Correlating the Horizontal and Vertical Distribution of LiDAR Point Clouds with Components of Biomass in a Picea crassifolia Forest
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Sites
2.2. LiDAR Data
2.3. Field Measurement
Dependent Variables (y) | Equation | R2 | Root Mean Squared Error (RMSE) (m) |
---|---|---|---|
Height | y = 0.5171 × DBH + 2.1268 | 0.83 | 1.24 |
Crown Size | y = 7.3496 × ln(DBH) − 8.581 | 0.87 | 1.18 |
y = 0.2014 × Height + 1.3742 | 0.61 | 0.77 | |
y = 0.1264 × DBH + 1.4894 | 0.74 | 0.71 |
2.4. Biomass Calculation
2.5. Processing of LiDAR Data
2.6. Individual Tree Identification
2.7. LiDAR Metrics Calculation
yshift_i = yi × a + b
2.8. Vertical Biomass Profile Derivation
3. Results and Discussion
3.1. Individual Tree Identification
Subplot | Total Segments | Matched Segments | Mismatched Segments | Field Measured | Percentage (%) |
---|---|---|---|---|---|
1 | 53 | 38 | 15 | 98 | 38.78 |
2 | 63 | 46 | 17 | 114 | 40.35 |
3 | 29 | 22 | 7 | 77 | 28.57 |
4 | 54 | 39 | 15 | 80 | 48.75 |
5 | 50 | 38 | 12 | 70 | 54.29 |
6 | 31 | 24 | 7 | 91 | 26.37 |
7 | 68 | 55 | 13 | 120 | 45.83 |
8 | 92 | 75 | 17 | 156 | 48.08 |
9 | 27 | 20 | 7 | 87 | 22.99 |
10 | 28 | 20 | 8 | 100 | 20.00 |
11 | 55 | 43 | 12 | 111 | 38.74 |
12 | 49 | 39 | 10 | 94 | 41.49 |
13 | 38 | 27 | 11 | 62 | 43.55 |
14 | 45 | 33 | 12 | 94 | 35.11 |
15 | 37 | 28 | 9 | 77 | 36.36 |
16 | 18 | 14 | 4 | 37 | 37.84 |
Total | 737 | 561 | 176 | 1,468 | 38.22 |
StatisticsError | X (m) | Y (m) | H (m) | D (m) |
---|---|---|---|---|
Mean (abs) | 0.28 | 0.30 | 1.02 | 0.46 |
SD (abs) | 0.38 | 0.41 | 1.19 | 0.53 |
Number of Trees | 561 (38.22%) |
3.2. Correlating Horizontal Variation of Point Clouds with Biomass
Tree | Metrics | Regression Equations | R2 | RMSE | rRMSE |
---|---|---|---|---|---|
BB | Hmean | y = 0.0054e0.6842x | 0.45 | 9.78 | 0.97 |
CCI | y = 45.674x − 5.7033 | 0.53 | 8.02 | 0.81 | |
Hmean*CCI | y = 4.114x − 4.3411 | 0.59 | 7.47 | 0.76 | |
Horizcv | y = 69.523x − 0.3626 | 0.73 | 6.11 | 0.36 | |
Hmean*Horizcv | y = 6.1408x + 0.3972 | 0.73 | 6.07 | 0.59 | |
Hmean*Horizcv*CCI | y = 0.9624x + 3.7116 | 0.68 | 6.64 | 0.67 | |
LB | Hmean | y = 0.2487e0.3612x | 0.45 | 5.94 | 0.54 |
CCI | y = 31.734x + 0.242 | 0.52 | 5.26 | 0.48 | |
Hmean*CCI | y = 2.8721x + 1.1408 | 0.60 | 4.82 | 0.49 | |
Horizcv | y = 43.369x + 4.5629 | 0.67 | 4.39 | 0.40 | |
Hmean*Horizcv | y = 3.8244x + 5.0467 | 0.67 | 4.36 | 0.38 | |
Hmean*Horizcv*CCI | y = 0.6429x + 6.9487 | 0.63 | 5.14 | 0.52 | |
AGB | Hmean | y = 0.3638e0.5356x | 0.45 | 98.43 | 0.82 |
CCI | y = 472.47x − 42.536 | 0.54 | 81.81 | 0.69 | |
Hmean*CCI | y = 42.693x − 28.919 | 0.61 | 75.65 | 0.64 | |
Horizcv | y = 711.61x + 13.855 | 0.72 | 63.43 | 0.53 | |
Hmean*Horizcv | y = 62.835x + 21.663 | 0.72 | 62.86 | 0.50 | |
Hmean*Horizcv*CCI | y = 9.689x + 56.558 | 0.65 | 71.07 | 0.59 |
Subplot | Metrics | Regression Equations | R2 | RMSE | rRMSE |
---|---|---|---|---|---|
BB | Hmean | y = 101.71x − 426.78 | 0.49 | 178.86 | 0.31 |
