Spatial Variations of Soil Moisture under Caragana korshinskii Kom. from Different Precipitation Zones: Field Based Analysis in the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Data Collection
Precipitation | Sample | Abbreviation in RDA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lng | Lat | P | T | Ele | SG | SA | SP | SC (kg·cm−2) | BD | FC | SHC | ||
Zones | points | (°) | (°) | (mm) | (°C) | (m) | (°) | (g·cm−3) | (%) | (mm·min−1) | |||
Semiarid-350 | KP1 | 109.8 | 39.9 | 351.8 | 7.9 | 1505 | 11 | South | Middle | 2.0 | 1.6 | 10.5 | 2.0 |
KP2 | 109.9 | 39.6 | 367.1 | 8.0 | 1254 | 10 | South | Downhill | 2.0 | 1.8 | 8.5 | 0.9 | |
KP3 | 110.2 | 37.5 | 401.8 | 10.1 | 927 | 5 | South | Hilltop | 1.6 | 1.3 | 22.5 | 1.1 | |
KP4 | 110.1 | 37.8 | 407.2 | 9.8 | 970 | 5 | South | Middle | 0.6 | 1.3 | 16.9 | 0.8 | |
KP5 | 110.3 | 37.6 | 408.2 | 10.1 | 941 | 32 | South | Upper | 1.8 | 1.2 | 21.9 | 1.6 | |
KP6 | 110.3 | 37.5 | 409.3 | 10.1 | 935 | 28 | South | Upper | 1.3 | 1.3 | 23.0 | 1.5 | |
KP7 | 110.5 | 39.0 | 409.9 | 8.6 | 1068 | 5 | South | Hilltop | 1.2 | 1.4 | 23.8 | 1.1 | |
Semiarid-410 | KP8 | 110.4 | 38.8 | 413.6 | 8.8 | 1259 | 5 | South | Hilltop | 1.9 | 1.5 | 24.2 | 0.6 |
KP9 | 110.4 | 38.8 | 416.0 | 8.8 | 1233 | 8 | North | Upper | 1.0 | 1.4 | 25.3 | 1.4 | |
KP10 | 110.3 | 37.8 | 417.6 | 9.8 | 1053 | 30 | West | Upper | 1.5 | 1.3 | 20.6 | 1.0 | |
KP11 | 110.6 | 38.8 | 420.3 | 8.7 | 1197 | 5 | South | Hilltop | 1.1 | 1.4 | 23.2 | 1.0 | |
KP12 | 110.7 | 38.8 | 421.7 | 8.7 | 1233 | 5 | South | Hilltop | 1.6 | 1.5 | 19.4 | 1.2 | |
KP13 | 109.3 | 36.9 | 465.8 | 10.2 | 1293 | 22 | South | Upper | 0.9 | 1.3 | 40.4 | 3.6 | |
Semiarid-470 | KP14 | 109.3 | 36.8 | 472.8 | 10.1 | 1383 | 5 | South | Hilltop | 1.0 | 1.2 | 25.5 | 2.0 |
KP15 | 109.9 | 36.8 | 478.7 | 10.6 | 1079 | 26 | South | Upper | 1.1 | 1.3 | 27.2 | 0.9 | |
KP16 | 109.3 | 36.8 | 479.1 | 10.2 | 1241 | 5 | South | Hilltop | 0.7 | 1.2 | 30.9 | 1.7 | |
KP17 | 109.4 | 36.7 | 490.1 | 10.3 | 1290 | 38 | South | Upper | 0.5 | 1.0 | 24.4 | 2.6 |
2.4. Statistical Methods
Gradient Analysis Methods | Axis 1 | Axis 2 | Axis 3 | Axis 4 | |
---|---|---|---|---|---|
DCA | Lengths of gradient | 1.6 | 0.9 | 0.7 | 0.4 |
RDA | Eigenvalues | 0.8 | 0.0 | 0.0 | 0.0 |
3. Results
3.1. Summary Statistics
Depth (m) | n | Mean (%) | Std. Deviation (%) | Minimum (%) | Maximum (%) | Kurtosis | Skewness | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|
0.0–0.1 | 17 | 9.1 | 5.1 | 3.4 | 17.5 | −1.4 | 0.6 | 0.6 |
0.1–0.2 | 17 | 8.5 | 3.9 | 3.5 | 16.1 | −0.6 | 0.9 | 0.5 |
0.2–0.3 | 17 | 8.9 | 3.8 | 3.6 | 16.1 | −0.6 | 0.7 | 0.4 |
0.3–0.4 | 17 | 8.4 | 3.6 | 3.7 | 15.1 | −0.9 | 0.6 | 0.4 |
0.4–0.5 | 17 | 8.6 | 4.0 | 3.7 | 15.9 | −0.7 | 0.7 | 0.5 |
0.5–0.6 | 17 | 8.4 | 4.1 | 3.9 | 15.4 | −0.8 | 0.7 | 0.5 |
0.6–0.7 | 17 | 8.5 | 4.1 | 4.0 | 16.2 | −0.7 | 0.8 | 0.5 |
0.7–0.8 | 17 | 8.6 | 4.1 | 3.9 | 16.0 | −0.6 | 0.8 | 0.5 |
0.8–0.9 | 17 | 8.4 | 4.0 | 3.8 | 15.9 | −0.6 | 0.8 | 0.5 |
0.9–1.0 | 16 | 8.4 | 4.0 | 3.6 | 15.8 | −0.6 | 0.7 | 0.5 |
1.0–1.2 | 16 | 8.6 | 4.2 | 3.8 | 16.9 | −0.6 | 0.7 | 0.5 |
1.2–1.4 | 16 | 8.4 | 4.1 | 3.6 | 15.9 | −0.8 | 0.7 | 0.5 |
1.4–1.6 | 16 | 8.2 | 4.2 | 3.6 | 15.9 | −0.9 | 0.6 | 0.5 |
