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Abstract: The methods for measuring vegetation cover in Mexican forest surveys are subjective and
imprecise. The objectives of this research were to compare the sampling designs used to measure
the vegetation cover and estimate the over and understory cover in different land uses, using digital
photography. The study was carried out in 754 circular sampling sites in central Mexico. Four spatial
sampling designs were evaluated in three spatial distribution patterns of the trees. The sampling
designs with photographic captures in diagonal form had lower values of mean absolute error (MAE
< 0.12) and less variation in random and grouped patterns. The Carbon and Biomass Sampling Plot
(CBSP) design was chosen due to its smaller error in the different spatial tree patterns. The image
processing was performed using threshold segmentation techniques and was automated through an
application developed in the Python language. The two proposed methods to estimate vegetation
cover through digital photographs were robust and replicable in all sampling plots with different
land uses and different illumination conditions. The automation of the process avoided human
estimation errors and ensured the reproducibility of the results. This method is working for regional
surveys and could be used in national surveys due to its functionality.
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1. Introduction

Vegetation cover is used in studies of the aerosphere, pedosphere, hydrosphere, and biosphere,
as well as their interactions [1]. Remote sensing (RS) technology, particularly the development
of vegetation indices, has allowed researchers to estimate vegetation cover at a regional and
global scale [2].

Validation of high and medium resolution satellite products is a critical aspect of its usefulness
in operational approaches [3]. The feasibility and precision of RS must be verified before data can
be applied [4]. One way of validating and re-scaling RS products is the use of field measurements,
especially the application of digital photography [5,6].

The use of digital photography to estimate the understory cover (shrub and herbaceous—nadir
angle) and overstory cover (arboreal—zenith angle) has been advocated in recent years as one of
the most accurate methods to estimate these variables [7,8]. According to Liang et al. [1] and White
et al. [9], this technique is the most reliable and can be easily employed to extract vegetation cover
information in different physiographic conditions.
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In relation to shrub and herbaceous cover (understory), robust segmentation algorithms have been
developed to discriminate bare soil and vegetation regardless of the type of vegetation present [10,11]
and type of luminosity (presence of shadows) [12]. On the other hand, vegetation cover estimations
have also progressed in terms of the classification methods [13,14], automation [15], and classification
when there is a mixture of vegetation-sky pixels [16].

The advantage of using a non-destructive method such as digital photography to estimate the
vegetation cover is that it can be related to the biophysical variables of an ecosystem at a lower
cost and time [17,18]. However, few operational studies (local, regional, and national surveys)
contemplate measuring this variable for lack of knowledge on how to pursue it efficiently [19] or for
the inconsistency of associating forest attributes to a sampling site with an estimated vegetation cover
that may exceed the site surface [20].

A disadvantage of the mentioned methods is that sampling sites in which the experiments are
made are generally small and homogeneous (low slope and similar land use conditions and plant
architecture) [21]. Therefore, the application of these techniques in operational inventories must
be planned to efficiently provide the information for which they are developed, and this condition
includes considerations of the accuracy of estimates, costs of data collection and processing, and the
speed of the process from the planning stage to the presentation of results [22].

At present, there is no agreement among researchers on how to define the optimum sampling
design to derive the leaf area index and vegetation cover in field measurements [23]. In a sampling
plot, the vegetation cover and its spatial distribution may vary when considering the effects
of management [24].

A rapid, reliable, and economical way to compare vegetation cover sampling designs is by
predicting the crown diameter through allometric ratios [25] and by estimating the spatial patterns of
trees in the sample site. The advantage is that the crown diameter and spatial clustering of trees can be
projected into a geographic information system [26], avoiding the intensive work of conducting and
comparing them directly in a survey campaign [27].

Due to the lack of an accurate vegetation cover estimation method for forest surveys in México,
the objectives of the present study were: (1) to compare the sampling patterns used to measure the
vegetation cover; and (2) to estimate the overstory (trees) and understory (shrub and herbaceous)
cover in sampling sites of the State of Mexico, Mexico, using a practical procedure and easily
reproducible method.

2. Materials and Methods

The State of Mexico is located in the southern part of the southern plateau of Mexico, between
parallels 18◦22′ and 20◦17′ North and meridians 98◦36′ and 100◦37′ West, in an area of 22,333 km2.
In this region and particularly around the Valley of Mexico, there are specific environmental and
historical conditions that have resulted in great biological and cultural diversification along mountain
ranges, basins, rivers, and forests.

Ceballos et al. [28] consider that the vegetation of the State of Mexico is represented by three main
ecosystems with variations: temperate-cold (temperate forests), semi-warm and sub-humid warm
(low deciduous forests), and arid zones (arid and semi-arid vegetation).

The study was carried out from January to September 2015; 754 circular sampling sites of 1000 m2

were established and distributed in eight forest regions of the State of Mexico (Figure 1) [29].
In each region, we collected information on the type of vegetation cover and land use.

The classification of vegetation was established according to the land use and vegetation chart, Series
IV, scale 1:250,000 [30], and was verified in the field.
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Figure 1. Spatial location of the sampling sites, within the forest regions of the State of Mexico.

2.1. Spatial Projection to Evaluate Sampling Designs

The regional survey was planned as a complement to the National Forest and Soil Inventory
(NFSI) in a simplified way, where the height and crown diameters were not measured as done in the
NFSI. These variables were planned to be estimated from the state and national surveys.

Before the survey phase, a pre-survey of 30 sites was carried out in the Texcoco forest region to
evaluate the spatial pattern of trees in four sampling designs of vegetation cover. Comparisons were
made between VALERI [31] and SLAT [32] designs, along with two alternative samples: CBSP (carbon
and biomass sampling plots) and RM (regular mesh). The VALERI design is composed of 13 samples,
SLAT of 15 samples, CBSP of 21 samples, and RM of 37 samples (Figure 2a).
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(b) Projected photo capture areas (pixels) in a CBSP sampling design.
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Due to the difficulties of knowing the real vegetation cover within a sampling site, the comparison
of sampling designs was performed within a geographic information system. Initially, we recorded
the central coordinates of each site (as planned in the regional survey), the distance of the trees to the
central point, and their azimuth. Then we calculated the location of trees using the central location of
the plot and the azimuth and distance to the central point of the respective tree.

