Caution Is Needed in Quantifying Terrestrial Biomass Responses to Elevated Temperature: Meta-Analyses of Field-Based Experimental Warming Across China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Plant Biomass Responses to Warming and the Varied Pattern among PFTs
3.2. Relationships among Warming-Induced Biomass Responses and Their Driving Factors
3.3. Varied Biomass Responses to Warming among Plant Types (Herbaceous versus Woody Species), and the Different Responses of the Plant Community and Its Dominant Species
3.4. More Caution Is Needed in Quantifying Warming-Induced Biomass Accumulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luo, Y. Terrestrial carbon–cycle feedback to climate warming. Annu. Rev. Ecol. Syst. 2007, 38, 683–712. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.T.; Derose, R.J.; Long, J.N.; Miegroet, H.V. Using silviculture to influence carbon sequestration in southern appalachian spruce-fir forests. Forests 2012, 3, 300–316. [Google Scholar] [CrossRef]
- Lin, D.; Xia, J.; Wan, S. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol. 2010, 188, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.D.; Wahren, C.H.; Hollister, R.D.; Henry, G.H.; Ahlquist, L.E.; Alatalo, J.M.; Bretharte, M.S.; Calef, M.P.; Callaghan, T.V.; Carroll, A.B. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA 2006, 103, 1342–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkiranta, P.; Laiho, R.; Mehtätalo, L.; Straková, P.; Sormunen, J.; Minkkinen, K.; Penttilä, T.; Fritze, H.; Tuittila, E.S. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. Glob. Chang. Biol. 2017, 24, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Poulin, R.; Mengersen, K.; Reinhold, K.; Engqvist, L.; Lagisz, M.; Senior, A.M. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 2015, 6, 143–152. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.X.; Sun, W.; Zhong, Z.M.; Zhang, X.Z.; Zhou, Y.T. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan plateau. J. Plant Growth Regul. 2015, 34, 57–65. [Google Scholar] [CrossRef]
- Yuan, Y.; Ge, L.; Yang, H.; Ren, W. A meta-analysis of experimental warming effects on woody plant growth and photosynthesis in forests. J. For. Res. 2018, 29, 1–7. [Google Scholar] [CrossRef]
- Chamberlain, S.A.; Hovick, S.M.; Dibble, C.J.; Rasmussen, N.L.; Van Allen, B.G.; Maitner, B.S.; Ahern, J.R.; Bell-Dereske, L.P.; Roy, C.L.; Meza-Lopez, M. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 2012, 15, 627–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.C. Phylogenetic meta-analysis. Evolution 2008, 62, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.F.; Hu, Y.K.; Pan, X.; Liu, F.H.; Song, Y.B.; Dong, M. Biomass allocation of stoloniferous and rhizomatous plant in response to resource availability: A phylogenetic meta-analysis. Front Plant Sci. 2016, 7, 603. [Google Scholar] [CrossRef] [PubMed]
- Cantarel, A.A.M.; Bloor, J.M.G.; Soussana, J.F. Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem. J. Veg. Sci. 2013, 24, 113–126. [Google Scholar] [CrossRef]
- Crowther, T.W.; Todd-Brown, K.E.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D. Quantifying global soil carbon losses in response to warming. Nature 2016, 540, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Willis, C.G.; Ruhfel, B.; Primack, R.B.; Miller-Rushing, A.J.; Davis, C.C. Phylogenetic patterns of species loss in thoreau’s woods are driven by climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 17029–17033. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martinbenito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, K.; Ranjitkar, S.; Zhai, D.; Li, Y.; Yang, J. Current re-vegetation patterns and restoration issues in degraded geological phosphorus-rich mountain areas: A synthetic analysis of central Yunnan, SW China. Plant Divers. 2017, 39, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Gruner, D.S.; Bracken, M.E.S.; Berger, S.A.; Eriksson, B.K.; Gamfeldt, L.; Matthiessen, B.; Moorthi, S.; Sommer, U.; Hillebrand, H. Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos 2017, 126, 8–17. [Google Scholar] [CrossRef]
- Viechtbauer, W. Metafor: Meta-Analysis Package for R. R Package Version 1.4-0. Available online: http://CRAN.R-project.org/package=metafor (accessed on 2 October 2018).
- Qian, H.; Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 2016, 9, 233–239. [Google Scholar] [CrossRef]
- Calcagno, V. Glmulti: Model Selection and Multimodel Inference Made Easy. 2013. Available online: https://rdrr.io/cran/glmulti/ (accessed on 2 October 2018).
- Cornelissen, J.H.C.; Callaghan, T.V.; Alatalo, J.M.; Michelsen, A.; Graglia, E.; Hartley, A.E.; Hik, D.S.; Hobbie, S.E.; Robinson, C.H.; Henry, G.H.R. Global change and arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? J. Ecol. 2001, 89, 984–994. [Google Scholar] [CrossRef]
- Hampe, A.; Jump, A.S. Climate relicts: Past, present, future. Annu. Rev. Ecol. Syst. 2011, 42, 313–333. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Liu, H.; Mi, Z.; Zhang, Z.; Wang, Y.; Xu, W.; Jiang, L.; He, J.S. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 2017, 8, 15378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathiresan, R. Effect of Global Warming on Invasion of Alien Plants in Asia. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.570.2741&rep=rep1&type=pdf (accessed on 2 October 2018).
