Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Tree Biomass Data
2.2.1. Selection of Sample Trees
2.2.2. Biomass of Aboveground Tree Components
Statistics | Tree Variables | Biomass of Different Aboveground Tree Components (kg) | ||||||
---|---|---|---|---|---|---|---|---|
DBH (cm) | H (m) | CW (m) | Stem Wood | Bark | Branches | Foliage | Aboveground Tree | |
Mean | 16.4 | 14.1 | 5.0 | 107.0 | 22.5 | 40.8 | 10.9 | 181.1 |
Min. | 1.7 | 2.6 | 0.4 | 0.1 | 0.0 | 0.0 | 0.1 | 0.3 |
Max. | 38.6 | 27.6 | 13.0 | 591.0 | 113.9 | 245.9 | 60.0 | 921.7 |
S.D. | 11.7 | 7.6 | 3.2 | 154.3 | 30.9 | 58.0 | 14.5 | 254.7 |
2.3. Independent Biomass Equations Development
2.4. Nonlinear Error-in-Variable Model
2.5. Compatible Biomass Equations Establishment
2.6. Additive Biomass Equations Construction
2.7. Heteroscedasticity Correction
2.8. Model Evaluation
3. Results
3.1. Sample Tree Characterization
3.2. Independent Biomass Equations
Components | Models | Parameters (p < 0.05) | Goodness-of-Fit Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|
β0 | β1 | β2 | β3 | R2 | SEE (kg) | TRE (%) | MPE (%) | ||
M0 | One-variable | 0.053 | 2.637 | / | / | 0.976 | 41.2 | 1.5 | 5.0 |
Two-variable | 0.024 | 2.429 | 0.490 | / | 0.986 | 31.0 | −0.0 | 3.7 | |
Three-variable | 0.021 | 2.480 | 0.521 | −0.064 | 0.987 | 30.6 | 0.0 | 3.7 | |
M1 | One-variable | 0.022 | 2.752 | / | / | 0.964 | 31.6 | 0.6 | 6.2 |
Two-variable | 0.008 | 2.363 | 0.743 | / | 0.979 | 24.0 | 0.0 | 4.7 | |
Three-variable | 0.006 | 2.490 | 0.784 | −0.128 | 0.981 | 23.2 | 0.0 | 4.6 | |
M2 | One-variable | 0.007 | 2.611 | / | / | 0.914 | 9.0 | −0.3 | 9.0 |
Two-variable | 0.004 | 2.060 | 0.775 | / | 0.942 | 7.4 | 1.8 | 7.4 | |
Three-variable | 0.004 | 2.110 | 0.766 | −0.054 | 0.942 | 7.5 | 1.9 | 7.5 | |
M3 | One-variable | 0.007 | 2.784 | / | / | 0.961 | 10.9 | −0.5 | 6.3 |
Two-variable | 0.011 | 3.159 | −0.569 | / | 0.950 | 12.4 | −0.7 | 7.1 | |
Three-variable | 0.010 | 3.170 | −0.505 | −0.079 | 0.952 | 12.2 | −0.4 | 7.0 | |
M4 | One-variable | 0.017 | 2.133 | / | / | 0.905 | 4.5 | 0.3 | 9.2 |
Two-variable | 0.024 | 2.407 | −0.402 | / | 0.900 | 4.7 | 0.1 | 9.6 | |
Three-variable | 0.030 | 2.147 | −0.406 | 0.302 | 0.902 | 4.6 | 0.2 | 9.5 |
3.3. Compatible Biomass Equations
Models | Volume Parameters | Biomass Parameters | Conversion Functions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
α0 | α1 | α2 | β0 | β1 | β2 | β3 | γ0 | γ1 | γ2 | γ3 | |
One-variable | 0.141 | 2.473 | / | 0.052 | 2.642 | / | / | 0.369 | 0.169 | / | / |
Two-variable | 0.055 | 2.004 | 0.823 | 0.024 | 2.422 | 0.499 | / | 0.434 | 0.418 | −0.324 | / |
Three-variable | / | / | / | 0.022 | 2.430 | 0.529 | −0.020 | 0.408 | 0.429 | −0.302 | −0.020 |
Models | Tree Volume | Aboveground Biomass | ||||||
---|---|---|---|---|---|---|---|---|
R2 | SEE (m3) | TRE (%) | MPE (%) | R2 | SEE (kg) | TRE (%) | MPE (%) | |
One-variable | 0.974 | 0.06 | 0.6 | 4.8 | 0.976 | 41.0 | 1.3 | 4.9 |
