method in in-
dividual tree position extraction in mountainous closed-canopy forests. Additionally, it
seeks to provide a low-cost and efficient technical approach to forest resource monitoring
based on UAYV visible light imagery, offering scientific support for the optimization and
adjustment of forest structure.

2. Materials and Methods
2.1. Overview of the Study Area

The study area is located in the Jinpen Mountain Forest Farm, Xinfeng County, Gan-
zhou City, Jiangxi Province, at 114°34'-114°19" E, and 25°20'-25°23" N. The forest farm co-
vers a total area of 105.47 km?, with elevations ranging from 300 to 500 m and the highest
peak reaching 970 m. The terrain is characterized by higher elevations in the south, slop-
ing downward to the north, with an average gradient of 26-35° [32]. The distribution of
the study area and sites locations is shown in Figure 1.
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Figure 1. Study area and sites locations.

2.2. Study Data
2.2.1. Sample Plot Survey Data

The plot survey was conducted in January 2024 at the Dagongqgiao Work Area of the
Jinpen Mountain Forest Farm. The study selected three types of plantations: Cunninghamia
lanceolata (Lamb.) Hook. Pure Forest (CLPF), Cunninghamia lanceolata and Castanopsis hys-
trix Miq. Mixed Forest (CL-CHMF), and Cunninghamia lanceolata and Quercus texana Buck-
ley Mixed Forest (CL-QTMF). Three rectangular plots of 20 m x 30 m were set up for each
type, totaling nine plots. The plots had an average diameter at breast height (DBH) of 12.1
cm, an average tree height of 8.7 m, a canopy closure greater than 0.8, a stand age of 12
years, and were planted using a contour interval method. The coordinates of each tree
with a DBH greater than 5 cm were recorded using the Huace T9 RTK inertial navigation
system (Huace Navigation Technology Ltd., Shanghai, China), with a total of 1215 trees
measured. The basic characteristics of the sample plots are presented in Table 1.
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Table 1. Basic characteristics of sample plots.

Sample Plot Tree Count ("l]")r ZI;:;}Z ) Type Mixed Ratio Slope Direction Slope (°)
1 137 2283 CLPF 1 Southeast 37
2 121 2016 CLPF 1 Northwest 42
3 128 2133 CLPF 1 Northeast 40
4 128 2133 CL-CHMF 6:4 South 36
5 146 2433 CL-CHMF 73 South 30
6 148 2466 CL-CHMF 7:3 South 40
7 141 2350 CL-QTMF 8:2 North 36
8 130 2166 CL-QTMF 8:2 North 35
9 136 2266 CL-QTMF 8:2 Northwest 37

2.2.2. UAV Image Data

The image data for this study were collected using the DJI Phantom 4 RTK quadcop-
ter UAV (DJI Technology Co., Ltd., Shenzhen, China). The UAV was equipped with a 1-
inch FC6310R camera sensor (DJI Technology Co., Ltd., Shenzhen, China) capable of cap-
turing 20-megapixel images with an 8.8 mm focal length and an /5.6 autofocus aperture,
supporting the red, green, and blue (RGB) spectral channels. The UAV was also outfitted
with an onboard D-RTK system, which provided centimeter-level high-precision position-
ing for enhanced surveying accuracy.

The flight operation was completed on 14 January 2024, under clear weather condi-
tions. A Digital Surface Model (DSM) terrain-following flight method was employed dur-
ing data collection. The initial flight was conducted at an altitude of 200 m to capture the
preliminary DSM of the study area. Subsequently, the terrain-following flight altitude was
set to 50 m, with a front overlap rate of 80% and a side overlap rate of 70%. To acquire
more detailed terrain information, the image acquisition range covered both the base and
the summit of slopes, ensuring the inclusion of more ground points to generate a more
comprehensive 3D model. A total of 770 images were captured and preprocessed using
Pix4Dmapper (v4.4.12), an image processing software from Pix4D. The image processing
workflow included the following steps [33]:

1. Image Preprocessing: Aerial images were initially screened to exclude those with
color distortion, focus failure, or improper exposure. This step ensured consistency
in brightness, saturation, and hue across the dataset, ensuring high-quality subse-
quent data processing.

2. Feature Point Extraction and Matching: The software automatically extracted rele-
vant image and camera parameter information. Ground Control Points were added
to aid feature matching and tracking.

3. Aerial Triangulation: Multi-view image bundle adjustment and aerial triangulation
were performed. These steps extracted and matched image feature points, generating
a sparse 3D point cloud.

4. Dense Point Cloud Generation: Based on the sparse point cloud, a dense 3D point
cloud was produced using multi-view stereo matching algorithms.

