Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Plant Sampled Species
2.3. Specific Leaf Area Determination
2.4. Adsorptive Amount for Dust Per Unit of Leaf Area
2.5. AFM Scanning Features of the Leaves Surface
2.6. Microstructure of Leaves
2.7. Statistical Analysis
3. Results and Analysis
3.1. Variation in the Capturing Capacity of Different Tree Species over Time
3.2. Surface Morphological Structures of Leaves from Different Trees
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amann, M.; Klimont, Z.; Wagner, F. Regional and global emissions of air pollutants: Recent trends and future scenarios. Annu. Rev. Environ. Resour. 2013, 38, 31–55. [Google Scholar] [CrossRef]
- Burtraw, D.A.; Krupnick, K.; Palmer, A.; Paul, M.; Cary, B. Ancillary Benefits of Reduced Air Pollution in the US from Moderate Greenhouse Gas Mitigation Policies in the Electricity Sector. J. Environ. Econ. Manag. 2003, 45, 650–673. [Google Scholar] [CrossRef]
- Clark, N.A.; Demers, P.A.; Karr, C.J.; Koehoorn, M.; Lencar, C. Effect of early life exposure to air pollution on development of childhood asthma. Environ. Health Perspect. 2010, 118, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, B.; Niu, X. Study on the adsorption capacities for airborne particulates of landscape plants in different polluted regions in Beijing (China). Environ. Res. Public Health 2015, 12, 9623–9638. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Gang, W.; Xilong, D.; Yang, H. Evaluation of capturing Haze PM2.5 Fine Particulate Matter with Plants in Beijing-Tianjin-Hebei Region in China. Sci. China Earth Sci. 2013, 43, 694–699. [Google Scholar]
- Seinfeld, J.H. Air Pollution Physical and Chemical Fundamentals; McGraw-Hill: New York, NY, USA, 1975; pp. 1–523. [Google Scholar]
- Matsuda, K.; Fujimura, Y.; Hayashi, K.; Takahashi, A.; Nakaya, K. Deposition velocity of PM2.5 sulfate in the summer above a deciduous forest in central Japan. Atmos. Environ. 2010, 44, 4582–4587. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook-2014; China Statistics Press: Beijing, China, 2014.
- Chen, B.; Lu, S.W.; Li, S.N.; Wang, B. Impact of fine particulate fluctuation and other variables on Beijing’s air quality index. Environ. Sci. Pollut. Res. 2015, 22, 5139–5151. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Yook, S.J.; Ahn, K.H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos. Environ. 2011, 45, 6987–6994. [Google Scholar] [CrossRef]
- Räsänen, J.V.; Holopainen, T.; Joutsensaari, J. Particle capture efficiency of different-aged needles of Norway spruce under moderate and severe drought. Can. J. For. Res. 2014, 44, 831–835. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer Smith, P.H.; Taylor, G. Effective tree species for local air quality management. J. Arboric. 2000, 26, 12–19. [Google Scholar]
- Beckett, K.P.; Freer Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and winds peed. Glob. Chang. Biol. 2000, 6, 995–1003. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Mcdonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Lei, W.; Shangyu, G.; Lianyou, L.; Ha, S. Atmospheric particle-retaining capability of eleven garden plant species in Beijing. Chin. J. Appl. Ecol. 2006, 17, 597–601. [Google Scholar]
- Yaoyao, F. Quantitative Research on Regional Forest PM-Capturing Capability and Analysis of the Related Leaf Micro-Morphology Impact: A Case Study of Shaanxi Central Plain; Chinese Academy of Forestry: Beijing, China, 2015. [Google Scholar]
