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Abstract: China’s forests have functioned as important carbon sinks. They are expected to have
substantial future potential for biomass carbon sequestration (BCS) resulting from afforestation and
reforestation. However, previous estimates of forest BCS have included large uncertainties due to
the limitations of sample size, multiple data sources, and inconsistent methodologies. This study
refined the BCS estimation of China’s forests from 2010 to 2050 using the national forest inventory
data (FID) of 2009−2013, as well as the relationships between forest biomass and stand age retrieved
from field observations for major forest types in different regions of China. The results showed that
biomass–age relationships were well-fitted using field data, with respective R2 values more than
0.70 (p < 0.01) for most forest types, indicating the applicability of these relationships developed for
BCS estimation in China. National BCS would increase from 130.90 to 159.94 Tg C year−1 during the
period of 2010−2050 because of increases in forest area and biomass carbon density, with a maximum
of 230.15 Tg C year−1 around 2030. BCS for young and middle-aged forests would increase by 65.35
and 15.38 Tg C year−1, respectively. 187.8% of this increase would be offset by premature, mature,
and overmature forests. During the study period, forest BCS would increase in all but the northern
region. The largest contributor to the increment would be the southern region (52.5%), followed
by the southwest, northeast, northwest, and east regions. Their BCS would be primarily driven by
the area expansion and forest growth of young and middle-aged forests as a result of afforestation
and reforestation. In the northern region, BCS reduction would occur mainly in the Inner Mongolia
province (6.38 Tg C year−1) and be caused predominantly by a slowdown in the increases of forest
area and biomass carbon density for different age–class forests. Our findings are in broader agreement
with other studies, which provide valuable references for the validation and parameterization of
carbon models and climate-change mitigation policies in China.
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1. Introduction

Forests play an irreplaceable role in the global carbon cycle and climate-change mitigation
because of their high biomass carbon sequestration (BCS) potential [1–5]. Globally, forests are widely
recognized as a significant carbon sink [6,7], currently absorbing carbon from the atmosphere at a
rate of approximately 2.4 Pg C year−1 [2]. However, this carbon sink has large spatial and temporal
variability [8,9]. It can be readily altered by restoring or degrading forest vegetation [10,11]. Restoration
and degradation have contrasting implications for the magnitude of future BCS in forest ecosystems.
Forest BCS may be expected to increase and reach a carbon equilibrium state as forests grow after
restoration [12]. In contrast, BCS from forest degradation is highly uncertain, which depends on how
quickly forests recover their capacity for photosynthesis [13,14]. Therefore, assessment of the BCS
dynamics of forests in the future, and quantification of the dominant factors contributing to it are
required for the guidance on future CO2-emission targets and forest management strategies.

Two approaches have been developed to quantify future forest BCS on the regional and
global scales, including process-based carbon models [15–20] and empirical models fitted using
ground-based field measurements [21–25]. Process-based models are commonly used tools for the
projection of long-term BCS in forest ecosystems based on spatially heterogeneous input parameters.
They incorporate a broad range of methodologies for describing ecophysiological processes, from
semiempirical relationships to mechanistic descriptions [26]. However, it is often difficult to find
sufficiently detailed input information for accurate parameterization of incorporated processes over
large areas. In addition, the impact of forest demographic processes, such as age-related growth on
BCS simulation, are usually ignored due to the lack of quantitative knowledge about age distribution.
Forest-stand age, a surrogate for major disturbance information, is a critical factor determining both
the state and potential of forest BCS [19,27,28]. An alternative approach is empirical models fitted
using ground-based field measurements. These models project the trajectories of forest BCS according
to stand age or development stages. Outputs from this kind of methods have even been applied
to evaluate process-based carbon models as ‘observations’ [7,17,29]. Ground-based inventories and
biometric observations of biomass and age have been widely available in forest ecosystems, and make
this method more applicable [21,24,25]. Such a method does not require too many assumptions and
data. Therefore, it is easy to extend over large areas. The key to this method is to calibrate empirical
models for BCS estimation.

