Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Watershed Description and Geographic Information for Non-Forested Stream Length on Farmland
Watershed | Watershed Area (ha) | Annual Crops | Perennial Crops and Pastures | Total Cultivated Area | |||
---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ||
Magog River | 77,076 | 681 | 1 | 2433 | 3 | 3114 | 4 |
Eaton River | 64,787 | 2148 | 3 | 6403 | 10 | 8551 | 13 |
Pike River | 55,500 | 17,376 | 31 | 8757 | 16 | 26,133 | 47 |
Watershed | Perennial stream length | Intermittent stream length | Total stream length | ||||||
---|---|---|---|---|---|---|---|---|---|
Watershed (km) | Agricultural (km) | Agricultural (%) | Watershed (km) | Agricultural (km) | Agricultural (%) | Watershed (km) | Agricultural (km) | Agricultural (%) | |
Magog River | 373 | 50 | 13 | 435 | 64 | 15 | 808 | 115 | 14 |
Eaton River | 469 | 64 | 14 | 610 | 118 | 19 | 1080 | 183 | 17 |
Pike River | 238 | 103 | 43 | 551 | 336 | 61 | 790 | 439 | 56 |
2.2. Ecosystem Service Provision Related to Increasing Poplar Riparian Agroforestry
2.2.1. Unit Conversion, Timeframe, Agroforestry Model Implemented and Assumptions Related to Site Fertility
2.2.2. Wood and Woody Biomass Production
2.2.3. Increase in Carbon, Nitrogen and Phosphorus Storage in Plant Biomass
2.2.4. Energy for Heating Farmhouses
For new houses: (80 GJ/house/year)/(16.79 GJ/t × 0.606 ) = 7.86 t/house/year
For old houses: (110 GJ/house/year)/(16.79 GJ/t × 0.606 ) = 10.81 t/house/year
Wood Heating System | Lower Efficiency (%) | Upper Efficiency (%) | Mean Efficiency (%) |
---|---|---|---|
Furnaces/boilers | 45 | 55 | 50 |
Advanced furnaces/boilers | 55 | 65 | 60 |
Conventional stoves | 50 | 65 | 57.5 |
Advanced stoves | 65 | 85 | 75 |
All systems | 60.6 |
2.2.5. Energy for Heating Greenhouses and Potential for Fossil Fuel Displacement
2.2.6. Forest Conservation Opportunities
Region | Watershed | Forest Volume Yield (m3/ha/year) | Mean Green Specific Gravity (t/m3) | Natural Forest Stem Wood Biomass Yield (t/ha/year) | Hybrid Poplar Stem Wood Biomass Yield (t/ha/year) |
---|---|---|---|---|---|
Estrie | Magog River | 3.20 | 0.45 | 1.44 | 4.2 |
Eaton River | 3.20 | 0.45 | 1.44 | 9.8 | |
Montérégie | Pike River | 2.86 | 0.48 | 1.37 | 15.8 |
2.3. Riparian Agroforestry Scenarios
Parameters and Conditions | Assumptions |
---|---|
General | |
Vegetation cover in non-forested agricultural riparian buffers | Non-managed herbaceous vegetation |
Available land for tree buffer establishment | Along all non-forested perennial and intermittent stream sections located in agricultural areas |
Time frame | 9 years after hybrid poplar buffer establishment |
Riparian agroforestry system implemented | |
Multi-clonal hybrid poplar buffer | 3 poplar clones with different parentages (D × N, DN × M, M × B) |
Buffer width | 4.5 m on each streambank (3 three rows wide, 1.5 m spacing between rows) |
Tree density | 2222 stems/ha |
Rotation length | 9 years |
Harvest type | Clear-cutting |
Wood and biomass production | |
Hybrid poplar productivity in riparian buffers | Remains constant across each watershed, but varies between watersheds |
Whole tree biomass yield (stems + branches) | 5.7–21.4 t/ha/year (depending on the watershed) |
Stem wood biomass yield | 4.2–15.8 t/ha/year (depending on the watershed) |
C, N and P storage | |
Biomass C, N and P storage | C, N and P stocks in all biomass components of poplar buffers minus C, N and P stocks in all biomass components of non-managed herbaceous buffers |
Soil C storage | No change related to poplar buffer establishment |
Energy for heating farmhouses | |
Average size of houses | 186 m2 (2000 ft2) |
Heating energy requirements | 110 GJ/house/year for houses built before 1990 (Old houses) |
80 GJ/house/year for houses built after 1990 (New houses) | |
Heating system efficiency | 60.6% |
Type of biomass | Hybrid poplar wood logs (stem biomass only) |
Hybrid poplar lower heating value | 16.79 GJ/t |
Moisture content of poplar wood | 20% |
Energy for heating greenhouses and fossil fuel displacement | |
Biomass requirement for heating GH | 1295 t/ha/year (dry) |
Type of biomass | Wood chips from hybrid poplar (stem + branch biomass) |
Fuel oil requirements | 500 000 l/ha of GH/year |
Forest conservation opportunities | |
Type of biomass harvested in farm woodlots | Stem wood (wood logs) |
Stem wood biomass yield of natural private forestland | 1.37-1.44 t/ha/year (depending on the watershed) |
Characteristics of biomass harvested in farm woodlots | Same energy and moisture content as hybrid poplar biomass |
3. Results and Discussion
3.1. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services at the Watershed Scale
Watershed (Paired Site/Fertility Class) 1 | Buffer Area (ha/km) | Wood Volume (m3/km) 2 | Biomass (t/km) 2 | Biomass Storage Increase | Home Heating (Houses/km) 3,4 | Greenhouse 3,4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Woody | Stem | C (t/km) | N (t/km) | P (t/km) | New | Old | Heating (ha/km) | Fuel Oil Displaced (L/km) | Forest Conservation (ha/km) | |||
Magog River (Magog/low) | 0.9 | 104 | 46 | 34 | 26.1 | 0.26 | 0.03 | 0.48 | 0.35 | 0.004 | 17,795 | 2.6 |
Eaton River (St-Isidore/moderate) | 0.9 | 249 | 108 | 80 | 56.6 | 0.57 | 0.05 | 1.12 | 0.82 | 0.009 | 41,600 | 6.1 |
Pike River (Brompton/high) | 0.9 | 405 | 173 | 128 | 96.0 | 1.01 | 0.13 | 1.81 | 1.31 | 0.015 | 66,985 | 10.4 |
Buffer Scenarios | Watershed and Stream Type | Stream Length (km) | Buffer Area (ha) | Wood Volume (m3) | Woody Biomass (t) | Biomass Storage Increase | Houses Heated 1 | Greenhouses 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Whole Tree | Stem Wood | C (t) | N (t) | P(t) | New | Old | Heat Energy (ha GH) | Fuel Oil Displaced (L) | Forest Conservation (ha) | |||||