5. DSM and DOM Generation: The dense point cloud was rasterized to generate a DSM
with a resolution of 2.3 cm per pixel. Each pixel in the DSM represented the elevation
of ground features, including structures and vegetation. The original images were
geometrically and radiometrically corrected to produce a DOM with the same reso-
lution of 2.3 cm per pixel. The pixel values in the DOM reflected the spectral reflec-
tance characteristics of the corresponding ground features, typically in RGB colors.
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2.2.3. Canopy Height Model

This study employs a point cloud filtering method based on the DOM to enhance the
accuracy of ground point extraction and thereby derive individual tree heights in closed-
canopy stands. After the spatial alignment of imagery and point cloud data, image fea-
tures are extracted using the color and texture information from the DOM, which enables
point cloud classification. To mitigate misclassification caused by tree crown shadows, the
DSM is used to screen potential ground points. Once all potential ground points are iden-
tified, inner and outer buffers with a width of 1.0 m are created along each ground bound-
ary. By comparing the elevation differences between the inner and outer buffers, errone-
ous ground points located on the forest canopy are excluded. The classified point cloud
was subjected to noise reduction and manual adjustments. Ultimately, the filtered ground
points were utilized, and the Kriging interpolation method was employed to generate a
Digital Terrain Model (DTM). Each pixel value in the DTM represents the elevation of the
bare ground at that location, excluding the heights of vegetation and buildings.

The CHM can be obtained by subtracting the DTM from the DSM. Each pixel value
in the CHM represents the relative height of the vegetation canopy, which is the elevation
difference between the DSM and DTM. The resolution of the canopy height model is 11.7
cm/pixel. The generated DOM, DSM, DTM, and CHM data are shown in Figure 2.
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Figure 2. Generated data (a) DOM, (b) DSM, (c) DTM, (d) CHM.

2.3. Study Methods
2.3.1. Multi-Source Local Maxima Method

Traditional local maxima methods are typically applied based on CHM and DOM
data sources. For CHM-based local maxima methods, the approach utilizes the character-
istic that the elevation values at tree crown apices are usually higher than those of the
surrounding areas. This allows for identifying the pixel with the maximum elevation
value within the tree crown to locate the tree crown apex position [34]. On the other hand,
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DOM-based local maxima methods rely on the property that the light intensity received
at tree crown apices is generally greater than that at the crown edges, with higher light
intensity corresponding to higher grayscale values. Thus, the tree crown apex can be iden-
tified by locating the pixel with the maximum grayscale value within the crown [35].

In this study, the existing RLM method was improved, and a Multi-Source Local
Maxima (MSLM) method that combines CHMs and DOMs was proposed to enhance the
accuracy of individual tree position extraction. A flowchart illustrating the MSLM method
is provided in Figure 3. The specific steps are as follows.

1. Data Preprocessing

Since the CHM is generated by subtracting DTM from DS}, filtering and interpola-
tion processes are required for point cloud data during DTM generation, resulting in the
CHM and DOM having different spatial resolutions [31]. Therefore, before fusing these
two images, the CHM image must be resampled to ensure that its pixel size and dimen-
sions align with those of the DOM image, thereby guaranteeing spatial consistency in the
final results. Additionally, the DOM data must be converted into grayscale images (Gray).
The conversion formula is as follows [36]:

Gray =0.2989 x R+ 0.5870 x G + 0.1140 x B, €))

where R, G and B represent the red, green, and blue color channels of the DOM image,
respectively.

2. Identification of Potential Tree Crown Apices

This step follows the same procedure as the RLM algorithm. First, the custom param-
eters CLmin and CLmax are defined. Next, at a fixed sampling interval (CLmin), local
maxima points (LMc) along the feature curve are identified for each column of the image.
Subsequently, the local maxima values (LMr) along rows are identified for each LMc.
Among these LMr, the one closest to LMc and within a distance of CLmax is selected as
the initial seed point. The crown width estimation (CW) for the initial seed point is then
calculated, where CW should be greater than or equal to CLmin and less than or equal to
CLmax. Finally, K-means clustering and a distance threshold (half of the crown width
estimation) are applied to determine the potential tree crown apices.

3. Determination of Final Tree Positions

First, the Otsu method is applied to calculate the grayscale image’s Otsu threshold
(Totsu) [37]. Next, Pc and Pgare overlaid onto the grayscale image. The grayscale values at
the locations of Pc and P are then extracted, and vertices with grayscale values lower than
Torsu are removed to eliminate erroneous apices located outside the tree canopy layer [38].
Finally, P; is iterated to determine whether P. exists within the crown width range; if it
does, Py is deleted, and if not, it is retained. The remaining tree crown apices are regarded
as the final individual tree position.
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Figure 3. Flowchart of the MSLM method.

The above steps were implemented using Python 3.8. To validate the performance of
the MSLM method, a comparison was made with the RLM method using only the CHM
data source, evaluating the precision differences in tree crown apex extraction within com-
plex environments.

2.3.2. Individual Tree Position Extraction Accuracy Evaluation

This study analyzed the accuracy of position extraction at the individual tree scale.
A circular buffer with a radius of 1 m was established, centered at the measured tree po-
sition. The extraction was deemed correct if there was precisely one extracted tree position
located within the buffer zone. If no extracted tree position was present, the extraction
was considered an omission. If two or more extracted tree positions were present, the
nearest one was considered correct, while the others were classified as incorrect. The flow
of judgment for extracted individual tree positions is shown in Figure 4.
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Figure 4. Flow of judgment for extracted individual tree positions.