Given that no sampling of the tree crowns diameter was recorded in the survey, an allometric
relationship was established between the crown diameter and diameter at breast height [25]. The data
of this function were obtained from the National Forest and Soil Inventory [33]. The function is the
following: DC = 0.1553 + 0.1859 (Dn) (R2 = 0.79, p < 0.001), where DC is the tree crown diameter and
Dn is the diameter at breast height. The linear model is generalized because it comprised all of the
timber species found in the survey. The estimated DC allowed us to construct the crown influence area
projection of the trees, assuming a circular shape.

The spatial patterns of the trees were evaluated using the Average Nearest Neighbor (ANN)
equation [34]. If the pattern of the tree distribution is completely random ANN = 1, if ANN < 1
the trees are grouped, and if ANN > 1 the tree mass is regular (dispersed). The ANN analysis was
performed within the ArcGIS (10.3, Esri, Redlands, CA, United States).

2.2. Projected Photographic Captures within the GIS

A single photographic capture area of 16.38 m2 was established to determine the projected cover
per site and type of sampling (the procedure for estimating the area is described below). In each area we
built a grid (10 × 10) with the purpose of simulating the pixels of a photographic camera (Figure 2b).

The total observed cover was calculated by dividing the area of overlapping crowns between the
sizes of the plot (1000 m2). On the other hand, the estimated cover resulted from the following equation:

n

∑
i=0

NPSi
NTP

(1)

where NPSi is the number of projected pixels (grid) intersecting with the tree crown area and NTP is
the total number of pixels per sampling design.

As a quantitative measure of the error, the mean absolute error (MAE) was estimated:

MAE = N−1
N

∑
I=1
|Oi− Ei| (2)

where O is the observed value of the total projected cover, E is the estimated value (Equation (1)), and
N is the number of captures per sampling design.

2.3. Field Sampling

Sampling sites were targeted to include vegetation succession and degradation among land uses in
Central Mexico [29]. Information was collected on sites with and without anthropogenic intervention.

2.4. Photo Features

The photographic images were taken at a resolution of 5184 × 3456 pixels in JPG format. We used
a Canon EOS Rebeld T5RM camera. The camera lens was adjusted to a range of 18 to 55 mm focal
length and an ISO 200 with aperture and exposure in automatic mode.

2.5. Taking Photos at the Sampling Sites

We applied the CBSP sampling design with 21 captures to nadir and zenith, according to
Figure 3a. The lines represent the transects within the sampling site (L1–L4) and each letter represents
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a photographic capture. Figure 3b shows the photograph taken at zenith, where the distance between
the camera and the ground is 1.5 m.

Figure 3c shows the process of shooting understory (shrub and herbaceous strata), where the
interference of the personnel in the photograph was avoided using a stick of five meters long; in this
case, the distance between the camera and the ground was 3 m. Two levels of bubble were used to
control the angle in which the photographs were taken, one near the operator and the other one stuck
to the side of the camera.
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The purpose of the CBSP sampling was to capture the largest possible physical area with the
fewest samples. To do so, the visual field angle of the lens (θ) was adjusted depending on the size of
the sensor (n) and its focal length (f ):

θ = 2× tan−1
(

n
2× f

)
(3)

The real area covered by a photograph depends on three variables: sensor size (nij), focal length
of the lens (f ), and distance of the lens to the object (h). In the case of nadir, h is the distance between
the camera lens and the ground. For zenith, h corresponds to the distance between the lens and the
tree crowns. Equation (4) defines the calculation of the real area of the photograph:

Gij =
nij × h

f
(4)

where G is the actual length of the object in the horizontal (i) and vertical (j), where the horizontal
distance of the ni sensor size of the camera used was 22.3 mm and the vertical distance nj was 14.9 mm.

The value of f for the nadir photographs was set at 18 mm because h was established at 3 m.
By solving Equation (4), we estimated a real area to nadir of 9.2 m2.

In the case of zenith photographs, a larger real area was required to be representative at the
sampling site. The minimum average height of the tree crowns in the forested areas of the region was
4 m. At this point, the value of θ must be adjusted to reach the largest surface, so the value of f was set
at 18 mm. Then, by solving Equation (4), the real area at zenith is 16.38 m2.

In heterogeneous forests, such as the study area, the height of the trees can vary in short distances,
so in order to maintain the area captured independently of the height of the tree, the value of f can
be adjusted by multiplying the average height of the trees at the point of capture by the constant 4.5
(f = 4.5 × h). If the height value was four meters, the camera was placed as close as possible to the
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ground; in the case of exceeding six meters in height, the camera was placed at a fixed distance of
1.5 m on the ground.

2.6. Estimation of over and Understory Cover

The processing of images to estimate the vegetation cover is different in nadir and zenith
projections; in the first case a robust classifier is needed to distinguish the shade of the vegetation,
whereas the second one requires a methodology that distinguishes the cover of the canopy in contrast
to the sky (atmosphere). Due to the large number of photographs that needed to be processed
(24,182 photographs), a code was written in the Python 2.7RM language (Python Software Foundation
(PSF): Wilmington, DE, USA) to optimize the process (the software can be requested from the authors).
The following sections describe the methodology used.

2.6.1. Estimation of Overstory Cover

The photographs were taken in the morning and in the afternoon, before the sun surpassed 130◦

of azimuth or after 230◦ to avoid confusion due to the brightness of the leaves in association with
the sky. We used the SunEarthTool tool (http://www.sunearthtools.com/dp/tools/pos_sun.php) to
identify the appropriate times to take the photographs.

