Assessing Ecosystem Services from the Forestry-Based Reclamation of Surface Mined Areas in the North Fork of the Kentucky River Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Cover Change Analysis
2.3. Ecosystem Services Assessment
- Carbon Storage and Sequestration
- Water Yield and Reservoir Hydropower Production
- Sediment Delivery Ratio (SDR)
- Nutrient Delivery Ratio (NDR)
2.4. FRA Scenario
2.5. Statistical Analysis
3. Results
3.1. Land Cover Change
3.2. Ecosystem Service Assessment under Contemporary LULC Conditions
3.3. Ecosystem Service Assessment under FRA Scenario
4. Discussion
4.1. Surface Mining as a Prominent Driver of LULC Change
4.2. Ecosystem Services Assessment
4.3. Limitations and Uncertainty
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ID | Name | Area Sq. km | HUC Code |
---|---|---|---|
1 | Big Branch-Troublesome Creek | 60 | 51002010502 |
2 | Big Caney Creek-Quicksand Creek | 122 | 51002010604 |
3 | Big Creek | 51 | 51002010306 |
4 | Big Willard Creek-North Fork Kentucky River | 61 | 51002010401 |
5 | Buckhorn Creek | 118 | 51002010506 |
6 | Cane Creek-North Fork Kentucky River | 119 | 51002010701 |
7 | Caney Creek-North Fork Kentucky River | 50 | 51002010404 |
8 | Clear Creek-Troublesome Creek | 63 | 51002010503 |
9 | Colwell Fork-North Fork Kentucky River | 48 | 51002010402 |
10 | Cowan Creek-North Fork Kentucky River | 73 | 51002010104 |
11 | Crafts Colly Creek-North Fork Kentucky River | 75 | 51002010103 |
12 | Frozen Creek | 142 | 51002010702 |
13 | Grapevine Creek-North Fork Kentucky River | 60 | 51002010403 |
14 | Headwaters Carr Fork | 48 | 51002010201 |
15 | Headwaters North Fork Kentucky River | 79 | 51002010101 |
16 | Headwaters Troublesome Creek | 61 | 51002010501 |
17 | Hell Creek-North Fork Kentucky River | 38 | 51002010707 |
18 | Holly Creek | 50 | 51002010703 |
19 | Howards Creek-North Fork Kentucky River | 61 | 51002010405 |
20 | Irishman Creek-Carr Fork | 64 | 51002010203 |
21 | Kings Creek-North Fork Kentucky River | 75 | 51002010105 |
22 | Leatherwood Creek | 129 | 51002010303 |
23 | Little Carr Fork-Carr Fork | 53 | 51002010202 |
24 | Lost Creek | 110 | 51002010507 |
25 | Lotts Creek | 73 | 51002010305 |
26 | Lower Balls Fork | 58 | 51002010505 |
27 | Lower Laurel Fork Quicksand Creek-Quicksand Creek | 95 | 51002010602 |
28 | Lower Line Fork-North Fork Kentucky River | 99 | 51002010302 |
29 | Lower Rockhouse Creek | 57 | 51002010107 |
30 | Maces Creek-North Fork Kentucky River | 111 | 51002010304 |
31 | Meatscaffold Branch-Quicksand Creek | 60 | 51002010606 |
32 | Millstone Creek-North Fork Kentucky River | 38 | 51002010102 |
33 | Montgomery Creek-Carr Fork | 56 | 51002010204 |
34 | Russell Branch-Troublesome Creek | 107 | 51002010508 |
35 | South Fork Quicksand Creek | 104 | 51002010605 |
36 | Spring Fork Quicksand Creek | 92 | 51002010603 |
37 | Upper Balls Fork | 59 | 51002010504 |
38 | Upper Devil Creek | 45 | 51002010705 |
39 | Upper Laurel Fork Quicksand Creek | 53 | 51002010601 |
40 | Upper Line Fork | 122 | 51002010301 |
41 | Upper Rockhouse Creek | 88 | 51002010106 |
42 | Upper Second Creek-North Fork Kentucky River | 86 | 51002010307 |