100% | Perennial | |||||||||||||
Magog River | 50 | 45 | 5221 | 2312 | 1702 | 1307 | 13 | 1.3 | 24 | 18 | 0.20 | 892,761 | 131 | |
Eaton River | 64 | 58 | 15,998 | 6923 | 5112 | 3636 | 36 | 3.0 | 72 | 53 | 0.59 | 2,672,804 | 394 | |
Pike River | 103 | 93 | 41,720 | 17,890 | 13,188 | 9898 | 104 | 13.1 | 186 | 136 | 1.54 | 6,907,519 | 1070 | |
Intermittent | ||||||||||||||
Magog River | 64 | 58 | 6701 | 2968 | 2185 | 1677 | 16 | 1.7 | 31 | 22 | 0.25 | 1,145,802 | 169 | |
Eaton River | 118 | 106 | 29,453 | 12,745 | 9411 | 6694 | 67 | 5.5 | 133 | 97 | 1.09 | 4,920,871 | 726 | |
Pike River | 336 | 302 | 135,862 | 58,260 | 42,947 | 32,233 | 338 | 42.5 | 607 | 442 | 5.00 | 22,494,317 | 3483 | |
All streams | ||||||||||||||
Magog River | 115 | 103 | 11,921 | 5280 | 3887 | 2984 | 29 | 3.0 | 55 | 40 | 0.45 | 2,038,563 | 300 | |
Eaton River | 183 | 164 | 45 ,451 | 19,668 | 14,523 | 10,330 | 103 | 8.6 | 205 | 149 | 1.69 | 7,593,675 | 1121 | |
Pike River | 439 | 395 | 177,582 | 76,151 | 56,135 | 42,132 | 442 | 55.6 | 794 | 577 | 6.53 | 29,401,836 | 4553 | |
25% | Perennial | |||||||||||||
Magog River | 13 | 11.3 | 1305 | 578 | 426 | 327 | 3.2 | 0.3 | 6 | 4 | 0.05 | 223,190 | 33 | |
Eaton River | 16 | 14.5 | 3999 | 1731 | 1278 | 909 | 9.1 | 0.8 | 18 | 13 | 0.15 | 668,201 | 99 | |
Pike River | 26 | 23.2 | 10,430 | 4473 | 3297 | 2475 | 26.0 | 3.3 | 47 | 34 | 0.38 | 1,726,880 | 267 | |
Intermittent | ||||||||||||||
Magog River | 16 | 14.5 | 1675 | 742 | 546 | 419 | 4.1 | 0.4 | 8 | 6 | 0.06 | 286,450 | 42 | |
Eaton River | 30 | 26.6 | 7363 | 3186 | 2353 | 1674 | 16.7 | 1.4 | 33 | 24 | 0.27 | 1,230,218 | 182 | |
Pike River | 84 | 75.6 | 33,965 | 14565 | 10,737 | 8058 | 84.6 | 10.6 | 152 | 110 | 1.25 | 5,623,579 | 871 | |
All streams | ||||||||||||||
Magog River | 29 | 25.8 | 2980 | 1320 | 972 | 746 | 7 | 0.8 | 14 | 10 | 0.11 | 509,641 | 75 | |
Eaton River | 46 | 41.1 | 11,363 | 4917 | 3631 | 2582 | 26 | 2.1 | 51 | 37 | 0.42 | 1,898,419 | 280 | |
Pike River | 110 | 98.8 | 44,395 | 19,038 | 14,034 | 10,533 | 111 | 13.9 | 198 | 144 | 1.63 | 7,350,459 | 1138 | |
10% | Perennial | |||||||||||||
Magog River | 5 | 4.5 | 522 | 231 | 170 | 131 | 1.3 | 0.13 | 2.4 | 1.8 | 0.02 | 89,276 | 13 | |
Eaton River | 6 | 5.8 | 1600 | 692 | 511 | 364 | 3.6 | 0.30 | 7.2 | 5.3 | 0.06 | 267,280 | 39 | |
Pike River | 10 | 9.3 | 4172 | 1789 | 1319 | 990 | 10.4 | 1.31 | 18.6 | 13.6 | 0.15 | 690,752 | 107 | |
Intermittent | ||||||||||||||
Magog River | 6 | 5.8 | 670 | 297 | 218 | 168 | 1.6 | 0.17 | 3.1 | 2.2 | 0.03 | 114,580 | 17 | |
Eaton River | 12 | 10.6 | 2945 | 1275 | 941 | 669 | 6.7 | 0.55 | 13.3 | 9.7 | 0.11 | 492,087 | 73 | |
Pike River | 34 | 30.2 | 13,586 | 5826 | 4295 | 3223 | 33.8 | 4.25 | 60.7 | 44.2 | 0.50 | 2,249,432 | 348 | |
All streams | ||||||||||||||
Magog River | 11 | 10.3 | 1192 | 528 | 389 | 298 | 2.9 | 0.30 | 5.5 | 4.0 | 0.05 | 203,856 | 30 | |
Eaton River | 18 | 16.4 | 4545 | 1967 | 1452 | 1033 | 10.3 | 0.86 | 20.5 | 14.9 | 0.17 | 759,368 | 112 | |
Pike River | 44 | 39.5 | 17,758 | 7615 | 5613 | 4213 | 44.2 | 5.56 | 79.4 | 57.7 | 0.65 | 2,940,184 | 455 |
Buffer Width | Watershed and Stream Type | Stream Length (km) | Poplar Buffer Area (ha) | Legal Buffer Area (ha) 1 | Loss of Cultivated Land (ha) | Total Cultivated Land (ha) | Cultivated Land Lost (%) | Agricultural Land Value ($/ha) | Agricultural Land Value ($) |
---|---|---|---|---|---|---|---|---|---|
4.5 m | Perennial streams | ||||||||
Magog River | 50 | 45 | 30 | 15 | 3114 | 0.48 | 4040 | 60,806 | |
Eaton River | 64 | 58 | 39 | 19 | 8551 | 0.23 | 4040 | 77,871 | |
Pike River | 103 | 93 | 62 | 31 | 26,133 | 0.12 | 22,624 | 699,896 | |
Intermittent streams | |||||||||
Magog River | 64 | 58 | 39 | 19 | 3114 | 0.62 | 4040 | 78,041 | |
Eaton River | 118 | 106 | 71 | 35 | 8551 | 0.42 | 4040 | 143,367 | |
Pike River | 336 | 302 | 201 | 101 | 26,133 | 0.39 | 22,624 | 2,279,210 | |
All streams | |||||||||
Magog River | 115 | 103 | 69 | 34 | 3114 | 1.10 | 4040 | 138,847 | |
Eaton River | 183 | 164 | 110 | 55 | 8551 | 0.64 | 4040 | 221,238 | |
Pike River | 439 | 395 | 263 | 132 | 26,133 | 0.50 | 22,624 | 2,979,106 | |
10 m | Perennial streams | ||||||||
Magog River | 50 | 100 | 30 | 70 | 3114 | 2.26 | 4040 | 283,762 | |
Eaton River | 64 | 129 | 39 | 90 | 8551 | 1.05 | 4040 | 363,398 | |
Pike River | 103 | 206 | 62 | 144 | 26,133 | 0.55 | 22,624 | 3,266,182 | |
Intermittent streams | |||||||||
Magog River | 64 | 129 | 39 | 90 | 3114 | 2.89 | 4040 | 364,190 | |
Eaton River | 118 | 237 | 71 | 166 | 8551 | 1.94 | 4040 | 669,048 | |
Pike River | 336 | 672 | 201 | 470 | 26,133 | 1.80 | 22,624 | 10,636,312 | |
All streams | |||||||||
Magog River | 115 | 229 | 69 | 160 | 3114 | 5.15 | 4040 | 647,951 | |
Eaton River | 183 | 365 | 110 | 256 | 8551 | 2.99 | 4040 | 1,032,446 | |
Pike River | 439 | 878 | 263 | 615 | 26,133 | 2.35 | 22,624 | 13,902,493 | |
30 m | Perennial streams | ||||||||
Magog River | 50 | 301 | 30 | 271 | 3114 | 8.70 | 4040 | 1,094,509 | |
Eaton River | 64 | 386 | 39 | 347 | 8551 | 4.06 | 4040 | 1,401,678 | |
Pike River | 103 | 619 | 62 | 557 | 26,133 | 2.13 | 22,624 | 12,598,129 | |
Intermittent streams | |||||||||
Magog River | 64 | 386 | 39 | 348 | 3114 | 11.16 | 4040 | 1,404,732 | |
Eaton River | 118 | 710 | 71 | 639 | 8551 | 7.47 | 4040 | 2,580,615 | |
Pike River | 336 | 2015 | 201 | 1813 | 26,133 | 6.94 | 22,624 | 41,025,773 | |
All streams | |||||||||
Magog River | 115 | 687 | 69 | 619 | 3114 | 19.86 | 4040 | 2,499,241 | |
Eaton River | 183 | 1095 | 110 | 986 | 8551 | 11.53 | 4040 | 3,982,293 | |
Pike River | 439 | 2634 | 263 | 2370 | 26,133 | 9.07 | 22,624 | 53,623,903 |