The methodology of Fuentes et al. [15] was adjusted within the Python language for image
processing. The images were converted to vector format in order to separate the three color channels
(R, G, B). The blue channel (B) was used to filter the clouds from the image because it gives the best
contrast between the cover of the foliage and the sky with the presence of clouds. The adaptive
threshold method was used to classify the image [35].

The method consists of dividing the image into sub-images. The threshold (M) of the sub-image
is calculated using the mean or median Gaussian methods. In this case, the median was used
as a threshold to perform the separation. The size of the blocks used to divide the image was
200 × 200 pixels. The sum of the proportions of the number of pixels with vegetation in each block to
the total number of pixels of the photograph was the cover of the canopy per photograph. Figure 4
shows an outline of the threshold calculation using this method. The overstory cover includes branches
and the upper stems of trees.
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2.6.2. Estimation of Understory Cover

The classification of green vegetation and soil was achieved by calculating a threshold within a
two-dimensional space. The images were transformed in the color space L*a*b* [10]. The green-red
component a* was used to distinguish the vegetation from the bare soil, where the values skewed to
the left of the histogram indicated green pixels (vegetation) and those skewed to the right showed
pixels in red (bare soil). The assumption of the methodology is that the distribution of this component
tends to be a bimodal Gaussian distribution.

F(x) =
W1√
2πσ1

e
(
(x−µ1)

2

2σ2
1

)
+

W2√
2πσ2

e
(
−(x−µ2)

2

2σ2
2

)
(5)

where µ1 and µ2 are the green vegetation and soil average, respectively; and σ1 and σ2 are the standard
deviations of green vegetation and soil, respectively. The value W1 is a weighting of the pixels in green
and W2 is the respective weighting for soil. The image is scaled to values of 0–255.

Threshold Adjustment

Regardless of the land use, the value of the pixels is between 75 and 150 in all photographs; to
make an optimal adjustment, an initial threshold was set, which was obtained in the middle of the
range 75–150 (T0 = 112). The optimal value of the threshold (T1) occurred when the functions of
Equation (5) were equal (Figure 5). In this case, the error of omission of vegetation and soil classification,
represented by areas S1 and S2, is minimal. The following equation was used to solve T1:

AT12 + BT1 + C = 0 (6)

where:
A = σ2

1 − σ2
2

B = 2×
(
µ1σ2

2 − µ2σ2
1
)

C = σ2
1 µ2 − µ1σ2

2 + 2σ2
1 2σ2

2 ln(σ2W1/σ1W2)
(7)
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In extreme situations where bimodality is not evident, that is, photographs where there is only
vegetation or bare soil, we applied the algorithm proposed by Liu et al. [10].

2.6.3. Calculation of Total Vegetation Cover

Total vegetation cover (TVC) was calculated as follows (Figure 6):
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TVC =
∑n

i=0 FCC
NPT

+

(
1− ∑n

i=0 FCC
NPT

)
×

(
∑n

i=0 FCV
NPT

)
(8)

where FCC is the proportion of the number of pixels classified as aerial (overstory) cover, FCV is the
fraction of the vegetative cover of the understory (lower stratum), and NPT is the total number of
pixels contained in the image. The sum of TVC in all images of the CBSP design was considered the
total cover per plot. Figure 6 presents the flowchart of the process of classification.

2.6.4. Accuracy in Cover Classification

The accuracy of the cover estimates obtained using the proposed methodology was calculated
through a comparison of these values using a visual classification of the images within the ENVI 5.0RM

program. We considered two classes to distinguish the colors in the photographs. In understory, all
pixels in green were considered as leaves, and the rest were classified as bare soil. In overgrowth, all
pixels corresponding to leaves, stems, and branches were classified as cover, and the rest of the pixels
were classified as sky. As mentioned in [11], visual classification is considered as the real values of
cover in the image and those are compared with the automated threshold proposed in this research.

Images of 12 zenith plots (252 images) and 11 plots to nadir (231 images) were used. The plots
represented different land uses. The accuracy of the implemented classifier (AC) was evaluated using
the following formula [11].

AC = 100× (1−
∑n

i=1

∣∣∣ A−B
A

∣∣∣
N

) (9)
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where A represents the number of pixels with a real presence of vegetation in the reference image
(visual classification) and B represents the number of pixels classified as having vegetation in the
applied methods. An average accuracy was obtained in each plot evaluated, where 100% corresponds
to a classification without errors.

3. Results

3.1. Sampling Design

The observed (total area of projected crowns) and estimated (projected photographic captured
area) values of the projected cover (%) per type of sampling design and spatial pattern of the trees are
shown in Table 1. In the pattern analysis of the trees, 10 plots corresponded to a grouped (clustered)
pattern, 15 to a random pattern, and five plots belonged to a dispersed cluster. The calculation of the
estimated area is explained in Equation (1).

Table 1. Estimated and observed cover values (%) per type of sampling and spatial pattern of trees.

Design Spatial Pattern Observed (%) Estimated (%) MAE Coefficient of Variation

RM
Grouped 87.1 80.9 0.175 0.24
Random 64.0 58.1 0.173 0.34

Dispersed 34.9 29.0 0.171 0.06

CBSP
Grouped 87.1 85.3 0.091 0.09
Random 64.0 62.5 0.097 0.33

Dispersed 34.9 32.9 0.089 0.16

SLAT
Grouped 87.1 86.9 0.079 0.22
Random 64.0 62.2 0.119 0.38

Dispersed 34.9 33.7 0.117 0.20

VALERI
Grouped 87.1 34.2 0.153 0.23
Random 64.0 31.7 0.179 0.41

Dispersed 34.9 29.2 0.155 0.22

RM: regular mesh; CBSP: Biomass and carbon sampling plots; SLAT: tree and land use sampling; VALERI: Remote
sensing ground validation instrument.

The CBSP design showed the least error in two of the three types of spatial patterns. The second
design that showed minor error was SLAT, which indicates that the sampling design with photographic
captures in diagonal form exhibits better results. The RM and VALERI designs had the highest
and lowest number of samples, respectively. However, their errors were the highest (MAE > 0.15).
These results practically discard them from being considered in operational sampling.