43 | Walker Creek-North Fork Kentucky River | 113 | 51002010706 |
44 | War Creek-North Fork Kentucky River | 104 | 51002010704 |
LULC | ||||||||
---|---|---|---|---|---|---|---|---|
Biophysical Attributes | Developed | Barren | Forest | Shrubland | Grassland | Pasture | Source | Related Models |
Aboveground biomass | 5 | 0 | 90 | 30 | 10 | 10 | Sharp et al. (2015), Qiu and Turner (2013) | Carbon Storage |
Belowground biomass | 3 | 0 | 60 | 20 | 5 | 11 | ||
Soil organic matter | 20 | 0 | 75 | 40 | 20 | 20 | ||
Dead organic matter | 0 | 0 | 25 | 10 | 10 | 10 | ||
Kc | 0.1 | 0.2 | 1 | 0.85 | 0.65 | 0.85 | Sharp et al. (2015) | Water Yield |
Root_depth | 300 | 10 | 7000 | 4750 | 2000 | 1000 | ||
usle_c | 0.001 | 0.25 | 0.003 | 0.003 | 0.01 | 0.02 | Sharp et al. (2015) | Sediment Delivery |
usle_p | 0.001 | 0.01 | 0.2 | 0.2 | 0.2 | 0.25 | ||
load_n | 7.75 | 4 | 1.8 | 1.8 | 4 | 3.1 | Line et al. (2002), Sharp et al. (2015) | Nutrient Delivery |
load_p | 1.3 | 0.001 | 0.001 | 0.011 | 0.05 | 0.1 |
Required GIS Data | Description | Source | Related Models |
---|---|---|---|
Land Use Land Cover (LULC) | Land cover classification scheme at 30 m resolution. | National Land Cover Database, https://www.mrlc.gov | All |
Digital Elevation Model (DEM) | A raster dataset with an elevation value for each cell. | Kentucky Geographic Network, kygisserver.ky.gov/geoportal | Sediment Delivery, Nutrient Delivery |
Rainfall Erosivity Index | A raster with an erosivity value for each cell; depends on the intensity and duration of rainfall. | European Soil Data Centre, https://esdac.jrc.ec.europa.eu | Sediment Delivery |
Soil Erodibility | A measure of susceptibility of soil particles to detachment and transport by rainfall and runoff. | Soil Map Viewer, NRCS, https://websoilsurvey.nrcs.usda.gov/ | Sediment Delivery |
Depth to root restricting layer | A raster dataset with an average root restricting layer depth value (mm) for each cell. | Soil Map Viewer, NRCS, https://websoilsurvey.nrcs.usda.gov/ | Water Yield |
Annual average precipitation | A raster with a non- zero value for average annual precipitation. (mm). | PRISM Climate Data-Oregon State University, prism.oregonstate.edu/ | Sediment Delivery, Nutrient Delivery, Water Yield |
Reference evapotranspiration | The potential loss of water from the soil by both evapotranspiration from the soil and transpiration by healthy alfalfa (grass) if sufficient water is available (mm). | Consortium for Spatial Information (CGIAR CSI), http://www.cgiar-csi.org/data/global-aridity-and-pet-database | Water Yield |
Plant available water content | The fraction of water that can be stored in the soil profile for plants’ use. | Soil Map Viewer, NRCS, https://websoilsurvey.nrcs.usda.gov/ | Water Yield |
Watersheds and subwatersheds | A layer of watersheds such that each watershed contributes to a point of interest where water quality will be analyzed. | National Hydrography Dataset, https://nhd.usgs.gov | Sediment Delivery, Nutrient Delivery, Water Yield |
2011 | |||||||||
---|---|---|---|---|---|---|---|---|---|
2001 | LULC | Water | Developed | Barren | Forest | Shrub | Grassland | Pasture | Total |