LHV | Heating System Efficiency (%) | Usable Energy (GJ/t) | Biomass (t/house) | Number of Houses Heated per Watershed 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Magog River | Eaton River | Pike River | ||||||||
New | Old | New | Old | New | Old | New | Old | |||
16.79 | 40 | 6.7 | 107.2 | 147.4 | 36 | 26 | 135 | 99 | 524 | 381 |
16.79 | 50 | 8.4 | 85.8 | 117.9 | 45 | 33 | 169 | 123 | 654 | 476 |
16.79 | 60 | 10.1 | 71.5 | 98.3 | 54 | 40 | 203 | 148 | 785 | 571 |
16.79 | 70 | 11.8 | 61.3 | 84.2 | 63 | 46 | 237 | 172 | 916 | 666 |
16.79 | 80 | 13.4 | 53.6 | 73.7 | 73 | 53 | 271 | 197 | 1047 | 762 |
16.79 | 90 | 15.1 | 47.7 | 65.5 | 82 | 59 | 305 | 222 | 1178 | 857 |
10.00 | 60.6 | 6.1 | 118.8 | 163.3 | 33 | 24 | 122 | 89 | 473 | 344 |
12.00 | 60.6 | 7.3 | 99.0 | 136.1 | 39 | 29 | 147 | 107 | 567 | 413 |
14.00 | 60.6 | 8.5 | 84.8 | 116.6 | 46 | 33 | 171 | 125 | 662 | 481 |
16.00 | 60.6 | 9.7 | 74.2 | 102.1 | 52 | 38 | 196 | 142 | 756 | 550 |
18.00 | 60.6 | 10.9 | 66.0 | 90.7 | 59 | 43 | 220 | 160 | 851 | 619 |
3.2. Hybrid Poplar Buffers for Maximum Multiple Ecosystem Services and Fewest Disservices
Ecosystem Services | Functions, Processes, Structures and Traits Related to Ecosystem Services | Potential Trade-Offs or Disservices | Optimisation and Mitigation Strategies |
---|---|---|---|
Regulation | |||
Non point-source pollution control/water quality protection |
|
| |
|
|
| |
|
| ||
|
| ||
|
|
| |
|
| ||
Local and global climate regulation |
| ||
|
|
| |
|
| ||
|
| ||
Disturbance and water regulation |
|
|
|
|
| ||
Soil protection and formation |
| ||
| |||
|
| ||
Biological control |
|
|
|
Habitat Provision | |||
Refuge and nursery for terrestrial biodiversity |
|
|
|
Refuge for aquatic biodiversity |
| ||
Production | |||
Raw materials and energy |
|
|
|
Food |
|
|
|
Bioproducts |
| ||
Cultural | |||
Recreation |
|
| |
Aesthetic |
|
|
|
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K.W. An ecosystem perspective of riparian zones. BioScience 1991, 41, 540–551. [Google Scholar]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot spots and hot moments in riparian zones: Potential for improved water quality management. JAWRA 2010, 46, 278–298. [Google Scholar]
- McClain, M.E.; Boyer, E.W.; Dent, C.L.; Gergel, S.E.; Grimm, N.B.; Groffman, P.M.; Hart, S.C.; Harvey, J.W.; Johnston, C.A.; Mayorga, E.; et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 2003, 6, 301–312. [Google Scholar]
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The role of riparian vegetation in protecting and improving chemical water quality in streams. JAWRA 2010, 46, 261–277. [Google Scholar]
- Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; et al. Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environ. Manag. 1997, 21, 687–712. [Google Scholar]
- Zhang, X.; Liu, X.; Zhang, M.; Dahlgren, R.A.; Eitzel, M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J. Environ. Qual. 2010, 39, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Peterjohn, W.T.; Correll, D.L. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 1984, 65, 1466–1475. [Google Scholar]
- Sullivan, T.; Moore, J.; Thomas, D.; Mallery, E.; Snyder, K.; Wustenberg, M.; Wustenberg, J.; Mackey, S.; Moore, D. Efficacy of vegetated buffers in preventing transport of fecal coliform bacteria from pasturelands. Environ. Manag. 2007, 40, 958–965. [Google Scholar]
- Mayer, P.M.; Reynolds, S.K.; Marshall, M.; Canfield, T.J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [PubMed]
- Décamps, H.; Pinay, G.; Naiman, R.J.; Petts, G.E.; McClain, M.E.; Hillbricht-Ilkowska, A.; Hanley, T.A.; Holmes, R.M.; Quinn, J.; Gilbert, J.; et al. Riparian zone: Where biogeochemistry meets biodiversity in management practice. Pol. J. Ecol. 2004, 52, 3–18. [Google Scholar]
- Sweeney, B.W.; Newbold, J.D. Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: A literature review. JAWRA 2014, 50, 560–584. [Google Scholar]
- Boutin, C.; Jobin, B.; Bélanger, L. Importance of riparian habitats to flora conservation in farming landscapes of southern Québec, Canada. Agric. Ecosyst. Environ. 2003, 94, 73–87. [Google Scholar]
- Deschênes, M.; Bélanger, L.; Giroux, J.-F. Use of farmland riparian strips by declining and crop damaging birds. Agric. Ecosyst. Environ. 2003, 95, 567–577. [Google Scholar]
- Maisonneuve, C.; Rioux, S. Importance of riparian habitats for small mammal and herpetofaunal communities in agricultural landscapes of southern Québec. Agric. Ecosyst. Environ. 2001, 83, 165–175. [Google Scholar]
- D’Amour, N. Établissement des Bandes Riveraines par Recolonisation Spontanée et Leur Succession Végétale en Milieu Agricole. Master’s Thesis, Université Laval, Québec City, QC, Canada, 2013. [Google Scholar]
- McCracken, D.I.; Cole, L.J.; Harrison, W.; Robertson, D. Improving the farmland biodiversity value of riparian buffer strips: Conflicts and compromises. J. Environ. Qual. 2012, 41, 355–363. [Google Scholar] [PubMed]
- Sweeney, B.W.; Bott, T.L.; Jackson, J.K.; Kaplan, L.A.; Newbold, J.D.; Standley, L.J.; Hession, W.C.; Horwitz, R.J. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. PNAS 2004, 101, 14132–14137. [Google Scholar] [PubMed]
- Rheinhardt, R.; Brinson, M.; Meyer, G.; Miller, K. Carbon storage of headwater riparian zones in an agricultural landscape. Carbon Balance Manag. 2012, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Stutter, M.I.; Chardon, W.J.; Kronvang, B. Riparian buffer strips as a multifunctional management tool in agricultural landscapes: Introduction. J. Environ. Qual. 2012, 41, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Bentrup, G. Conservation Buffers: Design Guidelines for Buffers, Corridors, and Greenways; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2008; p. 110.
