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Abstract: The purpose of this research was to investigate the modulus of rupture (MOR) and
modulus of elasticity (MOE) in the static bending of yellow pine (Pinus ponderosa Douglas
ex C. Lawson) earlywood and latewood. The relationship between the properties of these
wood zones and the MOR and MOE of yellow pine wood tested was determined with
the methodology specified in the standards. An important element of the research was to
verify the suitability of the developed method for testing the MOR and MOE of small wood
samples obtained from the earlywood and latewood zone. The MOR of the earlywood
was about 6% higher than the MOR of the pine wood determined using standard samples,
and these differences were not statistically significant. However, the MOR of the latewood
was approximately three times higher than the MOR of the pine wood determined using
standard samples, and these differences were statistically significant. The MOR of the
latewood was found to be 2.5 times higher than the MOR of the earlywood. The MOE of
the latewood was found to be two times higher than the MOE of the earlywood. This was
due to the density of particular wood zones and the dimensions of structural elements—
tracheids. The maximum load (Fmax) transferred by latewood zones was four times higher
than the Fmax transferred by earlywood zones. The deflection at the Fmax of the earlywood
zone was 20% smaller than the deflection at the Fmax of the latewood zone.

Keywords: earlywood; latewood; modulus of rupture; modulus of elasticity; Pinus ponderosa;
static bending strength

1. Introduction
Despite competition from other construction materials, wood is still commonly used

in many branches of industry, mainly in construction and furniture. Thanks to the develop-
ment of computational techniques, it is possible to perform an accurate strength analysis
of wooden structures, but the condition for its correctness is, among others, knowledge of
the wood elastic properties. For this reason, elastic properties are the subject of constant
analysis. The issues related to the study of the wood mechanical properties are more com-
plex compared to most other construction materials. This is due to the wood anisotropic
structure. In addition, due to the wood hygroscopicity, these properties depend on the
parameters of air, and consequently on the wood moisture content. Wood defects also play
a significant role [1–3].

Due to its high strength and, at the same time, low density, wood is a widely used
material, e.g., for girders and roof truss elements. In European and North American countries,
softwood is most often used for the production of structural elements [4,5]. This is due to
the availability of the raw material and the lower price compared to hardwood [6–8]. Static
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bending strength is, apart from the compressive strength parallel to the fibers, the most
frequently analyzed strength test [5,9,10]. The bending strength of wood shows intermediate
values between the compressive strength and the tensile strength [11]. Low safety factors
can be used under compressive and bending stresses of wood. The range of tensile strength
values is very wide, and in this respect, wood is an uncertain material requiring a high safety
factor. The use of wood for the prefabrication of glued-laminated house construction elements
requires testing the physical and mechanical properties of the raw material for the production
of these elements, as well as the joints [12,13].

The static bending strength of wood depends on a number of factors. It results from the
structure and wood properties [9], as well as the method of testing. The influence of wood
origin [10,14,15], type of forest from which the wood was harvested [14], tree age [16–20],
chemical composition [21–23], anatomical structure [15,20,24–26], wood defects [27–29], and
moisture content [30–32] on wood properties are significant. Static bending strength is one of
the criteria for classifying structural timber in accordance with European standards [12].

Wood is an anisotropic material. Structure inhomogeneity can be observed organolep-
tically. The profile of annual rings expressed by latewood ratio, width of latewood, and
microfibril angle has a significant effect on mechanical properties of softwood [33,34]. The
differences in structure between earlywood and latewood within a single annual growth
ring are significant [5]. This translates into differences in the chemical, physical, mechanical
properties of wood [25]. The determination of intra-ring mechanical properties is crucial
for a complete, hierarchical characterization of wood [35]. The mechanical properties are
tested on full-size sawn timber, often containing defects [10], as well as on small samples
without defects [36–38], and also on a micro scale [39–45]. Krauss et al. [17] determined
the differences in the mechanical properties of earlywood and latewood of pine tree (Pinus
sylvestris L.). Cramer et al. [39] evaluated the elastic properties and variability of earlywood
and latewood in specimens from six loblolly pine trees in a commercial plantation. Lanver-
mann et al. [40] evaluated the intra-ring variation and generic behavior of Norway spruce
earlywood and latewood until failure. Büyüksarı et al. [41] determined the relationship
between the calculated and measured values of bending strength, modulus of elasticity in
bending, and tensile strength of earlywood and latewood for Scots pine (Pinus sylvestris
L.). In another study, Büyüksarı et al. [42] also investigated the bending strength, mod-
ulus of elasticity in bending, compression strength, and tensile strength of oak (Quercus
petraea) wood using micro- and standard-size mechanical test samples. Groom et al. [43]
evaluated the mechanical properties of individual southern pine fibers. Wimmer et al. [44]
researched the Young’s modulus of spruce tracheid secondary walls using nanoindentation
technique. Bergander and Salmén [45] analyzed cell wall properties and their effects on
fiber mechanical properties.

