How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter?
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling Sites
2.2. Sampling
2.3. Density of PM Accumulated by Leaves
2.4. AFM Scanning Features and Microstructure of Leaf Surface
2.5. Leaf Wettability
2.6. Statistical Analysis
3. Results
3.1. Densities of Particles Deposited on Leaf Surfaces of Twenty Plant Species
3.2. Leaf Surface Micromorphology
3.3. Effects of Leaf Surface Roughness and Wettability on PM Retention
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, M.; Salmon, L.G.; James, J.; Zeng, L.; Kiang, C.S.; Zhang, Y.; Cassa, G.I.R. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos. Environ. 2000, 39, 3967–3976. [Google Scholar] [CrossRef]
- Jing, J.I.; Wang, G.; Xilong, D.U.; Chao, J.; Yang, H.; Liu, J.; Yang, Q.; Josine, T.; Li, J.; Chang, C. Evaluation of adsorbing haze PM2.5 fine particulate matters with plants in Beijing-Tianjin-Hebei region in China. Sci. China Earth Sci. 2013, 43, 694–699. [Google Scholar]
- Gonçalves, C.; Figueiredo, B.R.; Alves, C.A.; Cardoso, A.A.; Silva, R.; Kanzawa, S.H.; Vicente, A.M. Chemical characterisation of total suspended particulate matter from a remote area in Amazonia. Atmos. Res. 2016, 182, 102–113. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Saravanan, R. Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat. Commun. 2014, 5, 3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban heat islands in China enhanced by haze pollution. Nat. Commun. 2016, 7, 12509. [Google Scholar] [Green Version]
- Rosenfeld, D. Suppression of rain and snow by urban and industrial air pollution. Science 2000, 287, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- Grantz, D.A.; Garner, J.H.; Johnson, D.W. Ecological effects of particulate matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.A.; Demers, P.A.; Karr, C.J.; Koehoorn, M.; Lencar, C.; Tamburic, L.; Brauer, M. Effect of early life exposure to air pollution on development of childhood asthma. Environ. Health Perspect. 2010, 118, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.X.; Yan, H.; Qishi, M.Y.; Bai, W.L.; Pi, D.J.; Li, X.; Dong, L. Dust capturing capacities of twenty-six deciduous broad-leaved trees in Beijing. Chin. J. Plant Ecol. 2015, 39, 736–745. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.; Taylor, G. Effective tree species for local air quality management. J. Arboric. 2000, 26, 12–19. [Google Scholar]
- Xu, X.; Zhang, Z.; Bao, L.; Mo, L.; Yu, X.; Fan, D.; Lun, X. Influence of rainfall duration and intensity on particulate matter removal from plant leaves. Sci. Total Environ. 2017, 609, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Niu, X. Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests 2017, 8, 92. [Google Scholar] [CrossRef]
- Jeanjean, A.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2.5, reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef]
- McDonald, A.G.; Bealey, W.J.; Fowler, D. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Y.; Yan, P. Ranking the suitability of common urban tree species for controlling PM2.5 pollution. Atmos. Pollut. Res. 2015, 6, 267–277. [Google Scholar] [CrossRef]
- Grundström, M.; Hak, C.; Chen, D.; Hallquist, M.; Pleijel, H. Variation and co-variation of PM10, particle number concentration, NOx, and NO2, in the urban air—Relationships with wind speed, vertical temperature gradient and weather type. Atmos. Environ. 2015, 120, 317–327. [Google Scholar] [CrossRef]
- Pal, A.; Kulshreshtha, K.; Ahmad, K.J.; Behl, H.M. Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? Flora-Morphol. Distrib. Funct. Ecol. Plants 2002, 197, 47–55. [Google Scholar] [CrossRef]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, X. Study on the conversion efficiency from adsorption capacities for airborne particulates by urban forests ecosystem function to ecosystem services. Chin. J. Appl. Environ. Biol. 2014, 20, 1132–1138. [Google Scholar]