CCI | y = 1,188.4x − 411.79 | 0.35 | 202.00 | 0.35 | |
Hmean*CCI | y = 74.479x − 44.884 | 0.48 | 179.27 | 0.32 | |
Horizcv | y = 76.639x +7.0569 | 0.75 | 126.17 | 0.22 | |
Hmean*Horizcv | y = 6.4054x + 95.374 | 0.84 | 99.76 | 0.18 | |
Hmean*Horizcv*CCI | y = 6.4395x + 160.2 | 0.83 | 103.42 | 0.18 | |
LB | Hmean | y = 70.079x − 62.366 | 0.42 | 227.66 | 0.37 |
CCI | y = 1,034.2x − 229.79 | 0.25 | 223.4 | 0.36 | |
Hmean*CCI | y = 56.211x + 160.45 | 0.26 | 221.39 | 0.36 | |
Horizcv | y = 84.016x + 7.792 | 0.84 | 101.92 | 0.16 | |
Hmean*Horizcv | y = 6.4469x + 147.11 | 0.8 | 114.54 | 0.18 | |
Hmean*Horizcv*CCI | y = 6.4181x + 216.37 | 0.78 | 122.02 | 0.2 | |
AGB | Hmean | y = 523.44x − 1,120.8 | 0.65 | 665.19 | 0.17 |
CCI | y = 6,984.2x − 1,760.1 | 0.6 | 709.83 | 0.18 | |
Hmean*CCI | y = 404.22x + 672.21 | 0.71 | 597.16 | 0.15 | |
Horizcv | y = 238.08x + 2,257.8 | 0.36 | 894.31 | 0.22 | |
Hmean*Horizcv | y = 22.58x + 2,334 | 0.52 | 772.42 | 0.19 | |
Hmean*Horizcv*CCI | y = 24.377x + 2,456.1 | 0.59 | 712.3 | 0.18 |
3.3. Correlating Vertical Distribution of Point Clouds with Biomass
Plot | Pearson’s Correlation Coefficient (R) | Area of Overlap Index (AOI) | ||
---|---|---|---|---|
CBP/CPD | CBP/CIP | CBP/CPD | CBP/CIP | |
S1 | 0.67 | 0.65 | 0.59 | 0.59 |
S2 | 0.87 | 0.86 | 0.69 | 0.67 |
S3 | 0.86 | 0.84 | 0.66 | 0.64 |
S4 | 0.82 | 0.81 | 0.58 | 0.58 |
S5 | 0.79 | 0.58 | 0.66 | 0.61 |
S6 | 0.8 | 0.78 | 0.57 | 0.54 |
S7 | 0.91 | 0.92 | 0.77 | 0.77 |
S8 | 0.8 | 0.74 | 0.62 | 0.58 |
S9 | 0.72 | 0.7 | 0.68 | 0.68 |
S10 | 0.83 | 0.71 | 0.79 | 0.77 |
S11 | 0.67 | 0.66 | 0.55 | 0.54 |
S12 | 0.69 | 0.66 | 0.57 | 0.55 |
S13 | 0.78 | 0.73 | 0.6 | 0.58 |
S14 | 0.62 | 0.56 | 0.6 | 0.57 |
S15 | 0.39 | 0.19 | 0.59 | 0.54 |
L1 | 0.77 | 0.74 | 0.62 | 0.6 |
L2 | 0.4 | 0.31 | 0.56 | 0.53 |
L3 | 0.75 | 0.64 | 0.72 | 0.69 |
L4 | 0.76 | 0.7 | 0.59 | 0.56 |
L5 | 0.79 | 0.58 | 0.76 | 0.7 |
L6 | 0.46 | 0.33 | 0.56 | 0.47 |
L7 | 0.84 | 0.82 | 0.67 | 0.66 |
L8 | 0.93 | 0.91 | 0.75 | 0.74 |
L9 | 0.74 | 0.55 | 0.62 | 0.56 |
L10 | 0.88 | 0.81 | 0.75 | 0.71 |
L11 | 0.45 | 0.27 | 0.66 | 0.61 |
L12 | 0.73 | 0.68 | 0.56 | 0.54 |
L13 | 0.49 | 0.38 | 0.5 | 0.45 |
L14 | 0.4 | 0.32 | 0.54 | 0.51 |
L15 | 0.56 | 0.44 | 0.58 | 0.53 |
L16 | 0.71 | 0.38 | 0.84 | 0.77 |
L17 | 0.86 | 0.81 | 0.77 | 0.75 |
L18 | 0.66 | 0.6 | 0.65 | 0.62 |
L19 | 0.73 | 0.61 | 0.65 | 0.62 |
L20 | 0.71 | 0.6 | 0.71 | 0.66 |
Mean | 0.71 | 0.62 | 0.64 | 0.61 |
SD | 0.15 | 0.19 | 0.08 | 0.09 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Allouis, T.; Durrieu, S.; Vega, C.; Couteron, P. Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees From LiDAR Data: Contribution of Full-Waveform Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 924–934. [Google Scholar] [CrossRef]
- Bortolot, Z.J.; Wynne, R.H. Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data. ISPRS J. Photogramm. Remote Sens. 2005, 59, 342–360. [Google Scholar] [CrossRef]