The aim of the study was to determine the relationship between the modulus of
rupture (MOR) of yellow pine (Pinus ponderosa Douglas ex C. Lawson) earlywood and
latewood. This also concerned the modulus of elasticity (MOE) in the static bending of
earlywood and latewood of yellow pine wood. The relationship between the properties
of these wood zones and the MOR and MOE of the yellow pine wood tested with the
methodology specified in the standards was important part of the study. Tests on very small
samples make it possible to determine the influence of the annual ring structure on the
properties of wood. An important issue was to verify the extent to which a particular wood
zone (earlywood, latewood) determines the MOR and MOE of the tested raw material.
There is a lack of data on the MOR and MOE of earlywood and latewood, and the determi-
nations carried out mainly concern the tensile strength of earlywood and latewood [39–45].
This is an important aspect from a scientific and utilitarian point of view [35]. There is
not sufficient data about the relationship between the mechanical properties of yellow
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pine at the micro- and macro-scale. Therefore, the aim of this study was to determine the
relationship between the mechanical properties of annual ring zones and the raw material
tested with the methodology specified in the standards. The study constitutes an impor-
tant contribution to the development of methods for testing wood properties using very
small samples.

2. Materials and Methods
2.1. Yellow Pine Wood Samples

Yellow pine wood (Pinus ponderosa Douglas ex C. Lawson), 70 years old, was
used for the study. The wood was obtained from the western part of the USA. A
planing operation was used to prepare the sample surfaces. The samples were ob-
tained from a sapwood area, a knot-free butt-end part. Based on previously con-
ducted research by Mańkowski and Laskowska [5], it was determined that in the
sapwood area, the width of annual growth rings was 5.73 mm (±0.38 mm), and
the share of latewood was 38% (±4%). The moisture content and density of yel-
low pine wood were determined according to ISO 13061-1:2014 [46] and ISO 13061-
2:2014 [47], respectively. Twenty samples were used to determine the yellow pine
wood properties.

2.2. Determination of Modulus of Rupture and Modulus of Elasticity in Static Bending Using
Standard Wood Samples

The determination of the modulus of rupture (MOR) and modulus of elasticity in
bending (MOE) were provided according to ISO 13061-3:2014 [48] and ISO 13061-4:2014 [49],
respectively. Standard wood samples (ST) were used. The MOR and MOE of yellow pine
was carried out using an Instron® testing machine, model 3369 (Instron®, Norwood, MA,
USA). The span length in the bending test for standard samples was 240 mm, the load
speed was 5 mm × min−1. Twenty samples were used to determine the yellow pine
wood properties.