- Walker, T.N.; Garnett, M.H.; Ward, S.E.; Oakley, S.; Bardgett, R.D.; Ostle, N.J. Vascular plants promote ancient peatland carbon loss with climate warming. Glob. Chang. Biol. 2016, 22, 1880–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeck, H.J.D.; Lemmens, C.M.H.M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; Berge, J.V.D.; Ceulemans, R.; Nijs, I. Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosci. Discuss. 2007, 4, 585–594. [Google Scholar] [CrossRef]
- Guo, L.; Cheng, J.; Luedeling, E.; Koerner, S.E.; He, J.S.; Xu, J.; Gang, C.; Li, W.; Luo, R.; Peng, C. Critical climate periods for grassland productivity on China’s loess plateau. Agric. For. Meteorol. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Tang, C.Q.; Dong, Y.F.; Herrandomoraira, S.; Matsui, T.; Ohashi, H.; He, L.Y.; Nakao, K.; Tanaka, N.; Tomita, M.; Li, X.S. Potential effects of climate change on geographic distribution of the tertiary relict tree species Davidia involucrata in China. Sci. Rep. 2017, 7, 43822. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ismail, M.; Ding, J. Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides. Sci. Total Environ. 2016, 575, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, A.A. Genetic resources of energy crops: Biological systems to combat climate change. Aust. J. Crop Sci. 2010, 4, 309–323. [Google Scholar]
- Shrestha, B.; Chang, S.; Bork, E.; Carlyle, C. Enrichment planting and soil amendments enhance carbon sequestration and reduce greenhouse gas emissions in agroforestry systems: A review. Forests 2018, 9, 369. [Google Scholar] [CrossRef]
- Yan, K.; Duan, C.; Fu, D.; Li, J.; Wong, M.H.G.; Qian, L.; Tian, Y. Leaf nitrogen and phosphorus stoichiometry of plant communities in geochemically phosphorus-enriched soils in a subtropical mountainous region, SW China. Environ. Earth Sci. 2015, 74, 3867–3876. [Google Scholar] [CrossRef] [Green Version]
Above-Ground Biomass (AGB) | Below-Ground Biomass (BGB) | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | SE | z | p | Estimate | SE | z | p | |
(Intercept) | −0.19 | 0.10 | −1.83 | 0.07 | 0.27 | 0.53 | 0.50 | 0.62 |
Elevation | 0.07 | 0.05 | 1.51 | 0.13 | na | |||
Latitude | na | −0.39 | 0.33 | −1.16 | 0.24 | |||
Longitude | na | 0.30 | 0.18 | 1.69 | 0.09 | |||
MAT | 0.08 | 0.08 | 1.04 | 0.30 | 0.02 | 0.14 | 0.13 | 0.90 |
MAP | na | na | na | na | −0.44 | 0.32 | −1.36 | 0.17 |
PlantCA | 0.05 | 0.01 | 13.01 | <0.01 | 0.17 | 0.01 | 16.02 | <0.01 |
WarmD | 0.10 | 0.02 | 6.13 | <0.01 | 0.19 | 0.02 | 8.66 | <0.01 |
DeltaT | 0.11 | 0.01 | 11.04 | <0.01 | na | |||
WarmD:DeltaT | −0.09 | 0.02 | −5.67 | <0.01 | na |
Above-Ground Biomass (AGB) | Below-Ground Biomass (BGB) | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | SE | z | p | Estimate | SE | z | p | |
(Intercept) | 0.11 | 0.37 | 2.93 | <0.01 | 0.08 | 0.69 | 1.10 | 0.27 |
Wood_or_not | 0.16 | 0.06 | 2.92 | <0.01 | 0.13 | 0.04 | 3.06 | <0.01 |
Com_or_Sing | −0.24 | 0.01 | −25.78 | <0.01 | −0.14 | 0.11 | −1.26 | 0.21 |
Woo:Com | 0.50 | 0.06 | 8.33 | <0.01 | 0.37 | 0.133 | 2.78 | <0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, K.; Zhang, S.; Luo, Y.; Wang, Z.; Zhai, D.; Xu, J.; Yang, H.; Ranjitkar, S. Caution Is Needed in Quantifying Terrestrial Biomass Responses to Elevated Temperature: Meta-Analyses of Field-Based Experimental Warming Across China. Forests 2018, 9, 619. https://doi.org/10.3390/f9100619
Yan K, Zhang S, Luo Y, Wang Z, Zhai D, Xu J, Yang H, Ranjitkar S. Caution Is Needed in Quantifying Terrestrial Biomass Responses to Elevated Temperature: Meta-Analyses of Field-Based Experimental Warming Across China. Forests. 2018; 9(10):619. https://doi.org/10.3390/f9100619
Chicago/Turabian StyleYan, Kai, Shuang Zhang, Yahuang Luo, Zhenghong Wang, Deli Zhai, Jianchu Xu, Huizhao Yang, and Sailesh Ranjitkar. 2018. "Caution Is Needed in Quantifying Terrestrial Biomass Responses to Elevated Temperature: Meta-Analyses of Field-Based Experimental Warming Across China" Forests 9, no. 10: 619. https://doi.org/10.3390/f9100619
APA StyleYan, K., Zhang, S., Luo, Y., Wang, Z., Zhai, D., Xu, J., Yang, H., & Ranjitkar, S. (2018). Caution Is Needed in Quantifying Terrestrial Biomass Responses to Elevated Temperature: Meta-Analyses of Field-Based Experimental Warming Across China. Forests, 9(10), 619. https://doi.org/10.3390/f9100619