1.6–1.8 | 16 | 8.1 | 4.4 | 3.0 | 15.6 | −1.2 | 0.5 | 0.5 |
1.8–2.0 | 16 | 8.1 | 4.8 | 3.0 | 16.6 | −0.8 | 0.8 | 0.6 |
2.0–2.2 | 15 | 7.6 | 4.7 | 2.7 | 15.0 | −1.0 | 0.8 | 0.6 |
2.2–2.4 | 15 | 7.3 | 4.6 | 2.7 | 17.0 | −0.1 | 1.1 | 0.6 |
2.4–2.6 | 15 | 7.0 | 4.6 | 2.8 | 16.9 | −0.2 | 1.1 | 0.7 |
2.6–2.8 | 15 | 6.6 | 4.2 | 2.9 | 15.1 | −0.2 | 1.2 | 0.6 |
2.8–3.0 | 15 | 6.4 | 4.0 | 2.5 | 13.8 | −0.4 | 1.1 | 0.6 |
3.0–3.2 | 15 | 6.2 | 3.5 | 2.7 | 13.7 | 0.2 | 1.2 | 0.6 |
3.2–3.4 | 15 | 6.0 | 3.4 | 2.7 | 13.3 | 0.6 | 1.3 | 0.6 |
3.4–3.6 | 15 | 5.9 | 3.4 | 2.8 | 13.1 | 1.0 | 1.4 | 0.6 |
3.6–3.8 | 15 | 5.7 | 3.1 | 2.5 | 13.3 | 2.0 | 1.7 | 0.6 |
3.8–4.0 | 15 | 5.2 | 2.6 | 2.7 | 12.3 | 4.0 | 2.1 | 0.5 |
4.0–4.2 | 15 | 4.9 | 2.2 | 2.7 | 11.6 | 6.2 | 2.3 | 0.4 |
4.2–4.4 | 15 | 4.7 | 1.6 | 3.0 | 9.1 | 3.8 | 1.8 | 0.3 |
4.4–4.6 | 15 | 4.5 | 1.0 | 2.6 | 6.3 | 0.0 | 0.5 | 0.2 |
4.6–4.8 | 15 | 4.6 | 1.0 | 2.8 | 6.3 | −0.2 | 0.2 | 0.2 |
4.8–5.0 | 15 | 4.6 | 1.0 | 2.6 | 6.2 | −0.3 | -0.2 | 0.2 |
3.2. Variation of SWS under Different Precipitation Zones
Precipitation Zone | n | Mean (mm) | SD (m) | Minimum (mm) | Maximum (mm) | K-S |
---|---|---|---|---|---|---|
Semiarid-350 | 7 | 388.5 | 0.1 | 296.5 | 517.7 | N(0.8) |
Semiarid-410 | 6 | 437.1 | 0.2 | 282.5 | 789.8 | N(0.8) |
Semiarid-470 | 4 | 630.3 | 0.6 | 427.7 | 770.2 | N(1.0) |
3.3. Variation of the Spatial-Averaged SMC under Different Precipitation Zones
3.4. RDA Ordination
Environmental Variables | Axis 1 | Axis 2 |
---|---|---|
Lng | 0.6 | 0.0 |
Lat | 0.8 | 0.0 |
P | −0.9 | −0.2 |
T | −0.7 | 0.0 |
SC | 0.6 | 0.4 |
BD | 0.7 | −0.1 |
FC | −0.8 | −0.0 |
SHC | −0.5 | 0.0 |
4. Discussion
4.1. Spatial Variation of SMC and Relationships between Precipitation, SMC and Vegetation
4.2. The Effects of Environmental Factors on the SMC
4.3. Implications on Vegetation Restoration under Climate Change
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lü, Y.H.; Ma, Z.M.; Zhang, L.W.; Fu, B.J.; Gao, G.Y. Redlines for the greening of China. Environ. Sci. Policy 2013, 33, 346–353. [Google Scholar] [CrossRef]
- Lü, Y.H.; Fu, B.J.; Feng, X.M.; Zeng, Y.; Liu, Y.; Chang, R.Y.; Sun, G.; Wu, B.F. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the loess plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China's loess plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, M.A.; Zhang, C.; Han, X.; Mao, T.; Jia, X. Choosing an optimal land-use pattern for restoring eco-environments in a semiarid region of the Chinese loess plateau. Ecol. Eng. 2015, 74, 213–222. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.; Wei, W.; Yu, Y.; Zhang, H. Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions. J. Hydrol. 2014, 513, 314–321. [Google Scholar] [CrossRef]
- Ferreira, J.N.; Bustamante, M.; Garcia-Montiel, D.C.; Caylor, K.K.; Davidson, E.A. Spatial variation in vegetation structure coupled to plant available water determined by two-dimensional soil resistivity profiling in a Brazilian savanna. Oecologia 2007, 153, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.L.; Fu, B.J.; Lü, Y.H.; Chang, R.Y.; Wang, S.; Wang, Y.F.; Su, C.H. The multi-scale spatial variance of soil moisture in the semi-arid loess plateau of China. J. Soils Sediments 2012, 12, 694–703. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, J.; Chen, L.D.; Qiu, Y. The effects of land use on soil moisture variation in the danangou catchment of the loess plateau, China. Catena 2003, 54, 197–213. [Google Scholar] [CrossRef]