- Dosskey, M.; Wells, G.; Bentrup, G.; Wallace, D. Enhancing ecosystem services: Designing for multifunctionality. J. Soil Water Conserv. 2012, 67, 37A–41A. [Google Scholar]
- Capon, S.; Chambers, L.; Mac Nally, R.; Naiman, R.; Davies, P.; Marshall, N.; Pittock, J.; Reid, M.; Capon, T.; Douglas, M.; et al. Riparian ecosystems in the 21st century: Hotspots for climate change adaptation? Ecosystems 2013, 16, 359–381. [Google Scholar]
- Flinn, K.M.; Marks, P.L. Agricultural legacies in forest environments: Tree communities, soil propreties, and light availibility. Ecol. Applic. 2007, 17, 452–463. [Google Scholar] [CrossRef]
- Vellend, M.; Verheyen, K.; Flinn, K.M.; Jacquemyn, H.; Kolb, A.; Calster, H.V.; Peterken, G.; Graae, B.J.; Bellemare, J.; Honnay, O.; et al. Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J. Ecol. 2007, 95, 565–573. [Google Scholar]
- Jackson, S.T.; Hobbs, R.J. Ecological restoration in the light of ecological history. Science 2009, 325, 567–569. [Google Scholar] [PubMed]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Hybrid poplar yields in Québec: Implications for a sustainable forest zoning management system. For. Chron. 2012, 88, 391–407. [Google Scholar]
- Isebrands, J.G.; Aronsson, P.; Ceulemans, M.C.; Coleman, M.; Dimitriou, N.D.; Doty, S.; Gardiner, E.; Heinsoo, K.; Johnson, J.D.; Koo, Y.B.; et al. Environmental applications of poplars and willows. In Poplars and Willows: Trees for Society and the Environment; Isebrands, J.G., Richardson, J., Eds.; CABI and FAO: Rome, Italy, 2014; pp. 258–336. [Google Scholar]
- Dickmann, D.I.; Kuzovkina, Y.A. Poplars and Willows of the World, with Emphasis on Silviculturally Important Species; FAO Forest Management Division Working Paper IPC/9–2: Rome, Italy, 2008; p. 129. [Google Scholar]
- Boothroyd-Roberts, K.; Gagnon, D.; Truax, B. Can hybrid poplar plantations accelerate the restoration of forest understory attributes on abandoned fields? For. Ecol. Manag. 2013, 287, 77–89. [Google Scholar]
- Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Understory plant diversity and biomass in hybrid poplar riparian buffer strips in pastures. New For. 2011, 42, 241–265. [Google Scholar]
- Pageault, D. Effet de bandes riveraines plantées de peupliers hybrides sur la présence et l’abondance de micromammifères et de picidés en zone agricole du sud du Québec. Master’s Thesis, Université du Québec à Montréal, Montréal, QC, Canada, 2013. [Google Scholar]
- Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenergy 2010, 34, 1028–1040. [Google Scholar]
- Licht, L.A.; Isebrands, J.G. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 2005, 28, 203–218. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Naidu, C.V.; Carter, D.R.; Rahmani, M.; Spriggs, T.A.; Lin, C.; Alker, G.R.; Isebrands, J.G.; Segrest, S.A. Short-rotation woody crops and phytoremediation: Opportunities for agroforestry? Agrofor. Syst. 2004, 61, 51–63. [Google Scholar]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land. J. Environ. Manag. 2015, 154, 333–345. [Google Scholar]
- Spinelli, R.; Nati, C.; Magagnotti, N. Biomass harvesting from buffer strips in Italy: Three options compared. Agrofor. Syst. 2006, 68, 113–121. [Google Scholar] [CrossRef]
- Updegraff, K.; Baughman, M.J.; Taff, S.J. Environmental benefits of cropland conversion to hybrid poplar: economic and policy considerations. Biomass Bioenergy 2004, 27, 411–428. [Google Scholar]
- Truax, B.; Gagnon, D.; Lambert, F.; Fortier, J. Multiple-use zoning model for private forest owners in agricultural landscapes: A case study. Forests 2015, 6, 3614–3664. [Google Scholar]
- Heilman, P.E.; Stettler, R.F. Nutritional concerns in selection of black cottonwood and hybrid clones for short rotation. Can. J. For. Res. 1986, 16, 860–863. [Google Scholar]
- Kelly, J.; Kovar, J.; Sokolowsky, R.; Moorman, T. Phosphorus uptake during four years by different vegetative cover types in a riparian buffer. Nutr. Cycl. Agroecosyst. 2007, 78, 239–251. [Google Scholar] [CrossRef]
- Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Nutrient accumulation and carbon sequestration in 6 year-old hybrid poplars in multiclonal agricultural riparian buffer strips. Agric. Ecosyst. Environ. 2010, 137, 276–287. [Google Scholar]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Mature hybrid poplar riparian buffers along farm streams produce high yields in response to soil fertility assessed using three methods. Sustainability 2013, 5, 1893–1916. [Google Scholar]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Root biomass and soil carbon distribution in hybrid poplar riparian buffers, herbaceous riparian buffers and natural riparian woodlots on farmland. SpringerPlus 2013, 2, 539. [Google Scholar] [CrossRef] [PubMed]
- Haycock, N.E.; Pinay, G. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. J. Environ. Qual. 1993, 22, 273–278. [Google Scholar]
- Schultz, R.C.; Isenhart, T.M.; Simpkins, W.W.; Colletti, J.P. Riparian forest buffers in agroecosystems—lessons learned from the Bear Creek Watershed, central Iowa, USA. Agrofor. Syst. 2004, 61, 35–50. [Google Scholar]
- Simavi, M.A. Effet de plantations de bandes riveraines d’arbres sur l’abondance et la répartition de la faune aquatique dans des ruisseaux dégradés de milieux agricoles dans les Cantons-de-l’Est. Master’s Thesis, Université du Québec à Montréal, Montréal, QC, Canada, 2012. [Google Scholar]
- Johnson, J.D.; Henri, C.J. Riparian forest buffer income opportunities: A hybrid poplar case study. J. Soil Water Conserv. 2005, 60, 159–163. [Google Scholar]
- Parkyn, S.M.; Davies-Colley, R.J.; Halliday, N.J.; Costley, K.J.; Croker, G.F. Planted riparian buffer zones in New Zealand: Do they live up to expectations? Restor. Ecol. 2003, 11, 436–447. [Google Scholar] [CrossRef]
- Robitaille, A.; Saucier, J.-P. Paysages Régionaux du QUÉBEC Méridional; Les publications du Québec: Ste-Foy, QC, Canada, 1998; p. 213. [Google Scholar]
- La Financière Agricole du Québec. Rendements de Référence 2015 en Assurance Récolte; Direction de l’assurance récolte, Ed.; Gouvernement du Québec: Lévis, QC, Canada, 2015; pp. 1–42.
- Organisme de bassin versant de la baie Missisquoi. Le Portrait du Bassin Versant de la Baie Missisquoi. Plan Directeur de l’eau; Bedford, QC, Canada, 2011; p. 180. [Google Scholar]
- Gouvernement du Québec. Cadre de référence hydrologique du québec: Guide de l’utilisateur; Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs; Direction du patrimoine écologique et des parcs: Québec, QC, Canada, 2013; p. 25. [Google Scholar]
- Cann, D.B.; Lajoie, P. Études des sols des Comtés de Stanstead, Richmond, Sherbrooke et Compton dans la Province de Québec; Ministère de l’Agriculture: Ottawa, ON, Canada, 1943; p. 58. [Google Scholar]
- Cann, D.B.; Lajoie, P.; Stobbe, P.C. Études des sols des Comtés de Shefford, Brome et Missisquoi dans la Province de Québec; Ministère de l’agriculture: Ottawa, ON, Canada, 1948; p. 80. [Google Scholar]
- Stanturf, J.A.; van Oosten, C.; Coleman, M.D.; Portwood, C.J. Ecology and silviculture of poplar plantations. In Poplar Culture in North America; Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J., Eds.; NRC Research Press, National Research Council of Canada: Ottawa, ON, Canada, 2001; pp. 153–206. [Google Scholar]
- Agostini, F.; Gregory, A.; Richter, G. Carbon sequestration by perennial energy crops: Is the jury still out? BioEnergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef]
- Arevalo, C.B.M.; Bhatti, J.S.; Chang, S.X.; Sidders, D. Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. For. Ecol. Manag. 2009, 257, 1776–1785. [Google Scholar] [CrossRef]
- Coleman, M.D.; Isebrands, J.G.; Tolsted, D.N.; Tolbert, V.R. Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Environ. Manag. 2004, 33, 299–308. [Google Scholar]
- Sartori, F.; Lal, R.; Ebinger, M.H.; Eaton, J.A. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric. Ecosyst. Environ. 2007, 122, 325–339. [Google Scholar] [CrossRef]
- Teklay, T.; Chang, S.X. Temporal changes in soil carbon and nitrogen storage in a hybrid poplar chronosequence in northern Alberta. Geoderma 2008, 144, 613–619. [Google Scholar]
- Walter, K.; Don, A.; Flessa, H. No general soil carbon sequestration under Central European short rotation coppices. GCB Bioenergy 2015, 7, 727–740. [Google Scholar]
- Mao, R.; Zeng, D.-H.; Hu, Y.-L.; Li, L.-J.; Yang, D. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 2010, 332, 277–287. [Google Scholar] [CrossRef]
- CMHC. A Guide to Residential Wood Heating; Canada Mortgage and Housing Corporation: Ottawa, ON, Canada, 2008; p. 86. [Google Scholar]
- McKenney, D.W.; Yemshanov, D.; Fraleigh, S.; Allen, D.; Preto, F. An economic assessment of the use of short-rotation coppice woody biomass to heat greenhouses in southern Canada. Biomass Bioenergy 2011, 35, 374–384. [Google Scholar]
- Kenney, W.A.; Gambles, R.L.; Zsuffa, L. Economics and Yields of Energy Plantations: Status and Potential; Toronto University, Faculty of Forestry: Toronto, ON, Canada, 1992; p. 207. [Google Scholar]
- Sannigrahi, P.; Ragauskas, A.J.; Tuskan, G.A. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuel Bioprod. Bior. 2010, 4, 209–226. [Google Scholar]
- USEPA. Burn Wise Best Burn Practices. Aailable online: http://www.epa.gov/burnwise/burn-wise-best-burn-practices (accessed on 11 December 2015).