2.3. Determination of Modulus of Rupture and Modulus of Elasticity in Static Bending of
Earlywood (EW) and Latewood (LW) from the Yellow Pine Sapwood Area

The MOR and MOE of the earlywood (EW) and latewood (LW) samples of the yellow
pine were determined. The samples had the following dimensions: 2 mm (radial) × 2 mm
(tangential) × 55 mm (longitudinal). Twenty samples of the yellow pine were used to deter-
mine the MOR and MOE of each wood zone (earlywood, latewood). The scheme for samples
preparation for the MOR and MOE of earlywood and latewood determination is presented in
Figure 1. The annual ring of solid wood gradually varies in one year. Therefore, the boundary
between the earlywood and latewood was determined based on density criterion. The MOR
and MOE of earlywood and latewood were determined according to ISO 13061-3:2014 [48]
and ISO 13061-4:2014 [49] standards, with minor alterations. It resulted from the size of the
wood samples obtained from the annual growth ring zone. For the samples of earlywood
and latewood, the spacing of supports was 24 mm. The load speed in the bending test for
earlywood and latewood samples was 1 mm × min−1. The samples were tested according to
test arrangement for the three-point bending (Figure 2). Shimadzu AG-X Plus testing machine
(Shimadzu Analytical & Measuring Instruments Division, Tokyo, Japan) was used to examine
wood samples. A different testing machine was used to determine the MOR and MOE of
earlywood and latewood than to determine the standard samples of yellow pine wood. This
resulted from the need to select the appropriate range of loading forces and load speed in
relation to the size of the tested samples.
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Figure 2. Test arrangement for the three-point bending to measure modulus of rupture (MOR) and
modulus of elasticity in bending (MOE) of earlywood (EW) and latewood (LW) of yellow pine.

2.4. Statistical Analysis

The statistical analysis of test results was carried out based on the STATISTICA
(version-13.3) software of StatSoft, Inc. (TIBCO Software Inc., Palo Alto, CA, USA). The
t-test and the Fischer’s F-test, with a significance level (p) of 0.050, were used.

3. Results
The average density of yellow pine sapwood (standard samples—ST) with the deter-

mined moisture content of 8–10% was 467 ± 48 kg × m−3 (Figure 3a). This density was in
the range of 340–500 kg × m−3 for pine wood with a moisture content of 12–15% that given
by Wagenführ [11]. The density of earlywood (EW) was 366 ± 57 kg × m−3, whilst the
density of latewood (LW) was 699 ± 39 kg × m−3, and these differences were statistically
significant (t-test, p ≤ 0.050).

The modulus of rupture (MOR) determined using the standard samples (ST) of yellow
pine wood was 68.3 ± 24.9 MPa (Figure 3b). The MOR was in the range of 41–71 MPa for
the yellow pine, as given by Wagenführ [11]. The MOR of the standard samples was from
the lower range for the MOR of the Scots pine (Pinus sylvestris L.), estimated in the range of
41–205 MPa [11]. The MOR of the earlywood (EW) was 72.2 ± 14.6 MPa, and thus, it was
about 6% higher than the MOR of the pine wood determined using standard samples, and
these differences were not statistically significant (t-test, p > 0.050). However, the MOR of
the latewood (LW) was 187.7 ± 18.4 MPa. It was approximately three times higher than the
MOR of the pine wood determined using standard samples, and these differences were
statistically significant (t-test, p ≤ 0.050). The MOR of the latewood was 2.5 times higher
than the MOR of the earlywood. These relationships result from the higher density of
latewood compared to earlywood (Figure 3a). Based on previously conducted research
by Mańkowski and Laskowska [5], it was determined that the latewood tracheids had a
1.5-times-greater thickness than the earlywood tracheids. These dependencies concerned
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the thickness of tangential and radial walls of tracheids. The diameter of earlywood
tracheids in the radial direction was greater than the diameter in the tangential direction. It
was the opposite in latewood tracheids. Latewood tracheids were flattened in the radial
direction, which is characteristic of softwood [11,50]. Mańkowski and Laskowska [5]
concluded that in the radial direction, the diameter of the earlywood tracheids in yellow
pine was twice as large compared to the diameter of the latewood tracheids. The earlywood
tracheid diameter in the tangential direction was similar to the latewood tracheid diameter
in this direction. This resulted in a two-times-lower density of the earlywood compared to
the latewood. The observation confirms that wood density cannot be treated as the only
factor shaping wood mechanical properties [26,51].
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yellow pine wood (ST—standard samples; EW—earlywood; LW—latewood).