- Bing, W.; Weikang, Z.; Xiang, N.; Jinsong, W.; Xiaoyan, W. Particulate Matter Adsorption Capacity of 10 Evergreen Species in Beijing. Environ. Sci. 2015, 36, 37–42. [Google Scholar]
- Wang, H.; Shi, H.; Li, Y.; Yu, Y.; Zhang, J. Seasonal variations in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Front. Environ. Sci. Eng. 2013, 7, 579–588. [Google Scholar] [CrossRef]
- Zheng, M.; Salmon, L.G.; Schauer, J.J.; Zeng, L.; Kiang, C.S. Seasonal Trends in PM2.5 Source Contributions in Beijing, China. Atmos. Environ. 2005, 39, 3967–3976. [Google Scholar] [CrossRef]
- Mitchell, R.; Maher, B.A.; Kinnersley, R. Rates of particulate pollution deposition onto leaf surfaces: Temporal and inter-species magnetic analyses. Environ. Pollut. 2010, 158, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Dongsheng, G.; Yongqin, C. Morphological structure of leaves and dust-retaining capability of common Street tress in Guangzhou Municipality. Acta Ecol. Sin. 2013, 33, 2604–2614. [Google Scholar] [CrossRef]
- Terzaghi, E.; Wild, E.; Zacchello, G.; Cerabolini, B.E.L.; Jones, K.C. Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos. Environ. 2013, 74, 378–384. [Google Scholar] [CrossRef]
- Chenxi, Z.; Yujie, W.; Yun-qi, W.; Hui-lan, Z.H. Interactions between fine particulate matter (PM2.5) and vegetation: A review. Chin. J. Ecol. 2013, 32, 2203–2210. [Google Scholar]
- Hailong, W.; Xinxiao, Y.; Chen, S.; Yan, Z.H.; Zhenming, Z.H. Advances in the study of PM2.5 characteristic and the regulation of forests to PM2.5. Sci. Soil Water Conserv. 2012, 10, 116–122. [Google Scholar]
- Freer-Smith, P.H.; Beckett, K.P.; Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides × trichocarpa ‘Beaupre’, Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 2005, 133, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Shuxin, F.; Hai, Y.; Shimingyue, Q. Dust capturing of twenty-six deciduous broad-leaved trees in Beijing. Chin. J. Plant Ecol. 2015, 39, 736–745. [Google Scholar]
- Huixia, W. Mechanisms of Plant Leaves Based on Leaf Surface wettability on rainfall Interception and Dust-Capturing; Xi’an University of Architecture & Technology: Xi’an, China, 2012. [Google Scholar]
- Rai, A.; Kulshreshtha, K.; Srivastava, P.K.; Mohanty, C.S. Leaf surface structure alterations due to particulate pollution in some common plants. Environ. Syst. Decis. 2010, 30, 18–23. [Google Scholar] [CrossRef]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Tomašević, M.; Vukmirović, Z.; Rajšić, S.; Tasić, M.; Stevanović, B. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere 2005, 61, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Huixia, W.; Yanhui, W.; Jia, Y.; Binze, X.; Hui, S. Multi-Scale Comparisons of Particulate Matter and Its Size Fractions Deposited on Leaf Surface of Major Greening Tree Species. Sci. Sylvie Sin. 2015, 51, 9–20. [Google Scholar]
- Elena, P.; Tommaso, B.; Gianluca, G.; Pecchioli, L. Air quality impact of an urban park over time. Procedia Environ. Sci. 2011, 4, 10–16. [Google Scholar]
Species | Characteristic of Species | ||
---|---|---|---|
Height/m | Diameter/cm | Amount of Sampled Leaves (g) | |
Pinus tabuliformis | 5.50 ± 1.00 | 10.15 ± 0.23 | 100 |
Pinus bungeana | 5.00 ± 1.50 | 10.22 ± 0.42 | 100 |
Populus tomentosa | 15.00 ± 2.00 | 15.5 ± 0.15 | 200 |
Ginkgo biloba | 12.50 ± 1.50 | 12.34 ± 0.22 | 150 |