China ranks as the fifth biggest country in terms of forest area and holds the largest plantation
area in the world [30,31]. Inventory-and model-based studies have suggested that China’s forests have
been acting as a significant carbon sink in recent decades, and this sink can primarily be attributed
to forest expansion and regrowth driven by large-scale afforestation and reforestation since the late
1970s [14,32–34]. Forests in China currently cover 21.6% of the total national land area [35]. Most of
these forests are young and middle-aged with high potential for BCS, and might continuously enhance
carbon sinks in the future [14]. Unfortunately, increasing disturbances, such as timber harvest and
drought stress, have weakened forest growth and carbon uptake over the past decade [14,36,37]. With
rapid changes in land use and climate in China [38,39], predicting the future dynamics of forest BCS
at the national scale has received considerable attention [21–25]. However, the conclusions on the
magnitude and distribution of this BCS are still controversial because of a lack of available data and
appropriate methodology.

National forest inventory data (FID) have consistently recorded the area and volume of dominant
forest types at each age class in individual provinces across China since the 1970s. They constitute
precious data to quantify the magnitude and distribution of forest BCS and project its future trend
according to the change rate of forest biomass with age and current stand age. Based on the logistic
relationships between forest biomass and stand age for major forest types derived from the national
FID during 1994−2003, Xu et al. [21] first estimated that the potential BCS of China’s forests would
be 144.56 Tg C year−1 from 2005 to 2050. Hu et al. [23] developed an age-based matrix model using
continuous FID and found that forest BCS in China from 2005 to 2050 was about 79.00 Tg C year−1.
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There are very high uncertainties in the estimates of BCS for China’s forests, mainly because of the
limited field measurements used to calibrate the biomass–age relationship and the universal application
of one unique model for a forest type across the whole country [29,40].

In this study, we estimate BCS in China’s forests from 2010 to 2050 using the latest national FID, as
well as the relationships between forest biomass and stand age, refined with 3543 field observations for
major forest types in different regions of China. The main objectives of this study were to (1) estimate
BCS of forests in China with FID and field observations; (2) analyze the dynamics of forest BCS in
different age classes and regions; and (3) assess the impact of changes in area expansion and forest
growth resulting from afforestation and reforestation on forest BCS in China.

2. Materials and Methods

2.1. Forest Inventory Data

The 8th national FID in 2009−2013 was used in this study. This dataset was compiled from
measurements at 415,000 permanent plots distributed evenly across China [35]. The investigations for
all plots were implemented following the technical standards of the State Forestry Administration of
China. The inventory was finished in a single year for a specific province, and in five years for the whole
country. In the national FID, statistical data of areas and timber volumes of five age classes (young,
middle-aged, premature, mature and overmature) for 77 different forest types were documented by
province. For the convenience of analyses, these forest types were grouped into 30 types. According to
Forest Resource Statistics of China, forests are divided into three large groups: forest stands (including
natural and planted forests), economic forests, and bamboo forests. Note that forests in Hong Kong,
Macao, Taiwan, and the South China Sea Islands were not included here because of fieldwork-data
unavailability and the small forest areas in these islands. As the biomass of forest stands accounts for
the dominant portion of all forest types in China [41], we only assessed the BCS by forest stands in
this study.