The random spatial pattern showed a higher coefficient of variation (CV) in the four sampling
designs due to the design geometry. The dispersed pattern was the second one with the highest CV
in the CBSP, SLAT, and VALERI designs. Within the grouped pattern, the CBSP sample recorded the
lowest variation.

3.2. Segmentation of Images

The use of the Python program allowed us to make the segmentation threshold selection consistent.
The number of captured photos in the sampling makes it impractical to analyze the photographs in a
supervised way or in semi-automated processes (photo by photo). The developed program classifies a
sampling plot of 42 photographs at zenith and nadir in 30 s. The processor used has 2.6 GHz and 8 GB
of memory.

3.3. Classification of Overstory Images

Figure 7 shows the classification of zenith images in four cover conditions. Figure 7a and its
classification 7b represent the photograph with the highest cover in the whole 97% sampling (Oyamel
fir forest). Figure 7c, d represent 50% cover (Oyamel fir forest secondary vegetation). Figure 7g
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shows how the classifier correctly discriminates foliage from clouds (secondary vegetation of Pine
Forest). Finally, Figure 7i presents a correct classification with minimum cover (secondary vegetation
of Pine Forest).
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to the original photograph. Images (b,d,g,i) correspond to the adaptive threshold classifier.

3.4. Classification of Undestory Images

Figure 8 presents a sample of four photographs in different land use and different illumination
and vegetation cover conditions, as well as their respective classification and histogram. Figure 8a,b
are presented within a plot of land with secondary vegetation of Oyamel fir forest; the threshold in
this capture was a* = 119 and the area under the curve with vegetation (V) was 43%. Figure 8c,d
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correspond to herbaceous vegetation within an Oyamel fir forest; in this particular vegetation the
illumination was reduced because of the high overstory cover, with an understory cover of 62%.

Figure 8f,g show the image within a Rainfed Agriculture area and we observed that the classifier
adequately discriminated between bare soil vegetation and shadows; the threshold in this image was
a* = 122 and the vegetation cover was 35%. Figure 8i,h are presented within a plot without vegetation;
the classifier was able to detect the minimal green cover found in the photograph. In this case, as the
distribution of the histogram was unimodal, the threshold was set at a* < 105 and the vegetation cover
was 0.8%.Forests 2017, 8, 392    12 of 19 
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Figure 8. Classification of images in different land uses to nadir. Images (a,c,f,h) correspond to the
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distribution of the histogram according to the cover.

3.5. Accuracy of the Classification

Table 2 presents the comparison of the classified cover (%) by the supervised classification method
(visual classification) and the zenith method (Estimated). The accuracy was high in all land uses with
an average of 93%. In relation to the coefficient of variation CV (representing the variability of the
sampling design), we observed that this variability increased as the estimated cover of the different
land uses declined. In primary forests (BQP, BQ, BA, BPQ), the variation of the sampling design was
low; insofar as there was disturbance in the land use (VSa, VSA, VSh) the variation increased because
the static designs were sensitive to the opening of the canopy.
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Table 2. Accuracy evaluation of the visual interpretation of the images in 12 zenith sampling plots
(overstory cover).

Land Use Description Classified (%) Estimated (%) AC CV

BQP Oak-pine forest 84.0 83.0 99.0 0.06
BQ Oak forest 86.0 84.0 96.0 0.09
BA Oyamel fir forest 82.0 78.0 94.0 0.10

BPQ Pine-oak forest 74.0 75.0 96.0 0.12
VSa/BQ Secondary shrub vegetation of oak forest 52.0 48.0 90.0 0.13

VSA/BPQ Secondary arboreal vegetation of pine-oak forest 69.0 67.0 94.0 0.17
VSa/BQP Secondary shrub vegetation of oak-pine forest 71.0 69.0 96.0 0.21
VSa/BQP Secondary shrub vegetation of oak-pine forest 50.0 49.0 96.0 0.22
VSA/BA Secondary arboreal vegetation of oyamel fir forest 68.0 62.0 91.0 0.24
VSA/BP Secondary arboreal vegetation of pine forest 22.0 22.0 91.0 0.28
VSh/BP Secondary herbaceous vegetation of pine forest 16.0 15.0 92.0 0.66

VSh/BPQ Secondary herbaceous vegetation of pine-oak forest 31.0 35.0 87.0 0.68

Table 3 presents the evaluation of the vegetative cover to nadir. The average accuracy was 94%.
As in zenith, the estimated cover maintains a negative correlation with CV. For this classification, the
greatest cover is found in secondary herbaceous vegetation (VSh) where the variability of the sampling
is lower; as the vegetation transits to mature forest, the CV is high due to the fact that the understory
cover is random. In sites with non-vascular vegetation (bryophytes), the classifier overestimates the
percentage of vascular vegetation because it associates the green color with this type of cover.

Table 3. Accuracy evaluation of the visual interpretation of the images in 12 sampling plots at nadir
(understory cover).

Land Use Description Classified (%) Estimated (%) AC CV

VSh/BPQ Secondary herbaceous vegetation of pine-oak forest 82.10 85.00 89.0 0.06
VSh/BP Secondary herbaceous vegetation of pine forest 78.43 79.00 96.0 0.10

TA Rain-fed agriculture 27.37 28.00 90.0 0.16
VSh/BA Secondary herbaceous vegetation of oyamel fir forest 84.00 83.50 98.0 0.19
VSa/BQ Secondary shrub vegetation of oak forest 32.70 32.00 94.0 0.51

PC Cultivated grassland 47.23 49.33 97.0 0.84
BP Pine forest 29.30 27.67 95.0 0.86

VSA/BPQ Secondary arboreal vegetation of pine-oak forest 37.65 34.42 92.0 0.87
BQP Pine-oak forest 30.69 29.87 96.0 0.88
BQ Oak forest 6.58 6.00 94.0 0.94

VSa/BQP Secondary shrub vegetation of oak-pine forest 5.63 6.95 87.0 0.98

4. Application of CBSP Design to the Regional Survey

After validating that the CBSP design was robust and precise enough to be used in a regional
survey, it was implemented in the campaign through a replication of the procedure used in the
pre-survey evaluation in the 754 sampling plots.