Water | 147 | 0 | 11 | 2 | 0 | 8 | 0 | 168 | |
Developed | 0 | 1314 | 0 | 0 | 0 | 0 | 0 | 1314 | |
Barren | 25 | 9 | 4683 | 145 | 1 | 2059 | 3 | 6925 | |
Forest | 13 | 41 | 4125 | 2968 | 1 | 2521 | 6 | 9675 | |
Shrub | 0 | 1 | 8 | 1 | 16 | 2 | 1 | 29 | |
Grassland | 15 | 53 | 1298 | 422 | 4 | 9132 | 1 | 10,925 | |
Pasture | 0 | 1 | 1 | 1 | 0 | 6 | 144 | 53 | |
Total | 200 | 1419 | 10,126 | 3539 | 22 | 13,728 | 155 | 29,189 |
Biophysical Indicators of Ecosystem Services | ||||||
---|---|---|---|---|---|---|
ID | Subwatersheds | Carbon Storage (mg per ha) | Water Yield (mm) | Sediment Export (kg per ha) | Nitrogen Export (kg per ha) | Phosphorus Export (kg per ha) |
1 | Big Branch-Troublesome Creek | 182 | 582 | 221 | 1.06 | 0.065 |
2 | Big Caney Creek-Quicksand Creek | 210 | 617 | 129 | 0.79 | 0.038 |
3 | Big Creek | 180 | 680 | 313 | 1.08 | 0.058 |
4 | Big Willard Creek-North Fork Kentucky River | 186 | 672 | 204 | 1.14 | 0.091 |
5 | Buckhorn Creek | 191 | 611 | 235 | 0.88 | 0.027 |
6 | Cane Creek-North Fork Kentucky River | 210 | 620 | 127 | 0.92 | 0.065 |
7 | Caney Creek-North Fork Kentucky River | 198 | 636 | 176 | 0.88 | 0.036 |
8 | Clear Creek-Troublesome Creek | 181 | 601 | 202 | 1.07 | 0.069 |
9 | Colwell Fork-North Fork Kentucky River | 176 | 677 | 236 | 1.11 | 0.061 |
10 | Cowan Creek-North Fork Kentucky River | 218 | 536 | 126 | 0.82 | 0.052 |
11 | Crafts Colly Creek-North Fork Kentucky River | 206 | 560 | 132 | 1.04 | 0.087 |
12 | Frozen Creek | 228 | 608 | 115 | 0.75 | 0.036 |
13 | Grapevine Creek-North Fork Kentucky River | 138 | 702 | 263 | 1.32 | 0.066 |
14 | Headwaters Carr Fork | 217 | 522 | 150 | 0.82 | 0.049 |
15 | Headwaters North Fork Kentucky River | 198 | 564 | 201 | 1.02 | 0.072 |
16 | Headwaters Troublesome Creek | 216 | 554 | 140 | 0.86 | 0.056 |
17 | Hell Creek-North Fork Kentucky River | 187 | 622 | 117 | 1.01 | 0.069 |
18 | Holly Creek | 215 | 558 | 172 | 0.9 | 0.053 |
19 | Howards Creek-North Fork Kentucky River | 230 | 597 | 112 | 0.71 | 0.039 |
20 | Irishman Creek-Carr Fork | 169 | 548 | 291 | 1.02 | 0.047 |
21 | Kings Creek-North Fork Kentucky River | 212 | 532 | 163 | 0.85 | 0.05 |
22 | Leatherwood Creek | 209 | 653 | 214 | 0.86 | 0.047 |
23 | Little Carr Fork-Carr Fork | 208 | 525 | 151 | 0.85 | 0.055 |
24 | Lost Creek | 181 | 656 | 230 | 1.01 | 0.048 |
25 | Lotts Creek | 198 | 589 | 193 | 0.98 | 0.069 |
26 | Lower Balls Fork | 136 | 615 | 278 | 1.25 | 0.053 |
27 | Lower Laurel Fork Quicksand Creek-Quicksand Creek | 222 | 567 | 134 | 0.67 | 0.029 |
28 | Lower Line Fork-North Fork Kentucky River | 219 | 542 | 117 | 0.8 | 0.047 |
29 | Lower Rockhouse Creek | 192 | 529 | 173 | 1.02 | 0.076 |
30 | Maces Creek-North Fork Kentucky River | 218 | 621 | 176 | 0.83 | 0.051 |
31 | Meatscaffold Branch-Quicksand Creek | 220 | 621 | 134 | 0.81 | 0.048 |
32 | Millstone Creek-North Fork Kentucky River | 196 | 548 | 199 | 0.95 | 0.058 |
33 | Montgomery Creek-Carr Fork | 181 | 616 | 247 | 1.02 | 0.056 |
34 | Russell Branch-Troublesome Creek | 190 | 631 | 232 | 0.91 | 0.04 |
35 | South Fork Quicksand Creek | 201 | 623 | 128 | 0.8 | 0.031 |
36 | Spring Fork Quicksand Creek | 191 | 617 | 181 | 0.85 | 0.032 |