2.2. Field Measurement Data

Published data from 3543 field plots with a wide range of forest types and plot conditions in China
were compiled for fitting biomass growth models, which describe the changes of forest biomass with
stand age. All the measurements were conducted for the period from 1979 to 2011 and examined using
the same methods and criteria by Zhang et al. [27,41]. Recorded information of field plots includes
geographic location, forest type, stand age, density, and volume, mean tree height and diameter at
breast height (DBH) for trees with DBH > 4 cm, and biomass of whole trees and their component parts
(stems, branches, leaves, and roots). With the exception for Xinjiang and the Qinghai–Tibetan Plateau,
these plots are evenly distributed in most regions of China (Figure 1). Forest types and site conditions
of the plots are diverse and representative in most provinces. However, sampling plots are sparse
in Xinjiang and the Qinghai–Tibetan Plateau. Forests in these regions make up only a small fraction
of the national total. Therefore, the lack of enough field plots there might have little impact on the
accuracy of the retrieved national forest BCS. In this study, we classified field plots into 30 common
forest types, and then matched the forest types with the FID classification.
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Figure 1. Distributions of forest regions and plots in China. (a) Forest regions following Fang et al. 
[42]; (b) geographical distribution of the 3543 forest plots used in this study. The northeastern region 
includes Liaoning (LN), Jilin (JL), and Heilongjiang (HLJ); the northern region includes Beijing (BJ), 
Tianjin (TJ), Hebei (HB), Shanxi (SX), and Inner Mongolia (IM); the eastern region includes Shanghai 
(SH), Jiangsu (JS), Zhejiang (ZJ), Anhui (AH), Fujian (FJ), Jiangxi (JX), and Shandong (SD); the 
southern region includes Henan (HeN), Hubei (HuB), Hunan (HuN), Guangdong (GD), Guangxi 
(GX), and Hainan (HN); the southwestern region includes Chongqing (CQ), Sichuan (SC), Guizhou 
(GZ), Yunnan (YN), and Tibet; the northwestern region includes Shannxi (SNX), Gansu (GS), Qinghai 
(QH), Ningxia (NX), and Xinjiang (XJ). 

2.3. Estimation of Forest Biomass Carbon Stock 

Forest biomass was estimated using the 8th national FID from 2009 to 2013 and the refined 
continuous biomass expansion factor (CBEF) models [41]: 
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coefficients for a specific forest type, which were refined using 3543 field plots by Zhang et al. [41]. 

In this study, we only calculated forest stand living biomass; carbon contained in wood products 
and soils were excluded. With consideration to both forest types and age classes, the biomass carbon 
stock of China’s forests was first estimated at the province scale, and then the results were summed 
up at the regional and national scales. Since a forest inventory spans about 5 years for the whole of 
China, BCS during 2009−2013 was calculated as the change of biomass carbon stock from 2004−2008 
to 2009−2013 divided by the interval between their median years [14]. This study took the period of 
2009−2013 as its base year to predict forest BCS in the following 40 years. 

2.4. Calculation of Forest BCS 

1. Step 1. Fitting the biomass–age relationship 
Statistical analysis is commonly used to fit the biomass–age relationship. Widely used regression 

models include Gompertz, Logistic, Korf, Mitscherlich, and Richards growth functions [22,43]. 
Previous studies have reported that biomass–age relationships greatly change through 
environmental gradients and among different forest types [21,24]. In this study, five types of the stand 
growth models mentioned above were selected separately to describe the relationship between forest 
biomass and stand age for forests in the different regions of China (Table 1). The parameters for 
biomass–age relationship models were determined through nonlinear regression, which used the 
Levenberg–Marquardt optimization algorithm to minimize the square of absolute differences 
between estimates and forest biomass observations. A total of 3055 field plots with both forest 

Figure 1. Distributions of forest regions and plots in China. (a) Forest regions following Fang et al. [42];
(b) geographical distribution of the 3543 forest plots used in this study. The northeastern region
includes Liaoning (LN), Jilin (JL), and Heilongjiang (HLJ); the northern region includes Beijing (BJ),
Tianjin (TJ), Hebei (HB), Shanxi (SX), and Inner Mongolia (IM); the eastern region includes Shanghai
(SH), Jiangsu (JS), Zhejiang (ZJ), Anhui (AH), Fujian (FJ), Jiangxi (JX), and Shandong (SD); the southern
region includes Henan (HeN), Hubei (HuB), Hunan (HuN), Guangdong (GD), Guangxi (GX), and
Hainan (HN); the southwestern region includes Chongqing (CQ), Sichuan (SC), Guizhou (GZ), Yunnan
(YN), and Tibet; the northwestern region includes Shannxi (SNX), Gansu (GS), Qinghai (QH), Ningxia
(NX), and Xinjiang (XJ).