The accuracy of the extraction results was evaluated using five metrics: Accuracy
Rate (AR), Commission Error (CE), Omission Error (OE), Overall Accuracy (OA), and F1
score (F1_c). The formulas for these metrics are as follows [31]:

AR = Ny/N:x 100%, @)
CE = Nu/N: x 100%, 3)
OE = No/N: x 100%, (4)
OA = (1 - INe - Nil/Ni) x 100%, (5)
F1_c=2 x Ny/(N: + Ne) x 100%, (6)

where N represents the number of trees measured in the field survey, Ne represents the
total number of extracted trees, Nt represents the number of correctly extracted trees, Nu
represents the number of incorrectly extracted trees, and No represents the number of
omission extracted trees.

3. Results
3.1. Individual Tree Position Extraction Results

This study performed individual tree position extraction on nine sample plots using
the MSLM method and compared the results with those obtained using the RLM method,
which relies solely on the CHM. The extraction results from both methods were overlaid
onto the DOM for ease of comparison. Examples of the extraction results for selected sam-
ple plots are shown in Figure 5. In the figure, triangles represent the actual positions of
Cunninghamia lanceolata, squares represent Castanopsis hystrix, and pentagons represent
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Quercus texana. Red indicates that the tree was correctly extracted, while yellow indicates
that the tree was omission extracted, black dots represent correct identification by the
method, black crosses represent incorrect identification by the method, and green circles
denote a 1m buffer zone. Both the MSLM and RLM methods exhibited varying degrees of
commission and omission errors. However, the MSLM method demonstrated a higher
number of correct extractions and relatively fewer omissions. The MSLM method effec-
tively avoided commission errors along the forest canopy perimeter but still showed fre-
quent errors at tree crown edges.

(a)Extracts results by MSLM method (b)Extracts results by RLM method N
o
|
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i
o
g
]
@
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=
]
[
g
(=]
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&
0 2.5 b 10 15 20 Meters
I T .
w . ;
'E A Cunninghamia lanceolata [ Castanopsis hystrix O Quercus texana 1m buffer zone
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0
Y | ® Correctidentification X Incorrect identification Bl Correctly extracted Omission extracted

Figure 5. Partial sample extracted results by different methods.
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The performance of these methods varied across different forest types. In CLPF, com-
mission errors were primarily concentrated along the edges of Cunninghamia lanceolata
tree crowns, while omission errors mainly occurred in areas where tree crowns over-
lapped. In CL-CHMF, commission errors were most often associated with the large
crowns of Castanopsis hystrix, while omission errors were more frequently observed in the
smaller crowns of Cunninghamia lanceolata. In CL-QTMF, commission errors were pre-
dominantly located at the edges of Cunninghamia lanceolata crowns, whereas omission er-
rors primarily occurred on Quercus texana crowns.

To more comprehensively evaluate the effectiveness of the two methods, the extrac-
tion results of both methods were statistically analyzed from four aspects: total number
of extracted trees, correctly extracted trees, incorrectly extracted trees, and omission ex-
tracted trees, and a significance test was conducted. The statistical results are shown in
Table 2, and there are significant differences in the extraction results of different extraction
methods (p < 0.05). The total number of individual tree positions extracted using the
MSLM method was much closer to the measured count, with only 11 additional trees
compared to the value of the measured survey. In contrast, the RLM method underesti-
mated the number of trees, extracting 190 fewer trees than the measured value. This sug-
gests that the MSLM method has a clear advantage in terms of total extraction accuracy.
The number of correctly extracted tree positions using the MSLM method was also signif-
icantly higher than that of the RLM method, with the MSLM method outperforming the
RLM method by 136 trees overall. Additionally, the MSLM method showed superior per-
formance across all sample plots. For example, in Plot 5, the MSLM method correctly ex-
tracted 120 trees, whereas the RLM method only extracted 82 trees, resulting in a differ-
ence of 38 trees. However, the MSLM method showed some shortcomings in terms of
commission errors. The total number of commission errors for the MSLM method was
consistently higher than that of the RLM method, with the MSLM method producing 66
more commission errors in total.

Table 2. Result of extracted individual tree position.

MSLM Method/RLM Method
Sample Plot =~ Measured A

Extracted Correctly Incorrectly Omission

1 137 144/130 * 121/113 % 23/17 * 16/24 *

2 121 133/112 * 113/98 * 20/14 % 8/23 *

3 128 132/116 * 104/97 * 28/19 * 24/31*

4 128 128/104 * 112/90 * 16/14 * 16/38 *

5 146 137/90 * 120/83 * 17/7 * 26/63 *

6 148 139/106 * 123/98 * 16/8* 25/50 *

7 141 140/118 * 114/110 * 26/8 * 27/31°*

8 130 134/121 % 115/106 * 19/15* 15/24 *

9 136 139/128 * 118/110 * 21/18 * 18/26 *
All 1215 1226/1025 * 1040/905 * 186/120 * 175/310 *

Note: * indicates a significant difference in the extraction results between the two methods (p <0.05).