- Wang, L.F.; Dai, Z.D. Effects of the natural microstructures on the wettability of leaf surfaces. Biosurf. Biotribol. 2016, 2, 70–74. [Google Scholar] [CrossRef]
- Kardel, F.; Wuyts, K.; Maher, B.A.; Hansard, R.; Samson, R. Leaf saturation isothermal remanent magnetization (SIRM) as a proxy for particulate matter monitoring: Inter-species differences and in-season variation. Atmos. Environ. 2011, 45, 5164–5171. [Google Scholar] [CrossRef]
- Rezende, R.S.; Sales, M.A.; Hurbath, F.; Roque, N.; Gonçalves, J.F., Jr.; Medeiros, A.O. Effect of plant richness on the dynamics of coarse particulate organic matter in a Brazilian Savannah stream. Limnologica 2017, 63, 57–64. [Google Scholar] [CrossRef]
- Hofman, J.; Bartholomeus, H.; Calders, K.; Van Wittenberghe, S.; Wuyts, K.; Samson, R. On the relation between tree crown morphology and particulate matter deposition on urban tree leaves: A ground-based LiDAR approach. Atmos. Environ. 2014, 99, 130–139. [Google Scholar] [CrossRef]
- Chen, B.; Lu, S.; Li, S.; Wang, B. Impact of fine particulate fluctuation and other variables on Beijing’s air quality index. Environ. Sci. Pollut. Res. Int. 2015, 22, 5139–5151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. Research on Capture Air Particulate Ability of Main Trees in Beijing. Doctoral Dissertation, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Rai, A.; Kulshreshtha, K.; Srivastava, P.K.; Mohanty, C.S. Leaf surface structure alterations due to particulate pollution in some common plants. Environ. Syst. Decis. 2010, 30, 18–23. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Waligórski, P.; Kalandyk, A. Seasonal variability of leaf water capacity and wettability under the influence of pollution in different city zones. Atmos. Pollut. Res. 2017, 9, 455–463. [Google Scholar] [CrossRef]
- Zhao, C.X.; Wang, Y.J.; Wang, Y.Q.; Zhang, H.L. Interactions between fine particulate matter (PM2.5) and vegetation: A review. Chin. J. Ecol. 2013, 32, 2203–2210. [Google Scholar]
- Freer-Smith, P.H.; Beckett, K.P.; Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides X trichocarpa ‘Beaupré’, Pinus nigra and X Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 2005, 133, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018, 30, 98–107. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslina, H.M.; Gawronska, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Ma, C.; Wang, Y.; Wang, Y.; Zhao, C. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ. Sci. Pollut. Res. Int. 2016, 23, 21176–21186. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, C.; Zou, R.; Yang, M.; Zhang, Z. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Selmia, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourgcity, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
Sites | Coordinates | Main Source of Pollutants |
---|---|---|
Nanhaizi Park | 116°28′37″ E, 39°46′10″ N | Anthropogenic and vehicular activities, detailed data in [27] |
Beijing Xishan National Forest Park | 116°12′26″ E, 39°59′01″ N | |
Beijing Botanical Garden | 116°12′54″ E, 40°00′01″ N | |
Songshan Natural Reserve | 115°48′48″ E, 40°30′07″ N |
Contact Angle | Leaf Wettability |
---|---|
θ ≤ 40° | super-hydrophilic |
40° < θ ≤ 90° | Wettable |
110° < θ≤ 150° | non-wettable |
150° < θ | highly non-wettable |
Plant Species | TSP | PM10 | PM10/TSP | PM2.5 | PM2.5/PM10 |
---|---|---|---|---|---|
Cedrus deodara G.Don | 8.71 ± 0.49 | 7.10 ± 0.24 | 81.52% | 1.49 ± 0.07 | 20.99% |
Juniperus procumbens Sieb. | 7.38 ± 0.19 | 5.05 ± 0.23 | 68.43% | 1.06 ± 0.03 | 20.99% |
Platycladus orientalis Fran. | 5.68 ± 0.22 | 4.65 ± 0.11 | 81.87% | 1.23 ± 0.02 | 26.45% |