- Côté, M.-A.; Gilbert, D.; Nadeau, S. Caractérisation des Profils, des Motivations et des Comportements des Propriétaires Forestiers Québécois par Territoire d’Agence Régionale de Mise en Valeur des Forêts Privées; Rapport produit pour le compte des Agences régionales de mise en valeur des forêts privées et du Ministère des Ressources Naturelles du Québec; La Fédération des producteurs forestiers du Québec, le Groupe AGÉCO et Ressources naturelles Canada: Longueuil, QC, Canada, 2012. [Google Scholar]
- USEPA. List of EPA Certified Wood Heaters (Heaters Certified as Meeting the 2015 Standards of Performance for New Residential Wood Heaters); United States Environmental Protection Agency, Ed.; USEPA: Washington DC, USA, 2015; p. 27. [Google Scholar]
- CCME. Code of Practice for Residential Wood Burning Appliances; Canadian Council of Ministers of the Environment: Ottawa, ON, Canada, 2012; p. 42. [Google Scholar]
- Syndicat des producteurs en serre du Québec. L’évaluation économique d’un projet de chauffage à la biomasse. Boîte Outil Serriculteurs 2012, 2, 1–6. [Google Scholar]
- Côté, M.-A.; Gilbert, D.; Nadeau, S. Characterizing the profiles, motivations and behaviour of Quebec’s forest owners. For. Policy Econ. 2015, 59, 83–90. [Google Scholar] [CrossRef]
- Achat, D.L.; Deleuze, C.; Landmann, G.; Pousse, N.; Ranger, J.; Augusto, L. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manag. 2015, 348, 124–141. [Google Scholar] [CrossRef]
- Fédération des producteurs forestiers du Québec; WSP. Détermination de la Possibilité de Récolte Forestière Régionale; Agence forestière de la Montérégie: Cowansville, QC, Canada, 2015; p. 25. [Google Scholar]
- Fédération des producteurs forestiers du Québec; WSP. Détermination de la Possibilité de Récolte Forestière Régionale; Agence de mise en valeur de la forêt de l’Estrie: Sherbrooke, QC, Canada, 2014; p. 21. [Google Scholar]
- Balatinecz, J.J.; Kretschmann, D.E.; Leclercq, A. Achievements in the utilization of poplar wood—Guideposts for the future. For. Chron. 2001, 77, 265–269. [Google Scholar] [CrossRef]
- Forest Products Laboratory. Wood Handbook—Wood as an Engineering Material; General Technical Report FPL-GTR-190; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; p. 508.
- Miles, P.D.; Smith, W.B. Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America; Research Note NRS-38; USDA Forest Service, Northern Research Station: Newtown Square, PA, USA, 2009; p. 35. [Google Scholar]
- US Environmental Protection Agency. Greenhouse gas equivalencies calculator. Available online: http://www.epa.gov/cleanenergy/energy-resources/calculator.html#results (accessed on 15 September 2015).
- Beaudin, I.; Deslandes, J.; Michaud, A.R.; Bonn, F.; Madramootoo, C.A. Variabilité spatio-temporelle des exportations de sédiments et de phosphore dans le bassin versant de la Rivière aux brochets au sud-ouest du Québec. Agrosolutions 2006, 17, 4–20. [Google Scholar]
- Rousseau, A.N.; Savary, S.; Hallema, D.W.; Gumiere, S.J.; Foulon, É. Modeling the effects of agricultural BMPs on sediments, nutrients, and water quality of the Beaurivage River watershed (Quebec, Canada). Can. Water Res. J. 2013, 38, 99–120. [Google Scholar]
- Chu, C.; Minns, C.K.; Lester, N.P.; Mandrak, N.E. An updated assessment of human activities, the environment, and freshwater fish biodiversity in Canada. Can. J. Fish. Aquatic Sci. 2015, 72, 135–148. [Google Scholar]
- Adhikari, B.K.; Madramootoo, C.A.; Sarangi, A. Temporal variability of phosphorus flux from Pike River watershed to the Missisquoi Bay of Quebec. Curr. Sci. 2010, 98, 58–64. [Google Scholar]
- Blais, S. La problématique des cyanobactéries (algues bleu-vert) à la baie Missisquoi en 2001. Agrosol 2002, 2, 103–110. [Google Scholar]
- ICI Radio-Canada. Nouvelle Poussée D’algues Bleu-Vert au Québec. Available online: http://ici.radio-canada.ca/nouvelles/environnement/2015/07/28/001-algues-bleu-vert-cyanobacteries-quebec-2015-proliferation.shtml (accessed on 21 September 2015).
- Tomer, M.D.; Porter, S.A.; James, D.E.; Boomer, K.M.B.; Kostel, J.A.; McLellan, E. Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning. J. Soil Water Conserv. 2013, 68, 113A–120A. [Google Scholar]
- Dosskey, M.G.; Helmers, M.J.; Eisenhauer, D.E. A design aid for determining width of filter strips. J. Soil Water Conserv. 2008, 63, 232–241. [Google Scholar]
- Tomer, M.; Dosskey, M.; Burkart, M.; James, D.; Helmers, M.; Eisenhauer, D. Methods to prioritize placement of riparian buffers for improved water quality. Agrofor. Syst. 2009, 75, 17–25. [Google Scholar]
- Dosskey, M.G.; Helmers, M.J.; Eisenhauer, D.E.; Franti, T.G.; Hoagland, K.D. Assessment of concentrated flow through riparian buffers. J. Soil Water Conserv. 2002, 57, 336–343. [Google Scholar]
- Richardson, J.S.; Naiman, R.J.; Bisson, P.A. How did fixed-width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices? Freshwater Sci. 2012, 31, 232–238. [Google Scholar]
- Dosskey, M.G.; Neelakantan, S.; Mueller, T.G.; Kellerman, T.; Helmers, M.J.; Rienzi, E. AgBufferBuilder: A geographic information system (GIS) tool for precision design and performance assessment of filter strips. J. Soil Water Conserv. 2015, 70, 209–217. [Google Scholar]
- Peterson, B.J.; Wollheim, W.M.; Mulholland, P.J.; Webster, J.R.; Meyer, J.L.; Tank, J.L.; Marti, E.; Bowden, W.B.; Valett, H.M.; Hershey, A.E.; et al. Control of nitrogen export from watersheds by headwater streams. Science 2001, 292, 86–90. [Google Scholar] [PubMed]
- Wigington, P.J.; Moser, T.J.; Lindeman, D.R. Stream network expansion: A riparian water quality factor. Hydrol. Proc. 2005, 19, 1715–1721. [Google Scholar]
- Howard, D.C.; Burgess, P.J.; Butler, S.J.; Carver, S.J.; Cockerill, T.; Coleby, A.M.; Gan, G.; Goodier, C.J.; van der Horst, D.; Hubacek, K.; et al. Energyscapes: Linking the energy system and ecosystem services in real landscapes. Biomass Bioenergy 2013, 55, 17–26. [Google Scholar] [Green Version]
- Dickmann, D.I.; Isebrands, J.G.; Blake, T.J.; Kosola, K.; Kort, J. Physiological ecology of poplars. In Poplar Culture in North America. Part A, Chapter 3; Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J., Eds.; NRC Research Press: Ottawa, ON, Canada, 2001; pp. 77–118. [Google Scholar]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Alexandrov, G. Carbon stock growth in a forest stand: The power of age. Carbon Bal. Manag. 2007, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar]
- Wenger, S. A Review of the Scientific Literature on Riparian Buffer Width, Extent and Vegetation; Office of public service and outreach, Institute of Ecology, University of Georgia: Athens, GA, USA, 1999; p. 58. [Google Scholar]
- Gouvernement du Québec. Politique de Protection des Rives, du Littoral et des Plaines Inondables (Chapitre Q-2, r. 35); Loi sur la qualité de l’environnement (chapitre Q-2, a. 2.1); Gouvernement du Québec: Québec, QC, Canada, 2015.
- La Financière Agricole du Québec. Bulletin Transac-Terres; La Financière Agricole du Québec: Lévis, QC, Canada, 2015; p. 4. [Google Scholar]
- Buckley, C.; Hynes, S.; Mechan, S. Supply of an ecosystem service—Farmers’ willingness to adopt riparian buffer zones in agricultural catchments. Environ. Sci. Pol. 2012, 24, 101–109. [Google Scholar] [Green Version]
- MAPAQ. Prime-Vert—Volet 1. Interventions en Agroenvironnement par une Exploitation Agricole. Available online: http://www.mapaq.gouv.qc.ca/fr/Productions/md/programmesliste/agroenvironnement/sous-volet/Pages/PrimeVertvolet1.aspx (accessed on 25 August 2015).
- Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F. Yield in 8 year-old hybrid poplar plantations on abandoned farmland along climatic and soil fertility gradients. For. Ecol. Manag. 2012, 267, 228–239. [Google Scholar]
- Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F. Biomass and volume yield in mature hybrid poplar plantations on temperate abandoned farmland. Forests 2014, 5, 3107–3130. [Google Scholar] [CrossRef]
- Bureau du forestier en chef. Synthèse Provinciale des Données à la Base de la Modification des Possibilités Forestières. Available online: http://forestierenchef.gouv.qc.ca/documents/calcul-des-possibilites-forestieres/2013–2018/ (accessed on 15 August 2015).
- Zalesny, R.; Hall, R.; Zalesny, J.; McMahon, B.; Berguson, W.; Stanosz, G. Biomass and genotype × environment interactions of Populus energy crops in the midwestern United States. BioEnergy Res. 2009, 2, 106–122. [Google Scholar]
- Nielsen, U.B.; Madsen, P.; Hansen, J.K.; Nord-Larsen, T.; Nielsen, A.T. Production potential of 36 poplar clones grown at medium length rotation in Denmark. Biomass Bioenergy 2014, 64, 99–109. [Google Scholar] [CrossRef]
- Rousseau, N.; Lavoie, F. Vers une Maison Autonome en Énergie dans un Climat Nordique. Projet de Conception en Ingénirie; Université du Québec à Chicoutimi: Chicoutimi, QC, Canada, 2010; p. 31. [Google Scholar]
- Ouranos. Vers L’adaptation. Synthèse des Connaissances sur les Changements Climatiques au Québec. Partie 1: Évolution Climatique au Québec; Ouranos: Montréal, QC, Canada, 2015. [Google Scholar]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate change and forest disturbances. BioScience 2001, 51, 723–734. [Google Scholar]
- Mattson, W.J.; Hart, E.A.; Volney, W.J.A. Insects pests of Populus: Copping with the inevitable, Part A, Chapter 7. In Poplar Culture in North America; Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J., Eds.; NRC Research Press, National Research Council of Canada: Ottawa, ON, Canada, 2001; pp. 219–248. [Google Scholar]
- Yu, Q.; Zhang, S.Y.; Pliura, A.; Mackay, J.; Bousquet, J.; Périnet, P. Variation in mechanical properties of selected young poplar hybrid crosses. For. Sci. 2008, 54, 255–259. [Google Scholar]
- Rosemond, A.D.; Benstead, J.P.; Bumpers, P.M.; Gulis, V.; Kominoski, J.S.; Manning, D.W.P.; Suberkropp, K.; Wallace, J.B. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 2015, 347, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Jordahl, J.L.; Foster, L.; Schnoor, J.L.; Alvarez, P.J.J. Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ. Toxicol. Chem. 1997, 16, 1318–1321. [Google Scholar] [CrossRef]
- Burken, J.G.; Schnoor, J.L. Uptake and metabolism of atrazine by poplar trees. Environ. Sci. Technol. 1997, 31, 1399–1406. [Google Scholar]
- Quinn, J.M.; Cooper, A.B.; Stroud, M.J.; Burrell, G.P. Shade effects on stream periphyton and invertebrates: An experiment in streamside channels. N. Z. J. Mar. Freshw. Res. 1997, 31, 665–683. [Google Scholar]
- Baxter, C.V.; Fausch, K.D.; Saunders, W.C. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 2005, 50, 201–220. [Google Scholar] [CrossRef]
- Davies, P.M. Climate change implications for river restoration in global biodiversity hotspots. Restor. Ecol. 2010, 18, 261–268. [Google Scholar]
- Wallace, J.B.; Eggert, S.L.; Meyer, J.L.; Webster, J.R. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 1997, 277, 102–104. [Google Scholar]
- Quinn, J.M.; Burrell, G.P.; Parkyn, S.M. Influences of leaf toughness and nitrogen content on in-stream processing and nutrient uptake by litter in a Waikato, New Zealand, pasture stream and streamside channels. N. Z. J. Mar. Freshw. Res. 2000, 34, 253–271. [Google Scholar]
- Quinn, J.M.; Smith, B.J.; Burrell, G.P.; Parkyn, S.M. Leaf litter characteristics affect colonisation by stream invertebrates and growth of Olinga feredayi (Trichoptera: Conoesucidae). N. Z. J. Mar. Freshw. Res. 2000, 34, 273–287. [Google Scholar]
- Kaushal, S.S.; Mayer, P.M.; Vidon, P.G.; Smith, R.M.; Pennino, M.J.; Newcomer, T.A.; Duan, S.; Welty, C.; Belt, K.T. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: A review with management implications. JAWRA 2014, 50, 585–614. [Google Scholar]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. J. Soil Water Conserv. 2004, 59, 19–27. [Google Scholar]
- Florsheim, J.L.; Mount, J.F.; Chin, A. Bank erosion as a desirable attribute of rivers. BioScience 2008, 58, 519–529. [Google Scholar]
- Laubel, A.; Kronvang, B.; Hald, A.B.; Jensen, C. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrol. Proc. 2003, 17, 3443–3463. [Google Scholar] [CrossRef]
- Braatne, J.H.; Rood, S.B.; Heilman, P.E. Life history, ecology, and conservation of riparian cottonwoods in North America. In Biology of Populus and Its Implications for Management and Conservation; Stettler, R.F., Bradshaw, H.D., Heilman, P.E., Hinckley, T.M., Eds.; NRC Research Press: Ottawa, ON, Canada, 1996; pp. 57–85. [Google Scholar]
- Heilman, P.E.; Ekuan, G.; Fogle, D. Above- and below-ground biomass and fine roots of 4-year-old hybrids of Populus trichocarpa × Populus deltoides and parental species in short-rotation culture. Can. J. For. Res. 1994, 24, 1186–1192. [Google Scholar]
- Nearing, M.; Pruski, F.F.; O’Neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Ann. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Pollock, M.M.; Beechie, T.J. Does riparian forest restoration thinning enhance biodiversity? The ecological importance of large wood. JAWRA 2014, 50, 543–559. [Google Scholar]
- Lazar, J.G.; Gold, A.J.; Addy, K.; Mayer, P.M.; Forshay, K.J.; Groffman, P.M. Instream large wood: Denitrification hotspots with low N2O production. JAWRA 2014, 50, 615–625. [Google Scholar] [CrossRef]
- Blanc, L.A.; Martin, K. Identifying suitable woodpecker nest trees using decay selection profiles in trembling aspen (Populus tremuloides). For. Ecol. Manag. 2012, 286, 192–202. [Google Scholar]
- Drapeau, P.; Leduc, A.; Giroux, J.-F.; Savard, J.-P.L.; Bergeron, Y.; Vickery, W.L. Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol. Monogr. 2000, 70, 423–444. [Google Scholar]
- Prescott, J.; Richard, P. Mammifères du Québec et de l’Est de l’Amérique du Nord, 2nd ed.; Édition Michel Quintin: Waterloo, QC, Canada, 2004; p. 399. [Google Scholar]
- Martín-García, J.; Barbaro, L.; Diez, J.; Jactel, H. Contribution of poplar plantations to bird conservation in riparian landscapes. Sylva Fenn. 2013, 47, 1043. [Google Scholar]
- Archaux, F.; Martin, H. Hybrid poplar plantations in a floodplain have balanced impacts on farmland and woodland birds. For. Ecol. Manag. 2009, 257, 1474–1479. [Google Scholar]
- Christian, D.P.; Hoffman, W.; Hanowski, J.M.; Niemi, G.J.; Beyea, J. Bird and mammal diversity on woody biomass plantations in North America. Biomass Bioenergy 1998, 14, 395–402. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Boscolo, P.; Sommaggio, D. Beneficial insects in fields surrounded by hedgerows in North Eastern Italy. Biol. Agric. Hortic. 1997, 15, 310–323. [Google Scholar]
- Hanowski, J.M.; Niemi, G.J.; Christian, D.C. Influence of within-plantation heterogeneity and surrounding landscape composition on avian communities in hybrid poplar plantations. Conserv. Biol. 1997, 11, 936–944. [Google Scholar]