3.2. Individual Tree Position Extraction Accuracy

To comprehensively evaluate the performance of the MSLM method, five accuracy
metrics— AR, CE, OE, OA, and F1_c—were employed to compare the extraction results of
the MSLM and RLM methods. The results are shown in Table 3. As indicated in the table,
the MSLM method generally outperforms the RLM method across all evaluation metrics.
The overall AR of the MSLM method was 85.59%, significantly higher than the 74.98%
achieved by the RLM method. In terms of OE, the MSLM method had a lower value of
14.40%, compared to 25.02% for the RLM method. While the MSLM method’s CE was
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15.31%, higher than the 9.38% observed for the RLM method, this difference did not sig-
nificantly impact the overall extraction accuracy and effectiveness. The overall OA of the
MSLM method was 99.09%, exceeding the RLM method’s 84.36%, and the F1 score for the
MSLM method was 85.21%, which was also higher than the RLM method’s score of
81.34%.

Table 3. Accuracy analysis of extracted individual tree position.

Sample Plot MSLM Method/RLM Method
AR OE CE OA F1 ¢
1 88.32%/82.48% 11.68%/17.52% 16.79%/12.41% 94.89%/94.89% 86.12%/84.64%
2 93.39%/81.82% 6.61%/18.18% 16.53%/10.74% 90.08%/92.56% 88.98%/84.98%
3 81.25%/76.56% 18.75%/23.44% 21.88%/14.06% 96.88%/90.63% 80.00%/80.33%
4 87.50%/71.88% 12.50%/28.13% 12.50%/9.38% 100.00%/81.25% 87.50%/79.31%
5 82.19%/56.16% 17.81%/43.84% 11.64%/5.48% 93.84%/61.64% 84.80%/69.49%
6 83.11%/66.22% 16.89%/33.78% 10.81%/5.41% 93.92%/71.62% 85.71%/77.17%
7 80.85%/78.01% 19.15%/21.99% 18.44%/5.67% 99.29%/83.69% 81.14%/84.94%
8 88.46%/83.85% 11.54%/16.15% 14.62%/9.23% 96.92%/93.08% 87.12%/86.85%
9 86.76%/80.88% 13.24%/19.12% 15.44%/13.24% 97.79%/94.12% 85.82%/83.33%
All 85.59%/74.98% 14.40%/25.02% 15.31%/9.38% 99.09%/84.36% 85.21%/81.34%

Note: Accuracy Rate (AR), Commission Error (CE), Omission Error (OE), Overall Accuracy (OA),
and F1 score (F1_c).

3.3. Impact of Forest Type on Extraction Accuracy

Figure 6 shows that the MSLM method performs relatively consistently across different
forest types. Although there were some fluctuations in CE, the overall performance of the
MSLM method was superior to that of the RLM method. The CE for the CLPF and CL-
QTMEF were 18.39% and 16.22%, respectively, while the CE for the CL-CHMF was lower, at
only 11.61%. In contrast, the performance of the RLM method showed greater variability,
especially in the CL-CHMF, where AR and OA were significantly lower compared to the
other forest types. The AR and OA for the CLPF and CL-QTMF were both above 80% and
90%, respectively, while those for the CL-CHMF were only 64.45% and 71.09%, respectively.
This indicates that compared to the RLM method, the MSLM method achieves higher pre-
cision and reliability in handling the complex environments of different forest types.
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Figure 6. Accuracy analysis of different methods and land types.

4. Discussion
4.1. Parameter Settings of the MSLM Method

The parameter settings for the MSLM method are largely consistent with the RLM
method, with the key parameters being CLmin and CLmax. These two parameters are
determined through visual inspection of the crown size and represent the minimum and
maximum crown widths in the sample area, respectively. These parameters significantly
influence the accuracy and computational efficiency of the algorithm, with CLmin being
particularly crucial. It determines the search step size for local maxima and helps prevent
the generation of excess potential crown top points within the same tree crown, while also
reducing the occurrence of missing crown top points caused by crown overlap. CLmax
ensures that the crown width value is not overestimated, and the crown width value is
used to eliminate anomalous crown top points that are too close to one another [24].

Additionally, the MSLM method introduces a new threshold, Totsu, which is auto-
matically determined by maximizing the inter-class variance. This threshold helps differ-
entiate between the crown layer and the background, thereby eliminating false points lo-
cated outside the crown layer. The results show that the Totsu threshold can, to some ex-
tent, prevent the detection of false peaks in the non-canopy area, thus reducing the false
detection rate. This conclusion is also supported by the study of Yu et al. [39], which sug-
gests that optimizing the threshold can effectively reduce the false detection rate.