Two-variable | 0.991 | 0.04 | 0.0 | 2.9 | 0.986 | 30.9 | 0.0 | 3.7 |
Three-variable | / | / | / | / | 0.987 | 30.6 | 0.0 | 3.7 |
3.4. Additive Biomass Equations
Components | Models | Branches or Foliage System | Stem Wood or Bark System | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | SEE (kg) | TRE (%) | MPE (%) | R2 | SEE (kg) | TRE (%) | MPE (%) | ||
M1 | One-variable | 0.961 | 32.6 | 1.9 | 6.4 | 0.961 | 32.6 | 1.9 | 6.4 |
Two-variable | 0.979 | 24.2 | 0.0 | 4.8 | 0.978 | 24.6 | −0.0 | 4.9 | |
Three-variable | 0.980 | 23.8 | 0.0 | 4.7 | 0.979 | 24.2 | 0.0 | 4.8 | |
M2 | One-variable | 0.917 | 8.8 | 0.7 | 8.8 | 0.917 | 8.8 | 0.7 | 8.8 |
Two-variable | 0.945 | 7.3 | 0.6 | 7.3 | 0.946 | 7.2 | 0.6 | 7.2 | |
Three-variable | 0.944 | 7.4 | 0.1 | 7.4 | 0.945 | 7.3 | 0.1 | 7.3 | |
M3 | One-variable | 0.962 | 10.8 | 0.2 | 6.2 | 0.962 | 10.8 | 0.2 | 6.2 |
Two-variable | 0.956 | 11.7 | −0.4 | 6.7 | 0.956 | 11.6 | −0.4 | 6.7 | |
Three-variable | 0.957 | 11.6 | −0.0 | 6.7 | 0.958 | 11.5 | −0.0 | 6.6 | |
M4 | One-variable | 0.903 | 4.5 | 0.2 | 9.3 | 0.903 | 4.5 | 0.2 | 9.3 |
Two-variable | 0.903 | 4.6 | 0.0 | 9.4 | 0.910 | 4.4 | 0.5 | 9.0 | |
Three-variable | 0.903 | 4.6 | 0.0 | 9.4 | 0.909 | 4.5 | 0.1 | 9.1 |
Models | f0(x) | gi(x) | Parameters (p < 0.05) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a1 | b1 | c1 | d1 | a2 | b2 | c2 | d2 | a3 | b3 | c3 | d3 | |||
One-variable | (11) | (14) | 3.434 | −0.054 | / | / | 1.118 | −0.198 | / | / | 2.484 | −0.647 | / | / |
Two-variable | (12) | (15) | 0.970 | −0.715 | 1.136 | / | 0.432 | −1.061 | 1.246 | / | 1.778 | −0.549 | / | / |
Three-variable | (13) | (16) | 0.837 | −0.667 | 1.133 | / | 0.437 | −1.016 | 1.194 | / | 1.761 | −0.545 | / | / |
Components | Models | R2 Ratio | SEE Ratio | TRE Ratio | MPE Ratio |
---|---|---|---|---|---|
M0 | One-variable | 1.000 | 0.995 | 0.859 | 0.995 |
Two-variable | 1.000 | 0.997 | 0.203 | 0.997 | |
Three-variable | 1.000 | 1.000 | 0.033 | 1.000 | |
M1 | One-variable | 0.998 | 1.032 | 2.902 | 1.032 |
Two-variable | 1.000 | 1.005 | 0.125 | 1.005 | |
Three-variable | 0.999 | 1.025 | 0.141 | 1.025 | |
M2 | One-variable | 1.003 | 0.982 | 2.310 | 0.982 |
Two-variable | 1.002 | 0.980 | 0.304 | 0.980 | |
Three-variable | 1.003 | 0.979 | 0.027 | 0.979 | |
M3 | One-variable | 1.001 | 0.989 | 0.346 | 0.989 |
Two-variable | 1.006 | 0.946 | 0.561 | 0.946 | |
Three-variable | 1.005 | 0.948 | 0.024 | 0.948 | |
M4 | One-variable | 0.998 | 1.011 | 0.916 | 1.011 |
Two-variable | 1.005 | 0.979 | 0.166 | 0.979 | |
Three-variable | 1.002 | 0.992 | 0.003 | 0.992 |
4. Discussion
4.1. Biomass Allocation
4.2. Independent Biomass Equations at Tree Level
4.3. Biomass Additivity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.S.; Tang, S.Z. Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China. J. For. Res. 2012, 23, 593–598. [Google Scholar] [CrossRef]
- Xiao, C.W.; Ceulemans, R. Allometric relationships for below- and aboveground biomass of young Scots pines. For. Ecol. Manag. 2004, 203, 177–186. [Google Scholar] [CrossRef]