The modulus of elasticity in bending (MOE) determined using the standard samples (ST)
of pine wood was 7520 ± 2552 MPa (Figure 3c). According to the literature data [11], the MOE
of yellow pine wood ranges from 8270 MPa to 11,350 MPa. The MOE determined for standard
samples of yellow pine was in the lower range of values determined for Scots pine (Pinus
sylvestris L.), estimated in the range of 6900–20,100 MPa [11]. The MOE of earlywood (EW)
was 5107 ± 927 MPa, and thus, it was about 32% lower compared to the MOE determined
for standard samples of pine wood, and these differences were statistically significant (t-test,
p ≤ 0.050). The MOE of latewood (LW) was 10,385 ± 1185 MPa. It was about 38% higher
than the MOE of the pine wood determined using standard samples, and these differences
were statistically significant (t-test, p ≤ 0.050). The MOE of latewood was 2 times higher than
the MOE of earlywood. This was influenced by the density of the individual wood zones
and the dimensions of the tracheids [5,52,53]. Moliński and Krauss [26] studied the radial
gradients of the density and wood elasticity modulus in a tensile test. Microtome samples
were obtained from earlywood and latewood in annual growth rings of pine wood. The
authors stated that the elasticity modulus of earlywood was independent of the cambial age
of annual rings, whereas the elasticity modulus of latewood increases with increasing cambial
age of annual rings. The changes in the elastic modulus resulted from changes in wood
density and microfibril angle (MFA) in tracheid walls.

Load–deflection curves of yellow pine wood under bending test are presented in
Figure 4. These curves are characteristic for wood when subjected to a three-point bending
load [54–56]. The direction of the changes in the deflection was the same regardless of the
wood zone and sample type (earlywood, latewood, standard samples). The differences
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were visible in the size of these changes, i.e., load and deflection values. The destructive
force increases until the earlywood and latewood samples are destroyed. In the case of
standard samples, the weakest zones of wood crack in the sample, which is visible in the
figure as the local maxima. The load–deflection curves indicate that the failure mode of the
latewood was ductile, and that of the earlywood was nearly brittle. This translated into
different failure patterns and on the values of MOR and MOE. The samples of earlywood
and latewood of yellow pine wood after bending test are presented in Figure 5. The failure
type of the earlywood (Figure 5a) and latewood (Figure 5b) in the bending test with the
span parallel to the grain can be described as splintering tension. The same type of failure
is exhibited by the standard samples (Figure 5c).
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The maximum load (Fmax) transferred by latewood zones was 65 ± 9 N, which was
four times higher than the Fmax (16 ± 5 N) transferred by the earlywood zones. The
deflection at the Fmax of the earlywood zone was 1.21 ± 0.21 mm, and it was about 20%
smaller than the deflection (1.47 ± 0.24 mm) at the Fmax of the latewood zone. The load-
carrying capacity depends on the size of the samples [57,58]. The standard samples of
yellow pine wood carried a maximum load of 1525 ± 478 N, and the deflection at the
maximum load was 6.75 ± 1.13 mm.

The relationship between the density and MOR of yellow pine wood was shown in
Figure 6a. The linear approximation of the relationship is presented. The R2 ratio for the
standard samples (ST) was 0.81. Much lower values of the R2 ratio were recorded for the
density–MOR relationship for “small” samples, i.e., latewood (LW) samples (R2 at 0.44)
and earlywood (EW) samples (R2 at 0.24). This showed that the MOR of the earlywood
and latewood was slightly determined by density. Similar dependencies were noted for
the density–MOE relationship (Figure 6b). The R2 ratio for MOE determined for standard
samples was 0.87. Much lower values of the R2 ratio were recorded for the density–MOE
relationship for “small” samples, i.e., latewood samples (R2 at 0.42) and earlywood (R2