37 | Upper Balls Fork | 194 | 578 | 181 | 0.96 | 0.057 |
38 | Upper Devil Creek | 200 | 586 | 145 | 1 | 0.061 |
39 | Upper Laurel Fork Quicksand Creek | 196 | 582 | 179 | 0.86 | 0.026 |
40 | Upper Line Fork | 231 | 577 | 123 | 0.75 | 0.042 |
41 | Upper Rockhouse Creek | 190 | 558 | 246 | 0.97 | 0.053 |
42 | Upper Second Creek-North Fork Kentucky River | 172 | 698 | 196 | 1.4 | 0.146 |
43 | Walker Creek-North Fork Kentucky River | 199 | 588 | 101 | 0.94 | 0.052 |
44 | War Creek-North Fork Kentucky River | 210 | 591 | 124 | 0.89 | 0.049 |
References
- Turner, M.G.; Hargrove, W.W.; Gardner, R.H.; Romme, W.H. Effects of fire on landscape heterogeneity in Yellowstone national park, Wyoming. J. Veg. Sci. 1994, 5, 731–742. [Google Scholar] [CrossRef]
- Houghton, R.A. The worldwide extent of land-use change. BioScience 1994, 44, 305–313. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Lal, R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 2011, 161, 168–176. [Google Scholar] [CrossRef]
- DeFries, R.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Encyclopaedia Britannica. Available online: https://www.britannica.com/technology/mining (accessed on 12 January 2018).
- Höök, M.; Aleklett, K. Historical trends in American coal production and a possible future outlook. Int. J. Coal Geol. 2009, 78, 201–216. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. The effects of mountaintop mines and valley fills on aquatic ecosystems of the central appalachian coalfields. In USEPA; Washington, DC, EPA/600/R-09/138F; 2011. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=225743 (accessed on 17 March 2018).
- Wickham, J.; Wood, P.B.; Nicholson, M.C.; Jenkins, W.; Druckenbrod, D.; Suter, G.W.; Strager, M.P.; Mazzarella, C.; Galloway, W.; Amos, J. The overlooked terrestrial impacts of mountaintop mining. BioScience 2013, 63, 335–348. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the central Appalachians. Ann. N. Y. Acad. Sci. 2011, 1223, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, T.T.; Bernhardt, E.S.; Bier, R.; Helton, A.; Merola, R.B.; Vengosh, A.; Di Giulio, R.T. Cumulative impacts of mountaintop mining on an Appalachian watershed. Proc. Natl. Acad. Sci. USA 2011, 108, 20929–20934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickens, P.S.; Tschantz, B.A.; Minear, R.A. Sediment yield and water quality from a steep-slope surface mine spoil. Trans. ASAE 1985, 28, 1838–1845. [Google Scholar] [CrossRef]
- Miller, J.; Barton, C.; Agouridis, C.; Fogel, A.; Dowdy, T.; Angel, P. Evaluating soil genesis and reforestation success on a surface coal mine in Appalachia. Soil Sci. Soc. Am. J. 2012, 76, 950–960. [Google Scholar] [CrossRef]
- Fox, J.F.; Campbell, J.E. Terrestrial carbon disturbance from mountaintop mining increases lifecycle emissions for clean coal. Environ. Sci. Technol. 2010, 44, 2144–2149. [Google Scholar] [CrossRef] [PubMed]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Perks, R. Appalachian Heartbreak: Time to End Mountaintop Removal Coal Mining. Natural Resources Defense Council, 26. 2013. Available online: http://www.nrdc.org/land/appalachian/files/appalachian.pdf (accessed on 26 June 2010).