It is identified that the application of the sampling design allowed us to capture photographs in
an easy and fast way in the majority of land uses.

Figure 9 shows the average total vegetation cover of the main land uses in the regions of the State
of Mexico. The cover data are presented from highest to lowest and from mature forest to agriculture.
Mature forests have a tendency of 50–90% cover in the eight regions, and there was higher average
coverage in the region of Toluca (70–90%) (Figure 9a); in wooded areas with secondary tree vegetation
(VSA) and secondary shrub and herbaceous vegetation (VSa and Vsh), the cover ranges from 20 to 90%.
This is because the limit of tree vegetation in these plots is a mixture of perennial and deciduous cover,
therefore presenting a seasonal change of vegetation cover because of the weather pattern. In this case,
the region with the highest coverage was Zumpango (Figure 9b) and that with the lowest coverage
was Coatepec (Figure 9f).

With regard to cover in agricultural areas (RA, TA), the development of cover over time follows a
spatial pattern associated with the time of planting and growth. Cover starts at <10% in all regions
and the percentage increases up to 100%, as in the Toluca and Texcoco regions (Figure 9a,c).
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Figure 9. Average total vegetation cover by land use in the eight regions of the State of Mexico:
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(2) disturbed forest; (3) grassland; (4) agricultural area.

5. Discussion

The use of digital photography for vegetation cover estimations is an easy, low-cost, and
potentially suitable approach for hard-to-reach places. These properties give this method an advantage
over direct (destructive) and indirect (fisheye cameras) methods [13]. In Mexico, operational surveys
such as the National Forest and Soils Survey [33] generate vegetation cover estimations that rely on
the technician criteria in the field. This research proposes an accurate survey design method which is
potentially suitable for the forest sector in the country.
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The advantage of using field data is its strength for the validation of satellite information, as a way
to use the cover values at greater scales [6]. On the other hand, a disadvantage of field photography
data is the requirement of several photographs in order to produce a reliable estimate. However, there
are software methods for the automation of these processes, such as the one proposed in this research.

5.1. Sampling Designs Comparison

One important consideration in field vegetation cover measurements is the need to determine an
appropriate sampling design [31]. The methodologies for measuring vegetation cover are ambiguous
in reference to which method should be used to ensure a correct estimation within a sampling plot.
The projection made in the GIS allowed us to observe differences in vegetation cover estimations with
a simple scheme. The results provide important information for choosing a sampling design and
reducing the costs of the collection and processing of field data [22], considering the large amount of
samples of this survey.

Martens et al. [36] show that the spatial patterns influence the height, cover, and distribution of
vegetation in their different strata. Our results showed that, independently of the spatial pattern of the
survey sites, sampling designs that captured diagonal photographs (CBSP and SLAT) exhibited the
least estimation error.

The advantages of these designs are the low number of photographs needed (42 phothographs)
and their easy field implementation. This ratifies the vegetation cover estimation operability using this
method and how it can be related to grouping indices to evaluate the effect of the forest management
of zones without disturbance on disturbed zones [24].

5.2. Sampling Survey

Forest surveys in several parts of the world, including Mexico, are carried out in circular plots
of 1000 m2 (17.85 m radius) [22]. In this research, we adopted this design to evaluate the biomass
and carbon storage in different land uses within the State of Mexico. The CBSP design proved to be
feasible for its implementation in different land uses and spatial patterns of the trees; this simple design
allowed the application in distant sampling points and rugged terrain, which makes it an operative
method to capture vegetation cover with digital photographs.

An example of the sampling operability is that bubble levels were used to stabilize the camera at
each sampling point, instead of using tripods to fix it. This technique helped to reduce the time to take
the photographs and presented no considerable error when compared to tripod shots [37].

The number of samples and their arrangement was another variable to be considered for the
sampling to be operative and related to other variables measured in the plot (i.e., biomass, carbon),
so captures were fixed at the ends of the sites [20]. The CBSP design obtained the best results when
estimating the vegetation cover. The efficiency of its application and smaller errors in the cover
estimation turns it into a practical design for this type of application, besides saving storage and time
when processing the images.

The spatial distribution of trees within the site is an important element for the dynamics of the
forest ecosystem [26]. In the case of overstory cover, we observed that the applied sampling design
showed a negative trend between the estimated cover and its coefficient of variation (CV). The primary
forests presented high and compact canopy covers (low CV); when reducing it, the canopy cover
tends to be dispersed (high CV). In the case of understory cover, the opposite occurs. In disturbed
areas (secondary vegetation), the cover is larger and compact; when this cover is reduced, the pattern
is dispersed.

The real area of a photograph is another important aspect that has been little explored in
vegetation cover sampling design. Researchers generally use a fixed lens viewing angle (35–40◦)
to estimate the canopy cover, so a greater opening angle would be measuring the closure of the canopy.
Jennings et al. [38] describe in detail the difference between these two concepts. In this study, we
observed that in real situations the height of the trees in a sampling site is heterogeneous. For this
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reason, we proposed to adjust the focal length of the camera at the point of capture by a constant as
this ensures that one is able to approximate and make repeatable the capture area independently of the
architecture of the trees.

5.3. Automated Classification of Images

The automation of vegetative cover classification is a process that avoids the error of the human
component and ensures the possibility of reproducing the results [11]. The efforts to automate
image classification have focused on programs such as MATLAB [12,15,39], WinScanopy [40], or
Photoshop [41], among others. But although the former meets the requirement of making the batch
processing of the images operative, it has the disadvantage of having an additional cost. The other
programs have the disadvantage of processing the images photo by photo, which discarded them
for the analysis of cover in this study. The PythonRM program was chosen for the versatility of
the specialized libraries available, and for being a free access program. The written code enabled
us to process in batch the images of the sampling in a time similar to that described in programs
like MATLAB.