- Boothroyd-Roberts, K.; Gagnon, D.; Truax, B. Hybrid poplar plantations are suitable habitat for reintroduced forest herbs with conservation status. SpringerPlus 2013, 2, 1–13. [Google Scholar]
- Lust, N.; Kongs, T.; Nachtergale, L.; de Keersmaeker, L. Spontaneous ingrowth of tree species in poplar plantations in Flanders. Ann. For. Sci. 2001, 58, 861–868. [Google Scholar]
- Truax, B.; Lambert, F.; Gagnon, D. Herbicide-free plantations of oaks and ashes along a gradient of open to forested mesic environments. For. Ecol. Manag. 2000, 137, 155–169. [Google Scholar]
- González-García, S.; Gasol, C.M.; Gabarrell, X.; Rieradevall, J.; Moreira, M.T.; Feijoo, G. Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe. Renew. Energy 2010, 35, 1014–1023. [Google Scholar]
- Popova, M.; Bankova, V.; Bogdanov, S.; Tsvetkova, I.; Naydenski, C.; Marcazzan, G.; Sabatini, A.-G. Chemical characteristics of poplar type propolis of different geographic origin. Apidologie 2007, 38, 306–311. [Google Scholar] [CrossRef]
- Zhong, L.; Zhou, L.; Zhou, Y.; Chen, Y.; Sui, P.; Wang, J.; Wang, M. Antimicrobial flavonoids from the twigs of Populus nigra × Populus deltoides. Nat. Prod. Res. 2011, 26, 307–313. [Google Scholar] [PubMed]
- McWilliam, E.L.; Barry, T.N.; López-Villalobos, N. Organic matter digestibility of poplar (Populus) and willow (Salix) forage trees and its in vitro prediction. J. Sci. Food Agric. 2005, 85, 1098–1104. [Google Scholar]
- McWilliam, E.L.; Barry, T.N.; Lopez-Villalobos, N.; Cameron, P.N.; Kemp, P.D. The effect of different levels of poplar (Populus) supplementation on the reproductive performance of ewes grazing low quality drought pasture during mating. Anim. Feed Sci. Technol. 2004, 115, 1–18. [Google Scholar]
- Singh, B.; Sharma, K. Nutrition and growth of wheat-sorghum rotation in soils amended with leaf litter of trees before planting of wheat. Agrofor. Syst. 2007, 71, 25–34. [Google Scholar] [CrossRef]
- Romano, G.M.; Calcagno, J.A.; Lechner, B.E. Biodiversity of Agaricomycetes basidiomes associated to Salix and Populus (Salicaceae) plantations. Darwiniana Nueva Ser. 2013, 1, 67–75. [Google Scholar]
- Le Floch, S.; Devanne, A.-S.; Deffontaines, J.-P. La «fermeture du paysage»: Au-delà du phénomène, petite chronique d’une construction sociale. Espace Géogr. 2005, 1, 49–64. [Google Scholar]
- Le Floch, S.; Terrasson, D. Entre agriculture et forêt, des enjeux majeurs pour un arbre ordinaire: Le peuplier. Ann. Géo. 1999, 609, 603–614. [Google Scholar] [CrossRef]
- Neumann, P.D.; Krahn, H.J.; Krogman, N.T.; Thomas, B.R. “My grandfather would roll over in his grave”: Family farming and tree plantation on farmland. Rural Sociol. 2007, 72, 111–135. [Google Scholar]
- Naiman, R.J.; Décamps, H.; McClain, M.E. Riparia; Elsevier Academic Press: Burlington, MA, USA, 2005; p. 430. [Google Scholar]
- Goldman, R.L.; Thompson, B.H.; Daily, G.C. Institutional incentives for managing the landscape: Inducing cooperation for the production of ecosystem services. Ecol. Econ. 2007, 64, 333–343. [Google Scholar]
- Allan, D.; Erickson, D.; Fay, J. The influence of catchment land use on stream integrity across multiple spatial scales. Freshw. Biol. 1997, 37, 149–161. [Google Scholar]
- Roth, N.; Allan, J.; Erickson, D. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landsc. Ecol. 1996, 11, 141–156. [Google Scholar] [CrossRef]
- Stephenson, J.M.; Morin, A. Covariation of stream community structure and biomass of algae, invertebrates and fish with forest cover at multiple spatial scales. Freshw. Biol. 2009, 54, 2139–2154. [Google Scholar] [CrossRef]
- Wang, L.; Lyons, J.; Kanehl, P.; Gatti, R. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 1997, 22, 6–12. [Google Scholar]
- Harding, J.S.; Benfield, E.F.; Bolstad, P.V.; Helfman, G.S.; Jones, E.B.D. Stream biodiversity: The ghost of land use past. PNAS 1998, 95, 14843–14847. [Google Scholar] [PubMed]
- Bernhardt, E.S.; Palmer, M.A. River restoration: The fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl. 2011, 21, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Tufekcioglu, A.; Raich, J.W.; Isenhart, T.M.; Schultz, R.C. Biomass, carbon and nitrogen dynamics of multi-species riparian buffers within an agricultural watershed in Iowa, USA. Agrofor. Syst. 2003, 57, 187–198. [Google Scholar]
- Breck, S.W.; Wilson, K.R.; Andersen, D.C. Beaver herbivory and its effect on cottonwood trees: Influence of flooding along matched regulated and unregulated rivers. Riv. Res. Appl. 2003, 19, 43–58. [Google Scholar] [CrossRef]
- Dosskey, M.G. Toward quantifying water pollution abatement in response to installing buffers on crop land. Environ. Manag. 2001, 28, 577–598. [Google Scholar]
- Knight, K.W.; Schultz, R.C.; Mabry, C.M.; Isenhart, T.M. Ability of remnant riparian forests, with and without grass filters, to buffer concentrated surface runoff. JAWRA 2010, 46, 311–322. [Google Scholar]
- Buell, M.F.; Buell, H.F. Aspen invasion of prairie. Bull. Torrey Bot. Club 1959, 86, 264–265. [Google Scholar]
- Hansen, E.A. Root length in young hybrid Populus plantations: Its implication for border width of research plots. For. Sci. 1981, 27, 808–814. [Google Scholar]
- Rasmussen, S.D.; Shapiro, C.A. Effect of tree root-pruning adjacent to windbreaks on corn and soybeans. J. Soil Water Conserv. 1990, 45, 571–575. [Google Scholar]
- Hou, Q.; Brandle, J.; Hubbard, K.; Schoeneberger, M.; Nieto, C.; Francis, C. Alteration of soil water content consequent to root-pruning at a windbreak/crop interface in Nebraska, USA. Agrofor. Syst. 2003, 57, 137–147. [Google Scholar]
- Ferro, A.; Chard, J.; Kjelgren, R.; Chard, B.; Turner, D.; Montague, T. Groundwater capture using hybrid poplar trees: Evaluation of a system in Ogden, Utah. Int. J. Phytoremediat. 2001, 3, 87–104. [Google Scholar]
- Gift, D.M.; Groffman, P.M.; Kaushal, S.S.; Mayer, P.M. Denitrification potential, root biomass, and organic matter in degraded and restored urban riparian zones. Restor. Ecol. 2008, 18, 113–120. [Google Scholar]
- Licht, L.A. Salicaceae family trees in sustainable agroecosystems. For. Chron. 1992, 68, 214–217. [Google Scholar]
- Liu, D.; Fang, S.; Tian, Y.; Dun, X. Seasonal and clonal variations of microbial biomass and processes in the rhizosphere of poplar plantations. Appl. Soil Ecol. 2014, 78, 65–72. [Google Scholar] [CrossRef]
- Burken, J.; Schnoor, J. Phytoremediation: Plant uptake of atrazine and role of root exudates. J. Environ. Eng. 1996, 122, 958–963. [Google Scholar]
- Reichenberger, S.; Bach, M.; Skitschak, A.; Frede, H.-G. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review. Sci. Total Environ. 2007, 384, 1–35. [Google Scholar] [PubMed]
- Zalesny, R.S.; Headlee, W.L. Developing woody crops for the enhancement of ecosystem services under changing climates in the North Central United States. J. For. Sci. 2015, 31, 78–90. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world′s most carbon-dense forests. PNAS 2009, 106, 11635–11640. [Google Scholar] [PubMed]
- Quinn, J.M.; Croker, G.F.; Smith, B.J.; Bellingham, M.A. Integrated catchment management effects on flow, habitat, instream vegetation and macroinvertebrates in Waikato, New Zealand, hill-country streams. N. Z. J. Mar. Freshw. Res. 2009, 43, 775–802. [Google Scholar]