4.2. Performance Advantages of the MSLM Method

This study used both the MSLM and RLM methods to extract individual tree posi-
tions from three different types of closed-canopy stands. The results demonstrate that the
MSLM method outperforms the RLM method in terms of accuracy, omission error, overall
precision, and F1 score. This indicates that, compared to the RLM method, the MSLM
method is more accurate in extracting individual tree positions, reducing omission errors,
and minimizing the bias between false extractions and omissions, resulting in outcomes
that more closely align with the actual distribution of trees. The MSLM method thus offers
superior balance and robustness. The excellent performance of MSLM in closed-canopy
stands further supports the advantages of the multi-source data fusion strategy. By inte-
grating CHM and DOM data, MRLM significantly enhances the algorithm’s ability to an-
alyze complex backgrounds, exhibiting greater stability and adaptability [40]. CHM pro-
vides three-dimensional structural information about tree crown height, while DOM of-
fers rich spectral and textural features. The combination of the two allows the MSLM
method to more precisely determine individual tree positions in complex forest environ-
ments. Relevant studies also support this view. For instance, Xie et al. [41] pointed out
that the integration of RGB imagery and CHM data significantly improves the accuracy
of individual tree detection, especially in complex environments where a single data
source cannot meet the requirements.

The MSLM method achieved an overall F1 score of 85.21% in closed-canopy stands,
fully demonstrating its capability to extract individual tree positions in complex forest
environments. Currently, deep learning methods are commonly used for individual tree
position extraction in challenging conditions. For example, Beloiu et al. [42] employed the
Faster R-CNN model with RGB imagery for individual tree position extraction in temper-
ate mixed forests, achieving an overall F1 score of 76%, with spruce scoring as high as
86%. Zhang et al. [43] used an improved Mask R-CNN model for individual tree position
extraction in broadleaf mixed forests, obtaining overall F1 scores ranging from 80% to
84%. Gan et al. [44] applied the DeepForest and Detectree2 models for individual tree
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position extraction in alpine temperate deciduous forests, achieving overall F1 scores of
52% and 57%, respectively. In comparison, the MSLM method, as a traditional computer
vision algorithm, achieved comparable accuracy to deep learning methods in closed-can-
opy stands while not relying on large-scale annotated datasets and incurring lower com-
putational costs [45]. Therefore, the MSLM method demonstrates broader applicability,
particularly in large-scale forest resource surveys, where it offers greater cost-effective-
ness and provides an efficient and low-cost pathway for individual tree detection in forest
resource monitoring.

4.3. Limitations of the MSLM Method

Although the MSLM method has demonstrated promising results in extracting indi-
vidual tree positions across various forest types, certain limitations persist. First, the
MSLM method exhibits higher commission errors compared to the RLM method. This
may be due to the higher resolution of DOM imagery, which, while improving the repre-
sentation of tree crown texture details, also introduces additional noise. Consequently, the
increased resolution can result in more misidentifications, leading to higher commission
errors [46]. Second, this study only selected three types of mountainous closed-canopy
forests with different tree species compositions for comparative experiments, without
considering the effects of more diverse forest types, canopy densities, and terrain condi-
tions on extraction accuracy. Furthermore, this study did not account for seasonal varia-
tions in tree crown morphology, which could affect position extraction accuracy. For in-
stance, in the CL-QTMEF, a significant number of omission errors were observed for Quer-
cus texana. This was likely because Quercus texana had entered its leaf-shedding phase
during imagery acquisition, making crown tops harder to identify. Similarly, Dieten-
berger et al. [47] reported that seasonal changes, such as leaf growth or shedding, can
significantly impact the accuracy of tree position extraction.

To address these limitations, future research could incorporate more advanced de-
noising algorithms to suppress noise while preserving critical image details. Such algo-
rithms should focus on achieving a balance between reducing unnecessary artifacts and
retaining important features, thereby enhancing the accuracy of the method. Additionally,
incorporating a more diverse range of forest types, crown densities, and terrain condi-
tions, along with analyzing seasonal variations in crown morphology through time-series
data, could enhance the robustness and applicability of the method. These improvements
will help overcome current challenges and further optimize the applicability of the
method in complex environments.

5. Conclusions

This study presents an MSLM method that integrates CHM and DOM imagery for
the extraction of individual tree positions in closed-canopy stands. When compared to the
RLM method, which relies solely on CHM imagery, the results show that the MSLM
method achieves a higher overall Accuracy Rate (AR) of 85.59%, an Overall Accuracy
(OA) 0f 99.09%, and an F1 score of 85.21%, outperforming the RLM method. Furthermore,
the method demonstrates stable performance across different types of closed-canopy for-
ests, highlighting its superior performance in extracting individual tree positions. The
MSLM method achieves high accuracy without requiring large amounts of annotated
data, providing a low-cost and efficient technological solution for forest resource moni-
toring. It also offers valuable insights for optimizing and adjusting forest structures, sup-
porting better forest management and conservation efforts.



Forests 2025, 16, 262 15 of 17

Author Contributions: This study was carried out with collaboration among all authors. G.L. and
L.L. were responsible for the overall study design; G.L., Z.G. and X.Z. conducted the field investi-
gation; G.L. and C.Z. performed the results analysis; M.C. was responsible for data visualization;
G.L. and X.O. wrote the paper. All authors have read and agreed to the published version of the

manuscript.

Funding: This research was funded by the Young Talent Development Program (2023521203) and
the Applied Basic Research Program (2023511201) of the Jiangxi Academy of Forestry.