5.3.1. Overstory Cover

In the classification of digital photographs, binary methods (global thresholds) are generally used
to estimate canopy cover [42]. The colors of the classified images have gray tonalities for vegetation
and white for the sky. According to Chityala and Pudipeddi [35], the accuracy in the classification for
the global threshold methods is low. The problem is trying to find the maximum variance between two
logical groups of segments within the whole image, which can cause confusion in the classification by
overexposure in the camera or image capture at inappropriate times. In this research, we propose the
use of the adaptive threshold in the blue space of the image [15]. The method is based on the same
principles of the global threshold, but the segmentation statistics are done at the block level within the
image, allowing greater accuracy in the overall classification.

The accuracy of the classification is high and related to the comparison of binary algorithms
performed by Ghatthorn and Beckschäfer [42]. The sampling was directed to avoid the effect of the
sun (the captures were made before noon and at near sunset); however, in the sampling, there were
circumstances that caused the photographs to exceed the proposed range, such as the VSh/BPQ land
use plot (Table 2), which showed the lowest precision (87%) [16]. Nonetheless, the development of
methodologies applied to this problem are beyond the scope of this research.

5.3.2. Understory Cover

There are many methods to extract the vegetation cover fraction [11,12,43] so the degree of
accuracy is an important factor in the efficiency of field measurements. For example, supervised
classification has a high accuracy but low efficiency, while unsupervised classification has a high
efficiency but low precision due to commission and omission errors [1].

The algorithm proposed by Liu et al. [10] has the property of being simple, easy to automate,
and has a high degree of precision. When comparing it with the supervised classification in
different sampling plots, the results in terms of precision were high (>87%); the main problem of the
misclassification was the confusion of the vascular vegetation with bryophytes, which in the color
space *a detects a green color that is difficult to discern. In conditions of low illumination due to the
effect of the canopy, the algorithm had no problems in correctly classifying vegetation and shade [12],
and with a single component predomination (bare soil) in the photograph, the classifier generated
good results (Figure 8i).

The two methods proposed to evaluate the over and understory vegetation cover were robust and
replicable in all sampling plots. The reason for estimating the foliar projective cover rather than the
leaf area index is that the former is a more adequate variable to characterize vegetation [44] since the
projective foliar cover captured with digital photographs contains information on individual plants
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and their spatial distribution. With this perspective and considering the validation of the proposed
sampling and plot area, we will contemplate the validation of biophysical variables calculated with
remote sensors in future work of the research group.

6. Conclusions

The over and understory vegetation cover was estimated with digital photographs in sampling
plots of the State of Mexico. The high efficiency and precision of the classification methods indicate
that they are robust for discerning vegetation in different land uses and illumination conditions.

The use of digital photography reduces the ambiguity of vegetation cover estimations in regional
and national surveys. The proposed method is easily reproducible in heterogeneous land and
vegetation conditions.

The automation of the process using a free programming language avoided human errors and
ensured the reproducibility of the results at a low cost.

The sampling methods using the capture of diagonal-angled photographs were the best way
to obtain less biased information when taking digital photographs at a circular sampling site.
The simulation showed that the CBSP design has a smaller error when considering the spatial
distribution of trees within the sampling site. Its easy field management, the number of photographs
per site, and its precision make it an operative design. One additional advantage of the proposed
field survey is that the real area covered by the photograph is independent of the height of trees.
This guarantees representability and avoids image superposition in the sampling site.

Mature forests have a high and compact overstory vegetation cover, which tends to be reduced in
secondary forests. The greater cover of the understory is found in secondary forests, where it is denser.
The cover of the undergrowth declines in mature forests.

The application of this method for regional and national surveys is recommended.

Acknowledgments: We appreciate the financial support given by the Programa Mexicano del Carbono and
Protectora de Bosques del Estado de México (PROBOSQUE) which allowed us to conduct this study.

Author Contributions: Víctor Salas-Aguilar and Fernando Paz-Pellat contributed to the initial proposal of the
methodology. Víctor Salas-Aguilar designed and developed the software to process the data in python for
implementation on a larger scale. Fabiola Rojas-García, Cristóbal Sánchez-Sánchez, J. René Valdez-Lazalde, and
Carmelo Pinedo-Alvarez conducted the research methods. All authors discussed the structure and commented on
the manuscript at all stages.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liang, S.; Li, X.; Wang, J. Advanced Remote Sensing: Terrestrial Information Extraction and Applications; Academic
Press: Cambridge, MA, USA, 2012.

2. Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in
numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [CrossRef]

3. Li, Y.; Wang, H.; Li, X.B. Fractional vegetation cover estimation based on an improved selective endmember
spectral mixture model. PLoS ONE 2015, 10, e0124608. [CrossRef] [PubMed]

4. Mu, X.; Hu, M.; Song, W.; Ruan, G.; Ge, Y.; Wang, J.; Huang, S.; Yan, G. Evaluation of sampling methods for
validation of remotely sensed fractional vegetation cover. Remote Sens. 2015, 7, 16164–16182. [CrossRef]

5. Li, F.; Chen, W.; Zeng, Y.; Zhao, Q.; Wu, B. Improving estimates of grassland fractional vegetation cover
based on a pixel dichotomy model: A case study in Inner Mongolia, China. Remote Sens. 2014, 6, 4705–4722.
[CrossRef]

6. Mu, X.; Huang, S.; Ren, H.; Yan, G.; Song, W.; Ruan, G. Validating GEOV1 fractional vegetation cover
derived from coarse-resolution remote sensing images over croplands. IEEE J. Sel. Top. Appl. Earth Observ.
Remote Sens. 2015, 8, 439–446. [CrossRef]