- Repola, J. Biomass equations for Birch in Finland. Silva Fenn. 2008, 42, 605–624. [Google Scholar] [CrossRef]
- Rutishauser, E.; Noor’an, F.; Laumonier, Y.; Halperin, J.; Hergoualch, K.; Verchot, L. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For. Ecol. Manag. 2013, 307, 219–225. [Google Scholar] [CrossRef]
- Enquist, B.J.; Niklas, K.J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 2002, 295, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de Las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodríguez, L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- Basuki, T.M.; van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Cervera, M.T.; Storme, V.; Ivens, B.; Gusmao, J.; Liu, B.H.; Hostyn, V.; Slycken, J.V.; Montagu, M.V.; Boerjan, W. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 2001, 158, 787–809. [Google Scholar] [PubMed]
- Liang, W.J.; Hu, H.Q.; Liu, F.J.; Zhang, D.M. Research advance of biomass and carbon storage of poplar in China. J. For. 2006, 17, 75–79. [Google Scholar] [CrossRef]
- Liu, W.G.; Zhang, X.D.; Huang, L.L.; Liu, L.; Zhang, P. Research progress on physiologic and ecologic characteristics of poplar. World For. Res. 2010, 23, 50–55. [Google Scholar]
- Zhu, C.Q.; Liu, X.D.; Zhang, Q.; Lei, J.P.; Wang, S.J. The biomass of intensive and extensive cultured Poplar plantation. J. Northeast For. Univ. 1997, 25, 53–56. [Google Scholar]
- Tang, L.Z.; Haibara, K.; Huang, B.L.; Toda, H.; Yang, W.Z.; Arai, T. Storage and dynamics of carbon in a poplar plantation in Lixiahe region, Jiangsu province. J. Nanjing For. Univ. 2004, 28, 1–6. [Google Scholar]
- Li, J.H.; Li, C.J.; Peng, S.K. Study on the biomass expansion factor of poplar plantation. J. Nanjing For. Univ. 2007, 31, 37–40. [Google Scholar]
- Wu, Z.M.; Sun, Q.X.; Chen, M.G. Biomass and nutrient accumulation of poplar plantation on beach land in Yangtse River in Anhui province. Chin. J. Appl. Ecol. 2001, 12, 806–810. [Google Scholar]
- Liu, S.Q.; Jia, L.M.; Yang, J.; Xin, J.H. Estimation of carbon storage of regional poplar plantations based on Landsat thematic mapper image in Heze of Shandong Province, eastern China. J. Beijing For. Univ. 2013, 35, 36–41. [Google Scholar]
- Bi, H.Q.; Turner, J.; Lambert, M.J. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 2004, 18, 467–479. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Montero, G.; Rio, M.D. Biomass models to estimate carbon stocks for hardwood tree species. For. Syst. 2012, 21, 42–52. [Google Scholar] [CrossRef]
- Bi, H.Q.; Birk, E.; Turner, J.; Lambert, M.; Jurskis, V. Converting stem volume to biomass with additivity, bias correction, and confidence bands for two Australian tree species. N. Z. J. For. Sci. 2001, 31, 298–319. [Google Scholar]
- China’s National Standard (GB/T 17296-2009). In Classification and Codes for Chinese Soil; Standards Press of China: Beijing, China, 2009.