Data Availability Statement: The data presented in this study are available on request from the

corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Hui, G; Zhang, G.; Zhao, Z.; Yang, A. Methods of Forest Structure Research: A Review. Curr. For. Rep. 2019, 5, 142-154.
https://doi.org/10.1007/s40725-019-00090-7.

2. Atkins, ] W.; Bhatt, P.; Carrasco, L.; Francis, E.; Garabedian, J.E.; Hakkenberg, C.R.; Hardiman, B.S.; Jung, J.; Koirala, A.; LaRue,
E.A.; et al. Integrating Forest Structural Diversity Measurement into Ecological Research. Ecosphere 2023, 14, e4633.
https://doi.org/10.1002/ecs2.4633.

3. Yang, M.,; Mou, Y,; Liu, S,; Meng, Y.; Liu, Z.; Li, P.; Xiang, W.; Zhou, X.; Peng, C. Detecting and Mapping Tree Crowns Based
on Convolutional Neural Network and Google Earth Images. Int. |. Appl. Earth Obs. Geoinf. 2022, 108, 102764.
https://doi.org/10.1016/j.jag.2022.102764.

4.  Keefe, RF.; Zimbelman, E.G.; Picchi, G. Use of Individual Tree and Product Level Data to Improve Operational Forestry. Curr.
For. Rep. 2022, 8, 148-165. https://doi.org/10.1007/s40725-022-00160-3.

5. Dainelli, R.; Toscano, P.; Di Gennaro, S.F.; Matese, A. Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing —
A Systematic Review. Part I: A General Framework. Forests 2021, 12, 327. https://doi.org/10.3390/f12030327.

6.  Yun, L; Zhang, X.; Zheng, Y.; Wang, D.; Hua, L. Enhance the Accuracy of Landslide Detection in UAV Images Using an Im-
proved Mask R-CNN Model: A Case Study of Sanming, China. Sensors 2023, 23, 4287. https://doi.org/10.3390/s23094287.

7. Guimaraes, N.; Padua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.]. Forestry Remote Sensing from Unmanned Aerial Vehicles:
A Review Focusing on the Data, Processing and Potentialities. Remote Sens. 2020, 12, 1046. https://doi.org/10.3390/rs12061046.

8.  Ali, AM,; Abouelghar, M.; Belal, A.A.; Saleh, N.; Yones, M.; Selim, A L,; Amin, M.E.S.; Elwesemy, A.; Kucher, D.E.; Maginan,
S.; et al. Crop Yield Prediction Using Multi Sensors Remote Sensing (Review Article). Egypt. ]. Remote Sens. Space Sci. 2022, 25,
711-716. https://doi.org/10.1016/j.ejrs.2022.04.006.

9.  Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and
Applications. Drones 2023, 7, 398. https://doi.org/10.3390/drones7060398.

10. Chen, X.;; Wang, R.; Shi, W.; Li, X; Zhu, X.; Wang, X. An Individual Tree Segmentation Method That Combines LiDAR Data
and Spectral Imagery. Forests 2023, 14, 1009. https://doi.org/10.3390/£14051009.

11.  Steier, ].; Goebel, M.; Iwaszczuk, D. Is Your Training Data Really Ground Truth? A Quality Assessment of Manual Annotation
for Individual Tree Crown Delineation. Remote Sens. 2024, 16, 2786. https://doi.org/10.3390/rs16152786.

12. Yun, T; Li, J.; Ma, L,; Zhou, J.; Wang, R.; Eichhorn, M.P.; Zhang, H. Status, Advancements and Prospects of Deep Learning
Methods Applied in Forest Studies. Int. |. Appl. Earth Obs. Geoinf. 2024, 131, 103938. https://doi.org/10.1016/j.jag.2024.103938.

13.  Yu, K,; Hao, Z,; Post, C.; Mikhailova, E.; Lin, L.; Zhao, G.; Tian, S.; Liu, J. Comparison of Classical Methods and Mask R-CNN
for Automatic Tree Detection and Mapping Using UAV Imagery. Remote Sens. 2022, 14, 295. https://doi.org/10.3390/rs14020295.

14. Robles-Guerrero, A.; Saucedo-Anaya, T.; Guerrero-Mendez, C.A.; Gomez-Jiménez, S.; Navarro-Solis, D.J. Comparative Study
of Machine Learning Models for Bee Colony Acoustic Pattern Classification on Low Computational Resources. Sensors 2023, 23,
460. https://doi.org/10.3390/s23010460.

15. Mohan, M,; Silva, C.A,; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual Tree Detection from Un-

manned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests 2017, 8, 340.
https://doi.org/10.3390/£8090340.



Forests 2025, 16, 262 16 of 17

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Ahmadi, S.A.; Ghorbanian, A.; Golparvar, F.; Mohammadzadeh, A.; Jamali, S. Individual Tree Detection from Unmanned Aerial
Vehicle (UAV) Derived Point Cloud Data in a Mixed Broadleaf Forest Using Hierarchical Graph Approach. Eur. ]. Remote Sens.
2022, 55, 520-539. https://doi.org/10.1080/22797254.2022.2129095.