- Burger, J.; Graves, D.; Angel, P.; Davis, V.; Zipper, C. Appalachian Regional Reforestation Initiative. Forestry Reclamation Advisory no. 2. The Forestry Reclamation Approach; 2005. Available online: https://www.epa.gov/cwa-404/appalachian-stream-mitigation-workshop (accessed on 10 July 2016).
- Angel, P.N.; Burger, J.A.; Davis, V.M.; Barton, C.D.; Bower, M.; Eggerud, S.D.; Rothman, P. The forestry reclamation approach and the measure of its success in Appalachia. Proc. Am. Soc. Min. Reclam. 2009, 20091, 18–36. [Google Scholar]
- Sena, K.; Barton, C.; Angel, P.; Agouridis, C.; Warner, R. Influence of spoil type on chemistry and hydrology of interflow on a surface coal mine in the eastern US coalfield. Water Air Soil Pollut. 2014, 225, 2171. [Google Scholar] [CrossRef]
- Wilson-Kokes, L.; Emerson, P.; DeLong, C.; Thomas, C.; Skousen, J. Hardwood tree growth after eight years on brown and gray mine soils in West Virginia. J. Environ. Qual. 2013, 42, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Daily, G.C.; Söderqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Folke, C.; Jansson, A.; Jansson, B.-O.; Kautsky, N.; et al. The value of nature and the nature of value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Berkes, F.; Folke, C. (Eds.) Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience; Cambridge University Press: Cambridge, UK, 1998; Volume 1, pp. 285–310. [Google Scholar]
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Haag, K.H.; Porter, S.D. Water-Quality Assessment of the Kentucky River Basin, Kentucky: Nutrients, Sediments, and Pesticides in Streams, 1987-90; US Department of the Interior, US Geological Survey: Louisville, KY, USA, 1995.
- Hendryx, M.; Ahern, M.M. Mortality in Appalachian coal mining regions: The value of statistical life lost. Public Health Rep. 2009, 124, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Arlington, VA, USA, 1976; Volume 964.
- NASS, U. Cropscape-Cropland Data Layer; USDA National Agricultural Statistics Service: Washington, DC, USA, 2012.
- Pericak, A.A.; Thomas, C.J.; Kroodsma, D.A.; Wasson, M.F.; Ross, M.R.; Clinton, N.E.; Campagna, D.J.; Franklin, Y.; Bernhardt, E.S.; Amos, J.F. Mapping the yearly extent of surface coal mining in central Appalachia using landsat and Google earth engine. PLoS ONE 2018, 13, e0197758. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. Invest User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Gurung, K. Assessing Ecosystem Services from the Forestry-Based Reclamation of Surface Mined Areas in the North Fork of the Kentucky River Watershed. Master’s Thesis, University of Kentucky, Lexington, KY, USA, August 2018. [Google Scholar]
- Group, P.C. Oregon state university. Oregon state university 2004. Available online: http://www.prism.oregonstate.edu/normals/ (accessed on 5 June 2016).
- Trabucco, A.; Zomer, R.J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-pet) geospatial database. CGIAR Consor. Spat. Inf. 2009. Available online: http://csi.cgiar.org/Aridity/ (accessed on 16 January 2017).
- Nrcs, U. Web soil survey. Available online: http://www.websoilsurvey.ncsc.usda.gov/ (accessed on 29 October 2009).
- Renard, K.G.; Foster, G.R.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (Rusle); United States Department of Agriculture: Washington, DC, USA, 1997; Volume 703.
- Line, D.E.; White, N.M.; Osmond, D.L.; Jennings, G.D.; Mojonnier, C.B. Pollutant export from various land uses in the upper neuse river basin. Water Environ. Res. 2002, 74, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing. 2013. Available online: http://www.R-project.org (accessed on 2 June 2016).