- Wagner, R.G.; Ter-Mikaelian, M.T. Comparison of biomass component equations for four species of northern coniferous tree seedlings. Ann. For. Sci. 1999, 56, 193–199. [Google Scholar] [CrossRef]
- Zianis, D.; Mencuccini, M. On simplifying allometric analyses of forest biomass. For. Ecol. Manag. 2004, 187, 311–332. [Google Scholar] [CrossRef]
- Zou, W.T.; Zeng, W.S.; Zhang, L.J.; Zeng, M. Modeling crown biomass for four pine species in China. Forests 2015, 6, 433–449. [Google Scholar] [CrossRef]
- Wang, Y.H.; Huang, S.M.; Yang, R.C.; Tang, S.Z. Error-in-variable method to estimate parameters for reciprocal base-age invariant site index models. Can. J. For. Res. 2004, 34, 1929–1937. [Google Scholar] [CrossRef]
- Zhang, W.H.; Ke, Y.H.; Quackenbush, L.J.; Zhang, L.J. Using error-in-variable regression to predict tree diameter and crown width from remotely sensed imagery. Can. J. For. Res. 2010, 40, 1095–1108. [Google Scholar] [CrossRef]
- Tang, S.Z.; Li, Y.; Wang, Y.H. Simultaeous equations, error-in-variable models, and model integration in systems ecology. Ecol. Model. 2001, 142, 285–294. [Google Scholar] [CrossRef]
- Tang, S.Z.; Lang, K.J.; Li, H.K. Statistics and Computation of Biomathematical Models (ForStat Course); Science Press: Beijing, China, 2008. [Google Scholar]
- Zeng, W.S.; Tang, S.Z. Using measurement error modeling method to establish compatible single-tree biomass equations system. For. Res. 2010, 23, 797–802. [Google Scholar]
- Mate, R.; Johansson, T.; Sitoe, A. Biomass equations for tropical forest tree species in Mozambique. Forests 2014, 5, 535–556. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Gómez-García, E.; Diéguez-Aranda, U.; Barrio-Anta, M.; Crecente-Campo, F. Aboveground stand-level biomass estimation: A comparison of two methods for major forest species in northwest Spain. Ann. For. Sci. 2012, 69, 735–746. [Google Scholar] [CrossRef]
- Kozak, A.; Kozak, R. Does cross validation provide additional information in the evaluation of regression models? Can. J. For. Res. 2003, 33, 976–987. [Google Scholar] [CrossRef]
- Ding, Y. Biomass and Carbon Storage in Poplar Plantations in the North of Jiangsu Province; Nanjing Forestry University: Nanjing, China, 2008. [Google Scholar]
- Sun, D.; Ding, Y.X.; Jiang, S.R.; Li, Q.S. The vertica biomass structure of poplar clones in the protection forest network for farmland in xinyi city. J. Jiangsu For. Sci. Technol. 1995, 22, 4–6. [Google Scholar]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Yamakura, T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.P.; Parresol, B.R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 2003, 179, 269–276. [Google Scholar] [CrossRef]
- Dong, L.H.; Zhang, L.J.; Li, F.R. Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees 2015, 29, 1–15. [Google Scholar] [CrossRef]
- Zheng, C.H.; Mason, E.G.; Jia, L.M.; Wei, S.P.; Sun, C.W.; Duan, J. A single-tree additive biomass model of Quercus variabilis Blume forests in North China. Trees 2015, 29, 705–716. [Google Scholar] [CrossRef]
- Ma, W.; Lei, X.D. Nonlinear simultaneous equations for individual-tree diameter growth and mortality model of natural mongolian oak forests in northeast China. Forests 2015, 6, 2261–2280. [Google Scholar] [CrossRef]
- Liu, Q.G.; Peng, D.L.; Huang, G.S.; Zeng, W.S.; Wang, X.J. Compatible standing tree volume and above-ground biomass equations for spruce (Picea asperata) in northeastern China. J. Beijing For. Univ. 2015, 37, 8–15. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Peng, D.-L.; Huang, G.-S.; Zeng, W.-S. Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China. Forests 2016, 7, 32. https://doi.org/10.3390/f7020032
Zhang C, Peng D-L, Huang G-S, Zeng W-S. Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China. Forests. 2016; 7(2):32. https://doi.org/10.3390/f7020032
Chicago/Turabian StyleZhang, Chao, Dao-Li Peng, Guo-Sheng Huang, and Wei-Sheng Zeng. 2016. "Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China" Forests 7, no. 2: 32. https://doi.org/10.3390/f7020032
APA StyleZhang, C., Peng, D. -L., Huang, G. -S., & Zeng, W. -S. (2016). Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China. Forests, 7(2), 32. https://doi.org/10.3390/f7020032