at 0.15). This confirms that regardless of the type of samples or wood zone, the wood
mechanical properties do not depend solely on wood density. Büyüksarı et al. [41] stated
that the difference in the mechanical properties, i.e., earlywood (EW) and latewood (LW) of
Scots pine could be attributed to the differences in the density and microfibril angle (MFA)
of EW and LW. Roszyk [59] indicated that the density of the EW and LW of Scots pine was,
respectively, 235 kg × m−3 and 665 kg × m−3, whereas the MFA was, respectively, 16.4◦ and
9.0◦. Some authors [41,45,60,61] stated that the cellulose determined the wood properties
for small MFA values. However, for higher MFA values, the mechanical properties of
cell walls depend mainly on the matrix hemicelluloses and lignin incrusting the cellulose
skeleton. Among the determined properties, the greatest variability was recorded for
the MOE (Figure 6b), and the smallest in the case of the MOR (Figure 6a). The wood
density changes in the radial direction and is accompanied in particular by changes in
the elastic modulus [26]. Fitted curves predicting the MOR and MOE of the yellow pine
earlywood (EW) samples, latewood (LW) samples, and standard samples (ST) depending
on density (WD) are presented in Table 1. The statistical results for the linear regression lines
showed that only the linear regression for the density—MOE of earlywood is not significant
(p > 0.050).
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Table 1. Fitted curves predicting the modulus of rupture (MOR) and modulus of elasticity in bending
(MOE) of yellow pine earlywood (EW) samples, latewood (LW) samples, and standard samples (ST)
depending on density (WD). Statistical results of the linear regression line.

Wood Sample
Property Statistical Parameters

MOR F-Value Significance Level p

EW MOREW = 0.118
WD + 28.993 5.566 p < 0.050

LW MORLW = 0.295
WD − 18.819 14.265 p < 0.050

ST MORST = 0.419 WD
− 124.491 74.430 p < 0.050

MOE F-Value Significance Level p

EW MOEEW = 6.343
WD + 2788 3.202 p > 0.050

LW MOELW = 19.64
WD − 3345 12.999 p < 0.050

ST MOEST = 46.18 WD
− 13,866 116.37 p < 0.050

High R2 values were recorded for the relationship between the modulus of rupture
(MOR) and modulus of elasticity in bending (MOE) of yellow pine wood (Figure 7). This
confirms a strong dependence of MOR on the value of the yellow pine MOE regardless of
the type of samples and wood zone. These relationships can be described by the equations:
MOREW = 0.011 MOE + 13.531 for earlywood, MORLW = 0.013 MOE + 49.695 for latewood,
and MORST = 0.009 MOE + 1.015 for the standard samples.
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4. Conclusions
The research conducted indicates the differences in the properties of yellow pine wood

regardless of the wood zone and sample type (earlywood, latewood, standard samples):

• The density of the yellow pine earlywood was 22% lower than the density of sapwood.
The density of the latewood was 50% higher than the density of the sapwood. In
general, it should be stated that the density of the latewood was twice as high as the
density of the earlywood of yellow pine.

• The modulus of rupture of the yellow pine earlywood was about 6% higher than the
modulus of rupture of the pine wood, determined using standard samples, and these
differences were not statistically significant. The modulus of rupture of the latewood
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was approximately three times higher than the modulus of rupture of the pine wood
determined using standard samples, and these differences were statistically significant.
The modulus of rupture of latewood was 2.5 times higher than the modulus of rupture
of the earlywood.

• The modulus of elasticity of the earlywood was about 32% lower than the modulus of
elasticity of the pine wood determined using standard samples, and these differences
were statistically significant. The modulus of elasticity of the latewood was about 38%
higher than the modulus of elasticity of the pine wood determined using standard
samples, and these differences were statistically significant. The modulus of elasticity
of the latewood was found to be two times higher than the modulus of elasticity of
the earlywood.

• The maximum load transferred by latewood zones was four times higher than the
maximum load transferred by earlywood zones. The deflection at the maximum load
of earlywood zones was 20% smaller than the deflection at the maximum load of
latewood zones.

Author Contributions: Conceptualization, Z.K., P.M. and A.L.; methodology, Z.K., P.M. and A.L.;
formal analysis, A.L. and P.M.; investigation, A.L. and P.M.; resources, A.L. and P.M.; data curation,
A.L.; writing—original draft preparation, A.L.; writing—review and editing, A.L. and P.M; visualiza-
tion, A.L.; supervision, A.L. and P.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.
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