2.3. Estimation of Forest Biomass Carbon Stock

Forest biomass was estimated using the 8th national FID from 2009 to 2013 and the refined
continuous biomass expansion factor (CBEF) models [41]:

B = a · V + b (1)

where B is the stand biomass (Mg ha−1); V is the stand volume (m3 ha−1); and a and b are the
coefficients for a specific forest type, which were refined using 3543 field plots by Zhang et al. [41].

In this study, we only calculated forest stand living biomass; carbon contained in wood products
and soils were excluded. With consideration to both forest types and age classes, the biomass carbon
stock of China’s forests was first estimated at the province scale, and then the results were summed
up at the regional and national scales. Since a forest inventory spans about 5 years for the whole of
China, BCS during 2009−2013 was calculated as the change of biomass carbon stock from 2004−2008
to 2009−2013 divided by the interval between their median years [14]. This study took the period of
2009−2013 as its base year to predict forest BCS in the following 40 years.

2.4. Calculation of Forest BCS

1. Step 1. Fitting the biomass–age relationship
Statistical analysis is commonly used to fit the biomass–age relationship. Widely used regression

models include Gompertz, Logistic, Korf, Mitscherlich, and Richards growth functions [22,43].
Previous studies have reported that biomass–age relationships greatly change through environmental
gradients and among different forest types [21,24]. In this study, five types of the stand growth
models mentioned above were selected separately to describe the relationship between forest
biomass and stand age for forests in the different regions of China (Table 1). The parameters for
biomass–age relationship models were determined through nonlinear regression, which used the
Levenberg–Marquardt optimization algorithm to minimize the square of absolute differences between
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estimates and forest biomass observations. A total of 3055 field plots with both forest biomass and age
measurements were first selected from all 3543 sampling plots. Then, different models were fitted to
quantify biomass–age relationships for major forest types widely distributed in different regions of
China. The optimal model for each forest type in a region was determined using the highest R2 and
the lowest RMSE as statistical criteria.

Table 1. Five types of theoretical stand growth models to describe the relationship between forest
biomass and stand age.

Model a Formula Parameter Range Inflect Point Source

R B = a(1 − exp( − bA))1/(1 − c) a, b, c > 0 A = ln(1/(1 − c))/b, B = ac1/(1 − c) [44]
M B = a(1 − bexp( − cA)) a > 0, 0 < b ≤ 1, c > 0 - [45]
L B = a/(1 + exp(b − cA)) a, b > 0 A = b/c, B = 2/a [46]
G B = aexp( − exp(b − cA)) a, c > 0 A = b/c, B = a/e [47]
K B = aexp( − b/Ac) a, b, c > 0 A = ((c + 1)/bc)1/c, B = aexp( − (c + 1)/c) [48]

a Model identifications are Richards, R; Mitscherlich, M; Logistic, L; Gompertz, G; and Korf, K. A and B represent
stand age (year) and forest biomass (Mg ha−1), respectively. a, b, and c are parameters of stand growth equations
that are fitted using field measurements.

2. Step 2. Calculating a forest density index
An increasing number of studies have recently highlighted that stand-growth models may yield

biased estimation of forest biomass carbon stock based on the biomass–age relationships, such as
overestimating the carbon stock under poor site conditions and underestimating it under favorable site
conditions [21,24,49]. Forest density index (DI) is widely recognized as an effective indicator of forest
structure and function, and less affected by changes in forest age and site class [50]. It can be described
as a function of forest biomass under the scenario that forests have a relatively even-aged stand
structure. In this study, such bias in estimated BCS was corrected using the DI, which is calculated as:

DIijm = Bijm/Bijms(Aijm) (2)

where Bijm is the forest biomass (Mg ha−1) estimated from timber volume using the refined CBEF
model; Bijms is the forest biomass (Mg ha−1) estimated using the biomass–age relationship determined
in Step 1; Aijm is the present mean stand age; Subscripts i (i = 1, 2, . . . , 31), j (j = 1, 2, . . . , 30), and m
(m = 1, 2, 3, 4, 5) denote the province, forest type, and age class, respectively. Timber volume and Aijm
were retrieved from the national FID of 2009−2013 (Table S1).