- Montenegro, S.; Ragab, R. Impact of possible climate and land use changes in the semi arid regions: A case study from north eastern brazil. J. Hydrol. 2012, 434–435, 55–68. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.D.; Mo, B.R. Response of deep soil moisture to land use and afforestation in the semi-arid loess plateau, China. J. Hydrol. 2012, 475, 111–122. [Google Scholar] [CrossRef]
- Gao, X.; Wu, P.; Zhao, X.; Wang, J.; Shi, Y.; Zhang, B.; Tian, L.; Li, H. Estimation of spatial soil moisture averages in a large gully of the loess plateau of China through statistical and modeling solutions. J. Hydrol. 2013, 486, 466–478. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, X.; Guo, J.; Jia, G. Evaluating spatial-temporal dynamics of net primary productivity of different forest types in northeastern China based on improved forcchn. PLoS ONE 2012, 7, e48131. [Google Scholar] [CrossRef] [PubMed]
- Burt, T.P.; Butcher, D.P. Topographic controls of soil moisture distributions. J. Soil Sci. 1985, 36, 469–486. [Google Scholar] [CrossRef]
- Shi, Y.G.; Wu, P.T.; Zhao, X.N.; Li, H.C.; Wang, J.W.; Zhang, B.Q. Statistical analyses and controls of root-zone soil moisture in a large gully of the loess plateau. Environ. Earth Sci. 2013, 71, 4801–4809. [Google Scholar] [CrossRef]
- Hawley, M.E.; Jackson, T.J.; McCuen, R.H. Surface soil-moisture variation on small agricultural watersheds. J. Hydrol. 1983, 62, 179–200. [Google Scholar] [CrossRef]
- Ramos, M.C.; Mulligan, M. Spatial modelling of the impact of climate variability on the annual soil moisture regime in a mechanized mediterranean vineyard. J. Hydrol. 2005, 306, 287–301. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Shao, H.B. A preliminary investigation of the dynamic characteristics of dried soil layers on the loess plateau of China. J. Hydrol. 2010, 381, 9–17. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Liu, Z.P. Large-scale spatial variability of dried soil layers and related factors across the entire loess plateau of China. Geoderma 2010, 159, 99–108. [Google Scholar] [CrossRef]
- Daryanto, S.; Eldridge, D.J.; Wang, L. Spatial patterns of infiltration vary with disturbance in a shrub-encroached woodland. Geomorphology 2013, 194, 57–64. [Google Scholar] [CrossRef] [Green Version]
- He, X.L.; Zhao, L.L.; Yang, H.Y. Diversity and spatial distribution of arbuscular mycorrhizal fungi of caragana korshinskii in the loess plateau. Acta Ecol. Sin. 2006, 26, 3835–3840. [Google Scholar]
- Yang, X.M. Study on the characteristics of water environment in shrubbery of loess plateau. Arid Zone Res. 2001, 18, 8–13. [Google Scholar]
- Cheng, X.; Huang, M.; Shao, M.; Warrington, D.N. A comparison of fine root distribution and water consumption of mature caragana korshinkii kom grown in two soils in a semiarid region, China. Plant Soil 2008, 315, 149–161. [Google Scholar] [CrossRef]