- He, Q.-S.; Cao, C.-X.; Chen, E.-X.; Sun, G.-Q.; Ling, F.-L.; Pang, Y.; Zhang, H.; Ni, W.-J.; Xu, M.; Li, Z.-Y.; et al. Forest stand biomass estimation using ALOS PALSAR data based on LiDAR-derived prior knowledge in the Qilian Mountain, western China. Int. J. Remote Sens. 2012, 33, 710–729. [Google Scholar] [CrossRef]
- Drake, J.B.; Dubayah, R.O.; Clark, D.B.; Knox, R.G.; Blair, J.B.; Hofton, M.A.; Chazdon, R.L.; Weishampel, J.F.; Prince, S.D. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens. Environ. 2002, 79, 305–319. [Google Scholar] [CrossRef]
- Drake, J.B.; Dubayah, R.O.; Knox, R.G.; Clark, D.B.; Blair, J.B. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens. Environ. 2002, 81, 378–392. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Ewel, J.J.; Clark, D.B. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. Remote Sens. Environ. 2011, 115, 2931–2942. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Harding, D.J.; Parker, G.G.; Acker, S.A.; Gower, S.T. Lidar remote sensing of above-ground biomass in three biomes. Glob. Ecol. Biogeogr. 2002, 11, 393–399. [Google Scholar] [CrossRef]
- Ahmed, R.; Siqueira, P.; Hensley, S. A study of forest biomass estimates from lidar in the northern temperate forests of New England. Remote Sens. Environ. 2013, 130, 121–135. [Google Scholar] [CrossRef]
- Huang, W.; Sun, G.; Dubayah, R.; Cook, B.; Montesano, P.; Ni, W.; Zhang, Z. Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales. Remote Sens. Environ. 2013, 134, 319–332. [Google Scholar] [CrossRef]
- Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Gregoire, T.G.; Ståhl, G. Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data”. Remote Sens. Environ. 2013, 128, 299–314. [Google Scholar] [CrossRef]
- Ni-Meister, W.; Lee, S.; Strahler, A.H.; Woodcock, C.E.; Schaaf, C.; Yao, T.; Ranson, K.J.; Sun, G.; Blair, J.B. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J. Geophys. Res. 2010, 115. [Google Scholar]
- Popescu, S.C. Estimating biomass of individual pine trees using airborne lidar. Biomass. Bioenerg. 2007, 31, 646–655. [Google Scholar] [CrossRef]
- Zhao, K.; Popescu, S.; Nelson, R. Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. Remote Sens Environ. 2009, 113, 182–196. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based variable window size. Comput. Electron. Agrc. 2002, 37, 71–95. [Google Scholar] [CrossRef]
- Barraud, J. The use of watershed segmentation and GIS software for textural analysis of thin sections. J. Volcanol. Geoth. Res. 2006, 154, 17–33. [Google Scholar] [CrossRef]
- Andersen, H.-E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Scott, J.H.R.; Elizabeth, D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior. Res. Pap. RMRS-RP-29; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; p. 59. [Google Scholar]
- Pang, Y.; Li, Z.-Y. Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains, Northeastern of China. Chin. J. Plant Ecol. 2013, 36, 1095–1105. [Google Scholar] [CrossRef]