Pinus tabuliformis Carr. | 4.31 ± 0.44 | 2.85 ± 0.14 | 66.13% | 1.48 ± 0.09 | 51.93% |
Juniperus chinensis Linn | 4.29 ± 0.12 | 2.52 ± 0.16 | 58.74% | 1.52 ± 0.02 | 60.32% |
Syringa reticulata Subsp. | 3.94 ± 0.34 | 3.52 ± 0.21 | 89.34% | 1.32 ± 0.11 | 37.50% |
Lonicera maackii Maxi | 3.88 ± 0.18 | 2.73 ± 0.08 | 70.36% | 1.24 ± 0.01 | 45.42% |
Amygdalus davidiana Carr | 3.43 ± 0.30 | 3.18 ± 0.25 | 92.71% | 1.05 ± 0.09 | 33.02% |
Pinus bungeana Zucc. | 3.43 ± 0.14 | 2..07 ± 0.17 | 60.35% | 1.05 ± 0.01 | 50.72% |
Armeniaca sibirica Lama. | 3.16 ± 0.28 | 2.82 ± 0.07 | 89.24% | 0.96 ± 0.06 | 34.04% |
Carya cathayensis Sarg. | 2.5 ± 0.11 | 1.63 ± 0.08 | 65.20% | 0.76 ± 0.12 | 46.63% |
Salix matsudana Koid. | 2.36 ± 0.26 | 1.9 ± 0.19 | 80.51% | 1.02 ± 0.06 | 53.68% |
Buxus megistophylla Levl. | 1.95 ± 0.12 | 1.81 ± 0.11 | 92.82% | 0.45 ± 0.05 | 24.86% |
Magnlia denudata Desr. | 1.76 ± 0.22 | 1.25 ± 0.30 | 71.02% | 0.41 ± 0.07 | 32.80% |
Acer pictum Subsp. | 1.61 ± 0.17 | 1.41 ± 0.12 | 87.58% | 0.89 ± 0.01 | 63.12% |
Ginkgo biloba Linn. | 1.47 ± 0.09 | 1.30 ± 0.10 | 88.44% | 0.32 ± 0.04 | 24.62% |
Koelreuteria paniculata Laxm. | 1.38 ± 0.42 | 1.00 ± 0.15 | 72.46% | 0.30 ± 0.04 | 30.00% |
Quercus mongolica Fisc. | 1.21 ± 0.04 | 0.80 ± 0.02 | 66.12% | 0.51 ± 0.03 | 63.75% |
Robinia pseudoacacia Linn. | 1.16 ± 0.13 | 0.79 ± 0.09 | 68.10% | 0.32 ± 0.02 | 40.51% |
Populus tomentosa Carr. | 0.97 ± 0.21 | 0.71 ± 0.13 | 73.20% | 0.12 ± 0.05 | 16.90% |
Plant Species | Leaf Characters | |||
---|---|---|---|---|
Epicuticular Wax | Cuticle | Epidermis | Stomata | |
Pinus tabuliformis | Visible | closely packed and Wavy | Dust laden | Circular, High frequency and dust filled |
Pinus bungeana | Visible | Wavy and irregularity | Dust laden | Oval, frequency and dust filled |
Salix matsudana | shallow | Smooth and sparse | Obvious fluctuation and hairs | Big and Less stomata |
Acer truncatum | Inconspicuous | Disorganized | Wall and groove | Radially and parallel |
Ginkgo biloba | Sparse | Smooth, some papillae | No hairs | Small and Globosely |
Populus tomentosa | inconspicuous | Rugose and clear | No hairs and groove | Small and radially |
Species | Contact Angle | Standard Error | Roughness | Standard Error | Total Particles | Standard Error |
---|---|---|---|---|---|---|
Pinus tabuliformis | 62.33 | 6.21 | 54.81 | 3.19 | 8.64 | 0.22 |
Pinus bungeana | 53.15 | 7.93 | 51.87 | 1.81 | 6.55 | 0.25 |
Salix matsudana | 86.93 | 8.76 | 276.52 | 30.82 | 5.28 | 0.31 |
Acer pictum | 76.12 | 8.70 | 133.05 | 23.05 | 3.91 | 0.18 |
Ginkgo biloba | 99.64 | 11.01 | 129.17 | 35.90 | 3.09 | 0.13 |
Populus tomentosa | 79.10 | 9.93 | 72.65 | 7.98 | 1.80 | 0.15 |
Species | Roughness | Std. Error | Total Particles | Std. Error | r | Significance |
---|---|---|---|---|---|---|
Pinus tabuliformis | 54.81 | 3.19 | 8.64 | 0.22 | 0.42 | * |
Pinus bungeana | 51.87 | 1.81 | 6.55 | 0.25 | 0.41 | * |
Salix matsudana | 276.52 | 30.82 | 5.28 | 0.31 | 0.93 | * |
Acer truncatum | 133.05 | 23.05 | 3.91 | 0.18 | 0.85 | * |
Ginkgo biloba | 129.17 | 35.90 | 3.09 | 0.33 | 0.87 | * |
Populus tomentosa | 72.65 | 7.98 | 1.80 | 0.15 | 0.82 | * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, Z.; Meng, H.; Zhang, T. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests 2018, 9, 681. https://doi.org/10.3390/f9110681
Zhang W, Zhang Z, Meng H, Zhang T. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests. 2018; 9(11):681. https://doi.org/10.3390/f9110681
Chicago/Turabian StyleZhang, Weikang, Zhi Zhang, Huan Meng, and Tong Zhang. 2018. "How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter?" Forests 9, no. 11: 681. https://doi.org/10.3390/f9110681
APA StyleZhang, W., Zhang, Z., Meng, H., & Zhang, T. (2018). How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests, 9(11), 681. https://doi.org/10.3390/f9110681