- Chen, H.S.; Shao, M.A.; Li, Y.Y. Soil desiccation in the loess plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Tasumi, M.; Kimura, R. Estimation of volumetric soil water content over the liudaogou river basin of the loess plateau using the swest method with spatial and temporal variability. Agric. Water Manag. 2013, 118, 22–28. [Google Scholar] [CrossRef]
- Zhao, W.W.; Fu, B.J.; Qiu, Y. An upscaling method for cover-management factor and its application in the loess plateau of China. Int. J. Environ. Res. Public Health 2013, 10, 4752–4766. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Kamichika, M.; Takayama, N.; Matsuoka, N.; Zhang, X. Heat balance and soil moisture in the loess plateau, China. J. Agric. Meteorol. 2004, 60, 103–113. [Google Scholar] [CrossRef]
- Zhao, W.W.; Fu, B.J.; Chen, L.D. A comparison between soil loss evaluation index and the c-factor of rusle: A case study in the loess plateau of China. Hydrol. Earth Syst. Sci. 2012, 16, 2739–2748. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Zhu, Y.J.; Liu, Z.P. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the loess plateau of China. Agric. For. Meteorol. 2011, 151, 437–448. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Li, W.; Wang, Q.J.; Wei, S.P.; Shao, M.A.; Yi, L. Soil desiccation for loess soils on natural and regrown areas. For. Ecol. Manag. 2008, 255, 2467–2477. [Google Scholar]
- Hill, M.O.; Gauch, H.G. Detrended correspondence analysis: An improved ordination technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Zhu, H.D.; Shi, Z.H.; Fang, N.F.; Wu, G.L.; Guo, Z.L.; Zhang, Y. Soil moisture response to environmental factors following precipitation events in a small catchment. Catena 2014, 120, 73–80. [Google Scholar] [CrossRef]
- Penna, D.; Borga, M.; Norbiato, D.; Fontana, G.D. Hillslope scale soil moisture variability in a steep alpine terrain. J. Hydrol. 2009, 364, 311–327. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.A.; Han, F.P.; Reichardt, K. Spatio-temporal variability behavior of land surface soil water content in shrub- and grass-land. Geoderma 2011, 162, 260–272. [Google Scholar] [CrossRef]
- Gao, X.D.; Wu, P.T.; Zhao, X.N.; Shi, Y.G.; Wang, J.W.; Zhang, B.Q. Soil moisture variability along transects over a well-developed gully in the loess plateau, China. Catena 2011, 87, 357–367. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Liu, B.Y.; Liu, G.; Zhang, Y.X. Soil water depletion depth by planted vegetation on the loess plateau. Sci. China Ser. D Earth Sci. 2009, 52, 835–842. [Google Scholar] [CrossRef]
- Jian, S.; Zhao, C.; Fang, S.; Yu, K. Effects of different vegetation restoration on soil water storage and water balance in the Chinese loess plateau. Agric. For. Meteorol. 2015, 206, 85–96. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Liu, Z.P.; Zhang, C.C. Characteristics of dried soil layers under apple orchards of different ages and their applications in soil water managements on the loess plateau of China. Pedosphere 2015, 25, 546–554. [Google Scholar] [CrossRef]
- Li, Y.S. The properties of water cycle in soil and their effect on water cycle for land in the loess plateau. Acta Ecol. Sinica 1983, 3, 91–101. [Google Scholar]
- Hou, Q.C.; Han, R.L.; Li, H.P. On problems of vegetation reconstruction in Yan'an experimental area: III significance of native trees in plantation. Res. Soil Water Conserv. 2000, 7, 119–123. [Google Scholar]