7. Zhou, Q.; Robson, M.; Pilesjo, P. On the ground estimation of vegetation cover in Australian rangelands.
Int. J. Remote Sens. 1998, 19, 1815–1820. [CrossRef]

http://dx.doi.org/10.1080/014311698215333
http://dx.doi.org/10.1371/journal.pone.0124608
http://www.ncbi.nlm.nih.gov/pubmed/25905772
http://dx.doi.org/10.3390/rs71215817
http://dx.doi.org/10.3390/rs6064705
http://dx.doi.org/10.1109/JSTARS.2014.2342257
http://dx.doi.org/10.1080/014311698215261


Forests 2017, 8, 392 17 of 18

8. Chianucci, F.; Cutini, A. Estimation of canopy properties in deciduous forests with digital hemispherical and
cover photography. Agric. For. Meteorol. 2013, 168, 130–139. [CrossRef]

9. White, M.A.; Asner, G.P.; Nemani, R.R.; Privette, J.L.; Running, S.W. Measuring fractional cover and
leaf area index in arid ecosystems: Digital camera, radiation transmittance, and laser altimetry methods.
Remote Sens. Environ. 2000, 74, 45–57. [CrossRef]

10. Liu, Y.; Mu, X.; Wang, H.; Yan, G. A novel method for extracting green fractional vegetation cover from
digital images. J. Veg. Sci. 2012, 23, 406–418. [CrossRef]

11. Coy, A.; Rankine, D.; Taylor, M.; Nielsen, D.C.; Cohen, J. Increasing the accuracy and automation of fractional
vegetation cover estimation from digital photographs. Remote Sens. 2016, 8, 474. [CrossRef]

12. Song, W.; Mu, X.; Yan, G.; Huang, S. Extracting the green fractional vegetation cover from digital images
using a shadow-resistant algorithm (SHAR-LABFVC). Remote Sens. 2015, 7, 10425–10443. [CrossRef]

13. Macfarlane, C.; Hoffman, M.; Eamus, D.; Kerp, N.; Higginson, S.; McMurtrie, R.; Adams, M. Estimation
of leaf area index in eucalypt forest using digital photography. Agric. For. Meteorol. 2007, 143, 176–188.
[CrossRef]

14. Chianucci, F.; Chiavetta, U.; Cutini, A. The estimation of canopy attributes from digital cover photography
by two different image analysis methods. iFor. Biogeosci. For. 2014, 7, 255–259. [CrossRef]

15. Fuentes, S.; Palmer, A.R.; Taylor, D.; Zeppel, M.; Whitley, R.; Eamus, D. An automated procedure for
estimating the leaf area index (LAI) of woodland ecosystems using digital imagery, MATLAB programming
and its application to an examination of the relationship between remotely sensed and field measurements
of LAI. Funct. Plant Biol. 2008, 35, 1070–1079. [CrossRef]

16. Macfarlane, C. Classification method of mixed pixels does not affect canopy metrics from digital images of
forest overstorey. Agric. For. Meteorol. 2011, 151, 833–840. [CrossRef]

17. Tausch, R.; Tueller, P. Foliage biomass and cover relationships between tree-and shrub-dominated
communities in pinyon-juniper woodlands. Great Basin Nat. 1990, 50, 121–134.

18. Muukkonen, P.; Mäkipää, R. Empirical biomass models of understorey vegetation in boreal forests according
to stand and site attributes. Boreal Environ. Res. 2006, 11, 355–369.

19. Luna, J.A.N.; Hernández, E.H. Relaciones morfométricas de un bosque coetáneo de la región de El Salto,
Durango. Ra Ximhai 2008, 4, 69–82.

20. Williams, M.S.; Patterson, P.L.; Mowrer, H.T. Comparison of ground sampling methods for estimating canopy
cover. For. Sci. 2003, 49, 235–246.

21. Muir, J.; Schmidt, M.; Tindall, D.; Trevithick, R.; Scarth, P.; Stewart, J. Field Measurement of Fractional
Ground Cover: A Technical Handbook Supporting Ground Cover Monitoring for Australia; Australian Bureau of
Agricultural and Resource Economics and Sciences (ABARES): Canberra, Australia, 2011.

22. Matern, B. Recopilación de Notas Sobre Técnicas de Muestreo Usadas en Inventarios Forestales; SARH-INIFAP Pub.
Especial: Distrito Federal, Mexico, 1993.

23. Gobron, N.; Verstraete, M. Remote sensing and geoinformation processing in the assessment and monitoring
land degradation and desertification state of art and operational perspectives. In Assessment of the Status of the
Development of the Standards for the Terrestrial Essential Climate Variables: Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR); GTOS Secretariat Food and Agriculture Organization of the United Nation (FAO):
Rome, Italy, 23 April 2009.

24. Corral-Rivas, J.J.; Wehenkel, C.; Castellanos-Bocaz, H.A.; Vargas-Larreta, B.; Diéguez-Aranda, U.
A permutation test of spatial randomness: Application to nearest neighbour indices in forest stands. J. For. Res.
2010, 15, 218–225. [CrossRef]

25. Hemery, G.; Savill, P.; Pryor, S. Applications of the crown diameter–stem diameter relationship for different
species of broadleaved trees. For. Ecol. Manag. 2005, 215, 285–294. [CrossRef]

26. LeMay, V.; Maedel, J.; Coops, N.C. Estimating stand structural details using nearest neighbor analyses to link
ground data, forest cover maps, and Landsat imagery. Remote Sens. Environ. 2008, 112, 2578–2591. [CrossRef]

27. Shaw, J.D. Models for Estimation and Simulation of Crown and Canopy Cover; General Technical Report (GTR);
US Forest Service: Washington, DC, USA, 2005.