Acer truncatum | 6.50 ± 0.50 | 10.67 ± 0.13 | 150 |
Salix matsudana | 12.50 ± 1.50 | 13.54 ± 0.08 | 150 |
Date time | Rain (mm) | Temp (°C) | RH (%) | Wind Speed (mph) | Wind Direction (°) |
---|---|---|---|---|---|
1 to 9 April. | 0 | 16.67 ± 4.44 | 36.32 ± 17.93 | 1.00 ± 1.33 | 181.08 ± 10.77 |
12 to 21 May | 0 | 22.59 ± 4.64 | 43.84 ± 17.65 | 1.17 ± 1.77 | 171.03 ± 19.83 |
12 to 21 June | 0 | 23.70 ± 4.47 | 62.12 ± 19.36 | 0.59 ± 1.11 | 142.96 ± 14.88 |
2 to 11 July | 0 | 28.14 ± 3.40 | 65.97 ± 23.11 | 0.88 ± 1.47 | 146.59 ± 28.51 |
15 to 24 August | 0 | 26.42 ± 3.53 | 65.78 ± 17.99 | 0.36 ± 0.76 | 130.80 ± 26.99 |
3 to 12 September | 0 | 24.12 ± 3.41 | 60.99 ± 17.51 | 0.35 ± 1.71 | 164.72 ± 4.78 |
10 to 19 October | 0 | 15.56 ± 3.57 | 55.44 ± 23.18 | 0.32 ± 0.26 | 167.33 ± 14.97 |
Name of Plant | Spring | Summer | Autumn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Epicuticular Wax | Cuticle | Epidermis | Stomata | Epicuticular Wax | Cuticle | Epidermis | Stomata | Epicuticular Wax | Cuticle | Epidermis | Stomata | |
Pinus tabuliformis | Granular | Wavy | Dust laden | High frequency and dust filled | Sparse | Wavy | Wall well defined | High Frequency and not dust filled | Sparse, finally granulated | Wavy | Dust laden | High Frequency and dust filled |
Pinus bungeana | Granular | Wavy | Dust laden | High frequency and dust filled | Sparse | Wavy | Wall well defined | High Frequency and not dust filled | Sparse, finally granulated | Wavy | Dust laden | High Frequency and dust filled |
Salix matsudana | Inconspicuous | Smooth | Wall well defined | Less stomata | Inconspicuous | Wrinkled | Irregularly fused | Sunken | Inconspicuous | Wrinkled | Irregularly fused | Less stomata |
Acer truncatum | NR | Striated | Wall well defined | Slightly Elevated | Inconspicuous | Disorganized | Slightly clear | Sunken | Inconspicuous | Disorganized | Slightly clear | Slightly Elevated |
Ginkgo biloba | Sparse | Smooth, some papillae | Wall well defined | Globular | Disorganized | Smooth | Walls not well defined | Deeply sunken | Disorganized | Smooth | Walls not well defined | Deeply sunken |
Populus tomentosa | Sparse | Rugose | Wall well defined | Elongated with clear rims | Inconspicuous | Pattern deformed | Outer layer broken | Broken | Inconspicuous | Pattern deformed | Outer layer broken | Broken |
Species | Roughness | Std. Error | Total Particles | Std. Error | r | Significance |
---|---|---|---|---|---|---|
Pinus tabuliformis | 54.81 | 3.19 | 8.64 | 0.22 | 0.42 | ** |
Pinus bungeana | 51.87 | 1.81 | 6.55 | 0.25 | 0.41 | ** |
Salix matsudana | 276.52 | 30.82 | 5.28 | 0.31 | 0.93 | ** |
Acer truncatum | 133.05 | 23.05 | 3.91 | 0.18 | 0.85 | ** |
Ginkgo biloba | 129.17 | 35.90 | 3.09 | 0.33 | 0.87 | ** |
Populus tomentosa | 72.65 | 7.98 | 1.80 | 0.15 | 0.82 | ** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, B.; Niu, X.
Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing
. Forests 2017, 8, 92.
https://doi.org/10.3390/f8030092
Zhang W, Wang B, Niu X.
Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing
. Forests. 2017; 8(3):92.
https://doi.org/10.3390/f8030092
Zhang, Weikang, Bing Wang, and Xiang Niu.
2017. "Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing
" Forests 8, no. 3: 92.
https://doi.org/10.3390/f8030092
Zhang, W., Wang, B., & Niu, X.
(2017). Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing
. Forests, 8(3), 92.
https://doi.org/10.3390/f8030092