3. Step 3. Calculating forest BCS
Future BCS of different forest types in individual provinces of China was estimated with two

assumptions. First, DI derived from the national FID during 2009−2013 would not change in the
future. Second, neither clear-cuts nor die-offs would occur in the next 40 years. Then, increment of
forest biomass carbon stock in ten-year intervals is used as a proxy of BCS:

P(t + 10) = [BS(t + 10)− BS(t)]/10 (3)

BS(t) = 0.5 ·
31

∑
i=1

30

∑
j=1

5

∑
m=1

(Sijm + ∆Sijm(t)) · Bijms(Aijm + t) · DIijm (4)

where P is the national total of forest BCS during the period from year (t = 0, 10, 20, 30) to year (t + 10)
since 2010; BS(t) and BS(t + 10) are the forest biomass carbon stocks in years t and (t + 10) estimated
using the fitted biomass–age relationships; Sijm and ∆Sijm are the areas of existing forest stands in 2010
and newly planted forests in year t; (Aijm + t) is the mean stand age in year t; Coefficient 0.5 means that
carbon content of biomass equals 50%.
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The total forest area for every 10 years from 2010 to 2050 was estimated according to the
development goals set by China Forestry Sustainable Development Strategy Research Group [51]
(Table S2). Here, we assumed that the ratio of forest stands to total forests would remain unchanged
in the next 40 years (80.1%), and calculated the area of forest stands between 2010 and 2050 in China.
The area of newly planted forests was estimated as the difference in total forest stand area between
any two sequential periods. Based on the area proportion of planted forests in different types reported
by the national FID of 2009−2013, we allocated the area of newly planted forests into different forest
types in the next 40 years with the assumption that proportions of planted forests in different types
remain unchanged in the period from 2010 to 2050. The estimated areas of newly planted forest in all
forest types are shown in Supplementary Table S3.

3. Results

3.1. Models for Forest BCS Estimation

The optimal fitted biomass–age relationships for different forest types in individual regions
of China are shown in Table 2. The majority of forest types could be predicted directly with the
biomass–age relationships. Due to limited field data availability, Acer, Tilia, Ulmus, Davidia, and
tropical forests were predicted using alternative biomass–age relationships that gave approximate
values; the biomass–age relationship for hardwoods and softwoods was used for these forest types.
For most forest types, the logistic function performed the best in describing biomass–age relationships.
With the exception of Eucalyptus, hardwoods, and softwoods in the southwestern region, and Quercus
forests in the northern and northwestern region, the fitted models for major forest types show
statistical significance at the 0.01 level with R2 values above 0.70, confirming the applicability of
these relationships in estimating forest biomass and consequently BCS in China. Figure 2 lists the fitted
optimal biomass–age models for 17 major forest types, which account for approximately 96.0% of the
total area of forest stands in China. Biomass increases quickly with stand age when forests are young.
Then, the increase slows or even stops when forests mature. According to the FID of 2009−2013, the
national area-weighted average ages were 5, 46, 51, 29, 46, 46, 51, 66, 22, 16, 13, 28, 31, 101, 49, 37, and
43 years for Eucalyptus, Cypress, mixed broadleaf, Pinus yunnanensis Franch. and Pinus kisiya Royle ex
Gordon, mixed conifer, Betula L., Quercus L., Larix Philip Miller, Pinus massoniana Lamb., Cunninghamia
lanceolate R.Br., Populus, hardwoods, Pinus tabulaeformis Carr., Abies and Picea, mixed conifer–broadleaf,
Pinus densata Mast. and Pinus armandi Franch., and Pinus koraiensis Siebold & Zucc. forests, respectively.
These ages are much younger than the ages at which forest biomass peaks, indicating the substantial
future BCS potential for forests in China.
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Table 2. Fitted parameters of biomass–age relationships for different types of forests in each region of China based on stand growth models a.