- Yang, J.; Weisberg, P.J.; Dilts, T.E.; Loudermilk, E.L.; Scheller, R.M.; Stanton, A.; Skinner, C. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: A case study in the lake tahoe basin, USA. Int. J. Wildland Fire 2015, 24, 380–390. [Google Scholar] [CrossRef]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares-Filho, B.S. Processes of land use change in mining regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Xu, Y.; Xue, Y.; Li, X.; Cheng, Y.; Liu, X.; Porwal, A.; Holden, E.-J.; Yang, J.; Gong, P. Monitoring surface mining belts using multiple remote sensing datasets: A global perspective. Ore Geol. Rev. 2018, 101, 675–687. [Google Scholar] [CrossRef]
- Burger, J. Sustainable mined land reclamation in the eastern U.S. Coalfields: A case for an ecosystem reclamation approach. In Proceedings of the 2011 National Meeting of the American Society of Mining and Reclamation, Bismarck, ND, USA, 11–16 June 2011; pp. 113–141. [Google Scholar] [CrossRef]
- Lutz, B.D.; Bernhardt, E.S.; Schlesinger, W.H. The environmental price tag on a ton of mountaintop removal coal. PLoS ONE 2013, 8, e73203. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the millennium ecosystem assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Howarth, R.B.; Farber, S. Accounting for the value of ecosystem services. Ecol. Econ. 2002, 41, 421–429. [Google Scholar] [CrossRef]
- Li, X.; Stainback, G.; Barton, C.; Yang, J. Valuing the environmental benefits from reforestation on reclaimed surface mines in Appalachia. J. Am. Soc. Min. Reclam. 2018, 7, 1–29. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 1–14. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, F.; Yang, J.; Li, X. Mining site reclamation planning based on land suitability analysis and ecosystem services evaluation: A case study in Liaoning province, China. Sustainability 2017, 9, 890. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 national land cover database for the conterminous united states–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Ritter, J.B.; Gardner, T.W. Hydrologic evolution of drainage basins disturbed by surface mining, central Pennsylvania. Geol. Soc. Am. Bull. 1993, 105, 101–115. [Google Scholar] [CrossRef]
Ecosystem Service | Biophysical Indicator | Unit | Description |
---|---|---|---|
Climate Regulation | Carbon storage | mg/ha | Average annual amount of carbon stored at each pixel |
Flood Control | Water yield | mm | Annual water yield: low water yield indicating high flood control capacity |
Soil Retention | Sediment export | Kg/ha | Annual average sediment export: low export indicating high retention capacity |
Surface Water Quality | Nutrient (N and P) export | Kg/ha | The lower the N and P export, the better is the water quality |
LULC | 2001 | 2011 | Change | Percent Change (%) |
---|---|---|---|---|
Water | 745 | 783 | 38 | 5.10 |
Developed | 23,621 | 23,838 | 217 | 0.92 |
Barren | 7923 | 11,767 | 3844 | 48.52 |
Forest | 266,256 | 258,505 | −7751 | −2.91 |
Shrub | 219 | 272 | 53 | 24.20 |
Grassland | 39,011 | 42,533 | 3522 | 9.03 |
Pasture | 5120 | 5196 | 76 | 1.48 |
Total | 342,895 | 342,895 | 0 | 0 |
2011 | |||||||||
---|---|---|---|---|---|---|---|---|---|
2001 | LULC | Water | Developed | Barren | Forest | Shrub | Grassland | Pasture | Total |
Water | 720 | 1 | 11 | 4 | 0 | 9 | 0 | 745 | |