De Sa, N.C,; Castro, P.; Carvalho, S.; Marchante, E.; Lopez-Nunez, F.A.; Marchante, H. Mapping the Flowering of an Invasive
Plant Using Unmanned Aerial Vehicles: Is There Potential for Biocontrol Monitoring? Front. Plant Sci. 2018, 9, 293.
https://doi.org/10.3389/fpls.2018.00293.

Gu, J; Congalton, R.G. Individual Tree Crown Delineation from UAS Imagery Based on Region Growing by Over-Segments
With a Competitive Mechanism. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4402411. https://doi.org/10.1109/TGRS.2021.3074289.
Xia, J.; Wang, Y.; Dong, P.; He, S.; Zhao, F.; Luan, G. Object-Oriented Canopy Gap Extraction from UAV Images Based on Edge
Enhancement. Remote Sens. 2022, 14, 4762. https://doi.org/10.3390/rs14194762.

Chehreh, B.; Moutinho, A.; Viegas, C. Latest Trends on Tree Classification and Segmentation Using UAV Data— A Review of
Agroforestry Applications. Remote Sens. 2023, 15, 2263. https://doi.org/10.3390/rs15092263.

Garcia-Murillo, D.G.; Caicedo-Acosta, J.; Castellanos-Dominguez, G. Individual Detection of Citrus and Avocado Trees Using
Extended Maxima Transform Summation on Digital Surface Models. Remote Sensing 2020, 12, 1633.
https://doi.org/10.3390/rs12101633.

Hao, Z.; Lin, L.; Post, C.J.; Jiang, Y.; Li, M.; Wei, N.; Yu, K,; Liu, J. Assessing Tree Height and Density of a Young Forest Using a
Consumer Unmanned Aerial Vehicle (UAV). New For. 2021, 52, 843-862. https://doi.org/10.1007/s11056-020-09827-w.

Asli, O.-0O.; Ok, A.O.; Zeybek, M.; Atesoglu, A. Automated Extraction and Validation of Stone Pine (Pinus pinea L.) Trees from
UAV-Based Digital Surface Models. Geo-Spat. Inf. Sci. 2024, 27, 142-162. https://doi.org/10.1080/10095020.2022.2090864.

Xu, X.; Zhou, Z.; Tang, Y.; Qu, Y. Individual Tree Crown Detection from High Spatial Resolution Imagery Using a Revised Local
Maximum Filtering. Remote Sens. Environ. 2021, 258, 112397. https://doi.org/10.1016/j.rse.2021.112397.

Miraki, M.; Sohrabi, H.; Fatehi, P.; Kneubuehler, M. Individual Tree Crown Delineation from High-Resolution UAV Images in
Broadleaf Forest. Ecol. Inform. 2021, 61, 101207. https://doi.org/10.1016/j.ecoinf.2020.101207.

Chen, S.; Liang, D.; Ying, B.; Zhu, W.; Zhou, G.; Wang, Y. Assessment of an Improved Individual Tree Detection Method Based
on Local-Maximum Algorithm from Unmanned Aerial Vehicle RGB Imagery in Overlapping Canopy Mountain Forests. Int. ].
Remote Sens. 2021, 42, 106-125. https://doi.org/10.1080/01431161.2020.1809024.

Azizi, Z.; Miraki, M. Individual Urban Trees Detection Based on Point Clouds Derived from UAV-RGB Imagery and Local
Maxima Algorithm, a Case Study of Fateh Garden, Iran. Environ. Dev. Sustain. 2024, 26, 2331-2344.
https://doi.org/10.1007/s10668-022-02820-7.

Zhao, H.; Morgenroth, J.; Pearse, G.; Schindler, J. A Systematic Review of Individual Tree Crown Detection and Delineation
with Convolutional Neural Networks (CNN). Curr. For. Rep. 2023, 9, 149-170. https://doi.org/10.1007/s40725-023-00184-3.

Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Individual Tree Segmentation and Tree Species Classification in Subtropical Broadleaf
Forests Using UAV-Based LiDAR, Hyperspectral, and Ultrahigh-Resolution RGB Data. Remote Sens. Environ. 2022, 280, 113143.
https://doi.org/10.1016/j.rse.2022.113143.

Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, ].; Rosette, J. Structure from Motion Photogrammetry in Forestry: A
Review. Curr. For. Rep. 2019, 5, 155-168. https://doi.org/10.1007/s40725-019-00094-3.

Zhang, Y.; Wang, M.; Mango, J.; Xin, L.; Meng, C.; Li, X. Individual Tree Detection and Counting Based on High-Resolution
Imagery and the Canopy  Height Model Data.  Geo-Spat.  Inf.  Sci. 2024, 27, 2162-2178.
https://doi.org/10.1080/10095020.2023.2299146.

Zhao, C.; Wang, ].; Zhou, G.; Yu, L.; Gong, X.; Meng, ]. Logging Simulation of Natural Mixed Forest in Jinpen Mountain Based
on Optimization of Spatial Structure. J. Southwest For. Univ. 2022, 42, 126-133. https://doi.org/10.11929/j.swfu.202109034.