- Yan, W.M.; Deng, L.; Zhong, Y.Q.W.; Shangguan, Z.P. The characters of dry soil layer on the loess plateau in China and their influencing factors. PLoS ONE 2015, 10, e0134902. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, Z.P. Soil desiccation occurrence and its impact on forest vegetation in the loess plateau of China. Int. J. Sustain. Dev. World Ecol. 2007, 14, 299–306. [Google Scholar] [CrossRef]
- Mendham, D.S.; White, D.A.; Battaglia, M.; McGrath, J.F.; Short, T.M.; Ogden, G.N.; Kinal, J. Soil water depletion and replenishment during first- and early second-rotation eucalyptus globulus plantations with deep soil profiles. Agric. For. Meteorol. 2011, 151, 1568–1579. [Google Scholar] [CrossRef]
- Yang, W.Z.; Shao, M.A. Study on Soil Water on the Loess Plateau of China; Science Press: Beijing, China, 2000. [Google Scholar]
- Shu, W.H.; Jiang, Q.; Wang, Z.J.; He, J.L. The temporal and spatial changes of soil moisture in different density of caragana korshinskii in sandy land of Yanchi, Ningxia. J. Arid Land Resour. Environ. 2012, 26, 172–176. [Google Scholar]
- He, Q.H.; He, Y.H.; Bao, W.K. Research on dynamics of soil moisture in arid and semiarid mountainous areas. J. Mt. Sci. 2003, 21, 149–156. [Google Scholar]
- Dos Santos, T.E.M.; Montenegro, A.A.A.; Silva, D.D. Soil moisture in pernambuco semiarid using time domain reflectometry (tdr). Revista Brasileira de Engenharia Agricola e Ambiental 2011, 15, 670–679. [Google Scholar]
- Chen, L.D.; Wang, J.P.; Wei, W.; Fu, B.J.; Wu, D.P. Effects of landscape restoration on soil water storage and water use in the loess plateau region, China. For. Ecol. Manag. 2010, 259, 1291–1298. [Google Scholar] [CrossRef]
- Lü, Y.H.; Feng, X.M.; Chen, L.D.; Fu, B.J. Scaling effects of landscape metrics: A comparison of two methods. Phys. Goegr. 2013, 34, 4–49. [Google Scholar]
- Lü, Y.H.; Fu, B.J.; Wei, W.; Yu, X.B.; Sun, R.H. Major ecosystems in China: Dynamics and challenges for sustainable management. Environ. Manag. 2011, 48, 13. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, W.; Wang, L.; Zhang, X.; Daryanto, S.; Fang, X. Spatial Variations of Soil Moisture under Caragana korshinskii Kom. from Different Precipitation Zones: Field Based Analysis in the Loess Plateau, China. Forests 2016, 7, 31. https://doi.org/10.3390/f7020031
Liu Y, Zhao W, Wang L, Zhang X, Daryanto S, Fang X. Spatial Variations of Soil Moisture under Caragana korshinskii Kom. from Different Precipitation Zones: Field Based Analysis in the Loess Plateau, China. Forests. 2016; 7(2):31. https://doi.org/10.3390/f7020031
Chicago/Turabian StyleLiu, Yuanxin, Wenwu Zhao, Lixin Wang, Xiao Zhang, Stefani Daryanto, and Xuening Fang. 2016. "Spatial Variations of Soil Moisture under Caragana korshinskii Kom. from Different Precipitation Zones: Field Based Analysis in the Loess Plateau, China" Forests 7, no. 2: 31. https://doi.org/10.3390/f7020031
APA StyleLiu, Y., Zhao, W., Wang, L., Zhang, X., Daryanto, S., & Fang, X. (2016). Spatial Variations of Soil Moisture under Caragana korshinskii Kom. from Different Precipitation Zones: Field Based Analysis in the Loess Plateau, China. Forests, 7(2), 31. https://doi.org/10.3390/f7020031