- Singh, H.P.; Kohli, R.K.; Batish, D.R. Impact of Populus deltoides and Dalbergia sissoo shelterbelts on wheat: A comparative study. Int. Tree Crops J. 1999, 10, 51–60. [Google Scholar]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.M.; Muller, E.; Décamps, H. Impacts of riparian vegetation on hydrological processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar]
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American agricultural systems. Agrofor. Syst. 2004, 61, 65–78. [Google Scholar]
- Bharati, L.; Lee, K.H.; Isenhart, T.M.; Schultz, R.C. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agrofor. Syst. 2002, 56, 249–257. [Google Scholar]
- Menichino, G.T.; Scott, D.T.; Hester, E.T. Abundance and dimensions of naturally occurring macropores along stream channels and the effects of artificially constructed large macropores on transient storage. Freshw. Sci. 2015, 34, 125–138. [Google Scholar]
- Pliura, A.; Zhang, S.Y.; MacKay, J.; Bousquet, J. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For. Ecol. Manag. 2007, 238, 92–106. [Google Scholar]
- Lassettre, N.S.; Kondolf, G.M. Large woody debris in urban stream channels: Redefining the problem. Riv. Res. Appl. 2012, 28, 1477–1487. [Google Scholar]
- Perry, C.H.; Miller, R.C.; Brooks, K.N. Impacts of short-rotation hybrid poplar plantations on regional water yield. For. Ecol. Manag. 2001, 143, 143–151. [Google Scholar] [CrossRef]
- Wilske, B.; Lu, N.; Wei, L.; Chen, S.; Zha, T.; Liu, C.; Xu, W.; Noormets, A.; Huang, J.; Wei, Y.; et al. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. J. Environ. Manag. 2009, 90, 2762–2770. [Google Scholar]
- Li, Y.; Qin, H.; Xie, Y.; Wang, W.; Chen, X.; Zhang, C. Physiological mechanism for the reduction in soil water in poplar (Populus deltoides) plantations in Dongting Lake wetlands. Wetl. Ecol. Manag. 2014, 22, 25–33. [Google Scholar]
- Vance, E.; Loehle, C.; Wigley, T.; Weatherford, P. Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S. Forests 2014, 5, 901–918. [Google Scholar] [CrossRef]
- Wilkinson, A.G. Poplars and willows for soil erosion control in New Zealand. Biomass Bioenergy 1999, 16, 263–274. [Google Scholar]
- Quinn, J.M.; Cooper, A.B.; Davies-Colley, R.J.; Rutherford, J.C.; Williamson, R.B. Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. N.Z. J. Mar. Freshw. Res. 1997, 31, 579–597. [Google Scholar]
- Parkyn, S.M.; Davies-Colley, R.J.; Cooper, A.B.; Stroud, M.J. Predictions of stream nutrient and sediment yield changes following restoration of forested riparian buffers. Ecol. Engin. 2005, 24, 551–558. [Google Scholar]
- Hamelin, C.; Gagnon, D.; Truax, B. Aboveground biomass of glossy buckthorn is similar in open and understory environments but architectural strategy differs. Forests 2015, 6, 1083–1093. [Google Scholar] [CrossRef]
- Weih, M.; Karacic, A.; Munkert, H.; Verwijst, T.; Diekmann, M. Influence of young poplar stands on floristic diversity in agricultural landscapes (Sweden). Basic. Appl. Ecol. 2003, 4, 149–156. [Google Scholar] [CrossRef]
- Gardiner, E.S.; Stanturf, J.A.; Schweitzer, C.J. An afforestation system for restoring bottomland hardwood forests: Biomass accumulation of nuttall oak seedlings interplanted beneath eastern cottonwood. Restor. Ecol. 2004, 12, 525–532. [Google Scholar]
- Clavijo, M.D.P.; Nordenstahl, M.; Gundel, P.E.; Jobbagy, E.G. Poplar afforestation effects on grassland structure and composition in the flooding Pampas. Rangel. Ecol. Manag. 2005, 58, 474–479. [Google Scholar]
- Mize, C.W.; Brandle, J.R.; Schoeneberger, M.M.; Bentrup, G. Ecological development and function of shelterbelts in temperate North America. In Towards Agroforestry Design; Jose, S., Gordon, A.M., Eds.; Springer Netherlands: Dordrecht, Netherlands, 2008; Volume 4, pp. 27–54. [Google Scholar]
- Opperman, J.J.; Merenlender, A.M. Deer herbivory as an ecological constraint to restoration of degraded riparian corridors. Restor. Ecol. 2000, 8, 41–47. [Google Scholar]
- Meirmans, P.G.; Lamothe, M.; Gros-Louis, M.-C.; Khasa, D.; Périnet, P.; Bousquet, J.; Isabel, N. Complex patterns of hybridization between exotic and native North American poplar species. Am. J. Bot. 2010, 97, 1688–1697. [Google Scholar] [PubMed]
- Moser, B.W.; Pipas, M.J.; Witmer, G.W.; Engeman, R.M. Small mammal use of hybrid poplar plantations relative to stand age. Northwest Sci. 2002, 76, 158–165. [Google Scholar]
- Weger, J.; Vávrová, K.; Kašparová, L.; Bubeník, J.; Komárek, A. The influence of rotation length on the biomass production and diversity of ground beetles (Carabidae) in poplar short rotation coppice. Biomass Bioenergy 2013, 54, 284–292. [Google Scholar]
- Aulén, G. Increasing insect abundance by killing deciduous trees: A method of improving the food situation for endangered woodpeckers. Ecography 1991, 14, 68–80. [Google Scholar]
- Martinsen, G.D.; Whitham, T.G. More birds nest in hybrid cottonwood trees. Wilson Bull. 1994, 106, 474–481. [Google Scholar]
- Heilman, P.E. Planted forests: Poplars. New For. 1999, 17, 89–93. [Google Scholar]
- Vanden Broeck, A.; Villar, M.; van Bockstaele, E.; VanSlycken, J. Natural hybridization between cultivated poplars and their wild relatives: Evidence and consequences for native poplar populations. Ann. For. Sci. 2005, 62, 601–613. [Google Scholar] [CrossRef]
- Harvey, H.P.; van den Driessche, R. Poplar nutrient resorption in fall or drought: Influence of nutrient status and clone. Can. J. For. Res. 1999, 29, 1916–1925. [Google Scholar]
- Jonczak, J.; Dziadowiec, H.; Kacprowicz, K.; Czarnecki, A. An assessment of the influence of poplar clones Hybrid 275 and Robusta on soil cover based on the characteristics of their plant litter fall. Pol. J. Soil Sci. 2010, 43, 9–19. [Google Scholar]
- Driebe, E.M.; Whitham, T.G. Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 2000, 123, 99–107. [Google Scholar] [CrossRef]
- Kort, J.; Collins, M.; Ditsch, D. A review of soil erosion potential associated with biomass crops. Biomass Bioenergy 1998, 14, 351–359. [Google Scholar]
- Greacen, E.; Sands, R. Compaction of forest soils. A review. Soil Res. 1980, 18, 163–189. [Google Scholar]
- Göransson, G. Bird fauna of cultivated energy shrub forests at different heights. Biomass Bioenergy 1994, 6, 49–52. [Google Scholar]
- Abrahamson, L.P.; Robison, D.J.; Volk, T.A.; White, E.H.; Neuhauser, E.F.; Benjamin, W.H.; Peterson, J.M. Sustainability and environmental issues associated with willow bioenergy development in New York (U.S.A.). Biomass Bioenergy 1998, 15, 17–22. [Google Scholar] [CrossRef]
- Le Floch, S. Les “ramiers”: Un espace riverain inaccessible de la Garonne? Ethnol. Fr. 2002, 32, 719–726. [Google Scholar]
- Mooney, S.; Eisgruber, L.M. The influence of riparian protection measures on residential property values: The case of the Oregon plan for salmon and watersheds. J. Real Estate Financ. Econ. 2001, 22, 273–286. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use. Forests 2016, 7, 37. https://doi.org/10.3390/f7020037
Fortier J, Truax B, Gagnon D, Lambert F. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use. Forests. 2016; 7(2):37. https://doi.org/10.3390/f7020037
Chicago/Turabian StyleFortier, Julien, Benoit Truax, Daniel Gagnon, and France Lambert. 2016. "Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use" Forests 7, no. 2: 37. https://doi.org/10.3390/f7020037
APA StyleFortier, J., Truax, B., Gagnon, D., & Lambert, F. (2016). Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use. Forests, 7(2), 37. https://doi.org/10.3390/f7020037