Dong, X.; Zhang, Z.; Yu, R;; Tian, Q.; Zhu, X. Extraction of Information about Individual Trees from High-Spatial-Resolution
UAV-Acquired Images of an Orchard. Remote Sens. 2020, 12, 133. https://doi.org/10.3390/rs12010133.

Kuang, W.; Ho, H.W.; Zhou, Y.; Suandi, S.A.; Ismail, F. A Comprehensive Review on Tree Detection Methods Using Point Cloud
and Aerial Imagery from Unmanned Aerial Vehicles. Comput. Electron. Agric. 2024, 227, 109476. https://doi.org/10.1016/j.com-
pag.2024.109476.

Ke, Y.; Quackenbush, L.J. A Review of Methods for Automatic Individual Tree-Crown Detection and Delineation from Passive
Remote Sensing. Int. J. Remote Sens. 2011, 32, 4725-4747, doi:10.1080/01431161.2010.494184.

Burdziakowski, P. The Effect of Varying the Light Spectrum of a Scene on the Localisation of Photogrammetric Features. Remote
Sens. 2024, 16, 2644. https://doi.org/10.3390/rs16142644.



Forests 2025, 16, 262 17 of 17

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62-66.
https://doi.org/10.1109/TSMC.1979.4310076.

Chen, R.; Han, L.; Zhao, Y.; Zhao, Z.; Liu, Z,; Li, R;; Xia, L.; Zhai, Y. Extraction and Monitoring of Vegetation Coverage Based
on Uncrewed Aerial Vehicle Visible Image in a Post Gold Mining Area. Front. Ecol. Evol. 2023, 11, 1171358.
https://doi.org/10.3389/fevo.2023.1171358.

Yu, T.; Ni, W.; Zhang, Z.; Liu, Q.; Sun, G. Regional Sampling of Forest Canopy Covers Using UAV Visible Stereoscopic Imagery
for Assessment of Satellite-Based Products in Northeast China. ]. Remote Sens. 2022, 2022, 9806802.
https://doi.org/10.34133/2022/9806802.

Plesoianu, A.-L; Stupariu, M.-S.; Sandric, I.; Patru-Stupariu, I.; Dragut, L. Individual Tree-Crown Detection and Species Classi-
fication in Very High-Resolution Remote Sensing Imagery Using a Deep Learning Ensemble Model. Remote Sens. 2020, 12, 2426.
https://doi.org/10.3390/rs12152426.

Xie, Y.; Wang, Y.; Sun, Z,; Liang, R.; Ding, Z.; Wang, B.; Huang, S.; Sun, Y. Instance Segmentation and Stand-Scale Forest Map-
ping Based on UAV Images Derived RGB and CHM. Comput. Electron. Agric. 2024, 220, 108878. https://doi.org/10.1016/j.com-
pag.2024.108878.

Beloiu, M.; Heinzmann, L.; Rehush, N.; Gessler, A.; Griess, V.C. Individual Tree-Crown Detection and Species Identification in
Heterogeneous Forests Using Aerial RGB Imagery and Deep Learning. Remote Sens. 2023, 15, 1463.
https://doi.org/10.3390/rs15051463.

Zhang, C.; Zhou, J.; Wang, H.; Tan, T.; Cui, M.; Huang, Z.; Wang, P.; Zhang, L. Multi-Species Individual Tree Segmentation and
Identification Based on Improved Mask R-CNN and UAV Imagery in Mixed Forests. Remote Sens. 2022, 14, 874.
https://doi.org/10.3390/rs14040874.

Gan, Y.; Wang, Q.; lio, A. Tree Crown Detection and Delineation in a Temperate Deciduous Forest from UAV RGB Imagery
Using Deep Learning Approaches: Effects of Spatial Resolution and Species Characteristics. Remote Sens. 2023, 15, 778.
https://doi.org/10.3390/rs15030778.

Sun, Y.; Li, Z,; He, H.; Guo, L.; Zhang, X.; Xin, Q. Counting Trees in a Subtropical Mega City Using the Instance Segmentation
Method. Int. . Appl. Earth Obs. Geoinf. 2022, 106, 102662. https://doi.org/10.1016/j.jag.2021.102662.

Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A Generalized Approach Based on Convolutional Neural Net-
works for Large Area Cropland Mapping at Very High Resolution. Remote Sens. Environ. 2020, 247, 111912.
https://doi.org/10.1016/j.rse.2020.111912.

Dietenberger, S.; Mueller, M.M.; Bachmann, F.; Nestler, M.; Ziemer, ].; Metz, F.; Heidenreich, M.G.; Koebsch, F.; Hese, S.; Dubois,
C.; et al. Tree Stem Detection and Crown Delineation in a Structurally Diverse Deciduous Forest Combining Leaf-On and Leaf-
Off UAV-SfM Data. Remote Sens. 2023, 15, 4366. https://doi.org/10.3390/rs15184366.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.