- He, Q.; Chen, E.; An, R.; Li, Y. Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest. Forests 2013, 4, 984–1002. [Google Scholar] [CrossRef]
- Tian, X.; Su, Z.; Chen, E.; Li, Z.; van der Tol, C.; Guo, J.; He, Q. Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area. Int. J. Appl. Earth Observ. Geoinf. 2012, 14, 160–168. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, Z.; Ma, M.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.; Yan, G.; et al. Watershed Allied Telemetry Experimental Research. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Cao, C.; Bao, Y.; Xu, M.; Chen, W.; Zhang, H.; He, Q.; Li, Z.; Guo, H.; Li, J.; Li, X.; et al. Retrieval of forest canopy attributes based on a geometric-optical model using airborne LiDAR and optical remote-sensing data. Int. J. Remote Sens. 2012, 33, 692–709. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ju, K.J.; Fu, H.E.; Chang, X.X.; He, H.Y. Study on biomass of water conservation forest on North Slope of Qilian Mountains. J. Fujian Coll. For. 1998, 18, 319–323. [Google Scholar]
- Qin, Y.; Li, B.; Niu, Z.; Huang, W.; Wang, C. Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform. China Ser. D 2010, 54, 625–630. [Google Scholar] [CrossRef]
- Vincent, L.; Soille, P. Watersheds on digital spaces-An efficient algorithm based on immersion simulations. IEEE Trans. Patt. Anal. 1991, 13, 583–598. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Chen, E.; Pang, Y.; Wu, H. Extracting height and crown of individual tree using airborne LIDAR data. J. Beijing For. Univ. 2008, 30, 83–89. [Google Scholar]
- Edson, C.; Wing, M.G. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements. Remote Sens. 2011, 3, 2494–2528. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Niu, Z.; Gao, S.; Qin, Y.C. Analyzing and retrieving structure information of Picea crassifolia based on airborne light detection and ranging data. J. Remote Sens. 2013, 6, 1612–1626. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, W.; Niu, Z.; Gao, S.; Huang, N.; Chen, H. Correlating the Horizontal and Vertical Distribution of LiDAR Point Clouds with Components of Biomass in a Picea crassifolia Forest. Forests 2014, 5, 1910-1930. https://doi.org/10.3390/f5081910
Li W, Niu Z, Gao S, Huang N, Chen H. Correlating the Horizontal and Vertical Distribution of LiDAR Point Clouds with Components of Biomass in a Picea crassifolia Forest. Forests. 2014; 5(8):1910-1930. https://doi.org/10.3390/f5081910
Chicago/Turabian StyleLi, Wang, Zheng Niu, Shuai Gao, Ni Huang, and Hanyue Chen. 2014. "Correlating the Horizontal and Vertical Distribution of LiDAR Point Clouds with Components of Biomass in a Picea crassifolia Forest" Forests 5, no. 8: 1910-1930. https://doi.org/10.3390/f5081910
APA StyleLi, W., Niu, Z., Gao, S., Huang, N., & Chen, H. (2014). Correlating the Horizontal and Vertical Distribution of LiDAR Point Clouds with Components of Biomass in a Picea crassifolia Forest. Forests, 5(8), 1910-1930. https://doi.org/10.3390/f5081910