Developed | 0 | 23,621 | 0 | 0 | 0 | 0 | 0 | 23,621 | |
Barren | 27 | 16 | 5505 | 179 | 0 | 2189 | 7 | 7923 | |
Forest | 14 | 97 | 4840 | 256,611 | 12 | 4594 | 88 | 266,256 | |
Shrub | 0 | 0 | 9 | 6 | 198 | 6 | 1 | 219 | |
Grassland | 2 | 96 | 1397 | 1705 | 62 | 35,726 | 2 | 39,011 | |
Pasture | 0 | 6 | 5 | 1 | 0 | 9 | 5098 | 5120 | |
Total | 783 | 23,838 | 11,767 | 258,505 | 272 | 42,533 | 5196 | 342,895 |
LULC | Carbon Storage (mg per ha) | Water Yield (mm) | Sediment Export (kg per ha) | Nitrogen Export (kg per ha) | Phosphorus Export (kg per ha) |
---|---|---|---|---|---|
Developed | 28 (na) | 1055 (25) | 0.12 (0.21) | 4.34 (1.58) | 0.727 (0.264) |
Barren | 0 (na) | 931 (21) | 971 (1921) | 2.00 (0.73) | 0.001 (0.001) |
Forest | 250 (na) | 534 (84) | 110 (154) | 0.47 (0.25) | 0.003 (0.002) |
Shrub | 100 (na) | 582 (79) | 122 (168) | 0.51 (0.24) | 0.003 (0.001) |
Grassland | 45 (na) | 665 (69) | 404 (735) | 1.56 (0.65) | 0.020 (0.008) |
Pasture | 51 (na) | 632 (51) | 628 (1205) | 1.59 (0.45) | 0.051 (0.015) |
Predictor | Carbon | Water Yield | Sediment | Nitrogen | Phosphorous | |||||
---|---|---|---|---|---|---|---|---|---|---|
Slope | RIMP | Slope | RIMP | Slope | RIMP | Slope | RIMP | Slope | RIMP | |
Forest | 1.00 ** | 1.00 | −0.29 ^ | 0.69 | −0.10 | 0.12 | −1.07 ** | 1.00 | −1.03 ** | 1.00 |
STD_Forest | −0.02 | 0.11 | 0.21 | 0.37 | 0.12 | 0.14 | 0.19 | 0.08 | 0.09 | 0.07 |
Elevation | 0.00 | 0.10 | −0.34 * | 0.59 | −0.07 | 0.11 | 0.26 * | 1.00 | 0.49 ** | 1.00 |
STD_Elevation | <0.01 | 0.09 | −0.35 * | 0.49 | −0.06 | 0.10 | −0.14 | 0.19 | −0.38^ | 0.49 |
Slope | <0.01 | 0.09 | 0.59 ** | 1.00 | 0.63 ** | 1.00 | 0.28 ** | 1.00 | 0.43 ** | 1.00 |
STD_Slope | <0.01 | 0.10 | 0.47 ** | 1.00 | −0.03 | 0.10 | 0.07 | 0.12 | 0.28 ** | 1.00 |
Precipitation | <0.01 | 0.09 | 0.83 ** | 1.00 | 0.20 | 0.45 | 0.11 | 0.58 | 0.11 | 0.27 |
STD_Prep | <0.01 | 0.11 | 0.04 | 0.11 | 0.00 | 0.10 | −0.13 ^ | 0.59 | −0.20 ^ | 0.61 |
Biophysical Indicators | 2011 LULC | FRA Scenario | Difference | Percent Change (%) |
---|---|---|---|---|
Carbon storage (mg C) | 71,343,168 | 80,633,377 | 9,290,209 | 13 |
Water yield (mm) | 2219,528,435 | 2105,058,148 | −114,470,287 | −5.2 |
Sediment export (kg) | 52,848,288 | 31,425,868 | −21,422,420 | −40.5 |
Nitrogen export (kg) | 320,525 | 248,045 | −72,480 | −22.6 |
Phosphorous export (kg) | 18,384 | 17,072 | −1312 | −7.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurung, K.; Yang, J.; Fang, L. Assessing Ecosystem Services from the Forestry-Based Reclamation of Surface Mined Areas in the North Fork of the Kentucky River Watershed. Forests 2018, 9, 652. https://doi.org/10.3390/f9100652
Gurung K, Yang J, Fang L. Assessing Ecosystem Services from the Forestry-Based Reclamation of Surface Mined Areas in the North Fork of the Kentucky River Watershed. Forests. 2018; 9(10):652. https://doi.org/10.3390/f9100652
Chicago/Turabian StyleGurung, Kumari, Jian Yang, and Lei Fang. 2018. "Assessing Ecosystem Services from the Forestry-Based Reclamation of Surface Mined Areas in the North Fork of the Kentucky River Watershed" Forests 9, no. 10: 652. https://doi.org/10.3390/f9100652
APA StyleGurung, K., Yang, J., & Fang, L. (2018). Assessing Ecosystem Services from the Forestry-Based Reclamation of Surface Mined Areas in the North Fork of the Kentucky River Watershed. Forests, 9(10), 652. https://doi.org/10.3390/f9100652