28. Ceballos, G.; List, R.; Garduño, G.; López, R.; Muñozcano, M.; Collado, E.; San Román, J. La Diversidad
Biológica del Estado de México; Estudio de Estado; Biblioteca Mexiquense del Bicentenario: Ventura, CA,
USA, 2009.

http://dx.doi.org/10.1016/j.agrformet.2012.09.002
http://dx.doi.org/10.1016/S0034-4257(00)00119-X
http://dx.doi.org/10.1111/j.1654-1103.2011.01373.x
http://dx.doi.org/10.3390/rs8070474
http://dx.doi.org/10.3390/rs70810425
http://dx.doi.org/10.1016/j.agrformet.2006.10.013
http://dx.doi.org/10.3832/ifor0939-007
http://dx.doi.org/10.1071/FP08045
http://dx.doi.org/10.1016/j.agrformet.2011.01.019
http://dx.doi.org/10.1007/s10310-010-0181-1
http://dx.doi.org/10.1016/j.foreco.2005.05.016
http://dx.doi.org/10.1016/j.rse.2007.12.007


Forests 2017, 8, 392 18 of 18

29. Programa Mexicano del Carbono (PMC). Manual de Procedimientos Inventario de Carbono+. In Estudio de
Factibilidad Técnica Para el Pago de Bonos de Carbono en el Estado de México; Programa Mexicano del Carbono:
Texcoco, Mexico, 2015; p. 69.

30. INEGI Datos Vectoriales Escala 1:250,000 de Uso de Suelo y Vegetación. Available online: http://www.inegi.
org.mx/go/contends/recant/mussel/ (accessed on 24 May 2017).

31. Baret, F.; Weiss, M.; Allard, D.; Garrigues, S.; Leroy, M.; Jeanjean, H.; Fernandes, R.; Myneni, R.; Privette, J.;
Morisette, J. VALERI: A network of sites and a methodology for the validation of medium spatial resolution
land satellite products. Remote Sens. Environ. 2005, 76, 36–39.

32. Kuhnell, C.A.; Goulevitch, B.M.; Danaher, T.J.; Harris, D.P. Mapping woody vegetation cover over the state
of Queensland using Landsat TM imagery. In Proceedings of the 9th Australasian Remote Sensing and
Photogrammetry Conference, Sydney, Australia, 24 July 1998; pp. 20–24.

33. CONAFOR (Comisión Nacional Forestal). Inventario Nacional Forestal y de Suelos Informe de Resultados
2004–2009 National Forest and Soils Survey, Results Report 2004–2009; CONAFOR: Zapopan, Mexico,
2012; p. 212.

34. Clark, P.J.; Evans, F.C. Distance to nearest neighbor as a measure of spatial relationships in populations.
Ecology 1954, 35, 445–453. [CrossRef]

35. Chityala, R.; Pudipeddi, S. Image Processing and Acquisition Using Python; CRC Press: Boca Raton, FL,
USA, 2014.

36. Martens, S.N.; Breshears, D.D.; Meyer, C.W. Spatial distributions of understory light along the
grassland/forest continuum: Effects of cover, height, and spatial pattern of tree canopies. Ecol. Model.
2000, 126, 79–93. [CrossRef]

37. Origo, N.; Calders, K.; Nightingale, J.; Disney, M. Influence of levelling technique on the retrieval of canopy
structural parameters from digital hemispherical photography. Agric. For. Meteorol. 2017, 237, 143–149.
[CrossRef]

38. Jennings, S.; Brown, N.; Sheil, D. Assessing forest canopies and understorey illumination: Canopy closure,
canopy cover and other measures. Forestry 1999, 72, 59–74. [CrossRef]

39. Korhonen, L.; Heikkinen, J. Automated analysis of in situ canopy images for the estimation of forest canopy
cover. For. Sci. 2009, 55, 323–334.

40. Pekin, B.; Macfarlane, C. Measurement of crown cover and leaf area index using digital cover photography
and its application to remote sensing. Remote Sens. 2009, 1, 1298–1320. [CrossRef]

41. Lee, K.-J.; Lee, B.-W. Estimating canopy cover from color digital camera image of rice field. J. Crop
Sci. Biotechnol. 2011, 14, 151–155. [CrossRef]

42. Glatthorn, J.; Beckschäfer, P. Standardizing the protocol for hemispherical photographs: Accuracy assessment
of binarization algorithms. PLoS ONE 2014, 9, e111924. [CrossRef] [PubMed]

43. Liu, J.; Pattey, E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops.
Agric. For. Meteorol. 2010, 150, 1485–1490. [CrossRef]

44. Poblete-Echeverría, C.; Fuentes, S.; Ortega-Farias, S.; Gonzalez-Talice, J.; Yuri, J.A. Digital cover photography
for estimating leaf area index (LAI) in apple trees using a variable light extinction coefficient. Sensors 2015,
15, 2860–2872. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.inegi.org.mx/go/contends/recant/mussel/
http://www.inegi.org.mx/go/contends/recant/mussel/
http://dx.doi.org/10.2307/1931034
http://dx.doi.org/10.1016/S0304-3800(99)00188-X
http://dx.doi.org/10.1016/j.agrformet.2017.02.004
http://dx.doi.org/10.1093/forestry/72.1.59
http://dx.doi.org/10.3390/rs1041298
http://dx.doi.org/10.1007/s12892-011-0029-z
http://dx.doi.org/10.1371/journal.pone.0111924
http://www.ncbi.nlm.nih.gov/pubmed/25420014
http://dx.doi.org/10.1016/j.agrformet.2010.08.002
http://dx.doi.org/10.3390/s150202860
http://www.ncbi.nlm.nih.gov/pubmed/25635411
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Spatial Projection to Evaluate Sampling Designs 
	Projected Photographic Captures within the GIS 
	Field Sampling 
	Photo Features 
	Taking Photos at the Sampling Sites 
	Estimation of over and Understory Cover 
	Estimation of Overstory Cover 
	Estimation of Understory Cover 
	Calculation of Total Vegetation Cover 
	Accuracy in Cover Classification 


	Results 
	Sampling Design 
	Segmentation of Images 
	Classification of Overstory Images 
	Classification of Undestory Images 
	Accuracy of the Classification 

	Application of CBSP Design to the Regional Survey 
	Discussion 
	Sampling Designs Comparison 
	Sampling Survey 
	Automated Classification of Images 
	Overstory Cover 
	Understory Cover 


	Conclusions 