Forest Type Region Model
Parameters

R2 N RMSE
a b c

Abies, Picea
E, S, SW G 537.5314 0.7270 0.0068 0.74 109 36.85
N, NE R 441.2245 0.0060 0.1694 0.86 28 25.70
NW G 533.1656 1.0424 0.0108 0.87 41 36.00

Acacia C L 192.1184 3.1253 0.8502 0.73 22 35.77

Betula
E, NW, S, SW L 96.7427 3.7254 0.1448 0.74 43 18.91

N, NE K 100.5090 33.7955 1.1725 0.74 91 9.09

Casuarina C L 494.5846 2.3640 0.0962 0.85 35 29.29

Cinnamomum, Phoebe C L 175.6370 2.4932 0.1324 0.79 18 24.18

Cryptomeria fortunei, Keteleeria, Tsuga chinensis C K 221.5420 6.8536 0.8436 0.85 12 11.64

Cunninghamia lanceolata E, N, NE L 249.6367 2.4470 0.1270 0.80 202 30.32
NW, S, SW R 256.6336 0.0322 0.0338 0.75 105 21.62

Cypress C L 263.6022 1.9646 0.0269 0.73 45 33.79

Eucalyptus C G 272.3120 1.1458 0.1257 0.65 83 17.97

Fraxinus, Juglans, Phellodendron C R 127.4185 0.0554 0.2067 0.74 11 15.73

Hardwoods, Softwoods
E, N, NE, NW L 532.8806 2.0570 0.0462 0.76 42 68.66

S L 428.7409 1.1758 0.0254 0.78 66 36.75
SW M 459.6966 0.8536 0.0059 0.66 98 28.66

Larix
E, NW, S, SW L 216.3401 1.8860 0.0429 0.76 26 40.28

N K 150.9784 89.8929 1.6011 0.75 231 25.10
NE G 228.1324 1.3351 0.0755 0.80 157 24.83

Metasequoia glyptostroboides C L 301.2842 7.2300 0.4352 0.71 24 56.17

Mixed broadleaf forest C L 296.7574 1.5324 0.0434 0.81 72 35.96

Mixed conifer–broadleaf forest
E K 431.5871 7.1935 0.6634 0.89 114 23.25

N, NE, NW L 326.4180 3.3010 0.1181 0.79 18 29.03
S, SW L 540.7629 1.5528 0.0093 0.80 20 60.84

Mixed coniferous forest C K 360.2259 19.1780 1.0790 0.84 28 24.67
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Table 2. Cont.

Forest Type Region Model
Parameters

R2 N RMSE
a b c

Pinus armandi, Pinus densata C R 151.7461 0.0615 0.6018 0.82 40 18.76

Pinus densifolia, Pinus sylvestris C L 131.9763 3.9119 0.1912 0.84 90 16.86

Pinus kisiya, Pinus yunnanensis C K 190.6896 45.3259 1.3404 0.77 45 27.13

Pinus koraiensis C L 233.8190 3.9661 0.1484 0.92 53 22.86

Pinus massoniana
E, N, NE K 545.2479 6.7624 0.4681 0.74 116 29.60
NW, SW G 326.5093 0.9980 0.0352 0.74 30 19.70

S L 309.0634 2.4008 0.0839 0.74 140 36.39

Pinus tabulaeformis

E, S, SW L 193.3128 6.4921 0.2370 0.78 31 29.60
N L 82.2801 4.1954 0.2586 0.75 162 8.35

NE L 312.9978 4.5699 0.1224 0.78 171 32.20
NW L 367.6710 2.2105 0.0332 0.77 114 35.71

Pinus taeda C K 143.5200 13.1459 1.2634 0.86 15 10.93

Populus E, S, SW L 131.5002 3.0444 0.4285 0.74 98 22.27
N, NE, NW L 86.0127 3.6210 0.2344 0.89 57 10.31

Quercus
E, S, SW L 331.0695 1.2135 0.0210 0.84 12 29.88
N, NW G 199.1942 1.0188 0.0181 0.69 96 14.55

NE L 195.4747 3.8354 0.0857 0.84 12 21.63

Sassafras C L 306.4829 2.0360 0.0663 0.86 16 25.37
a Model formulas are listed in Table 1. a, b, and c are model parameters fitted using field measurements at 3055 forest plots for different forest types and regions. RMSE is the root mean
square error (Mg ha−1). All statistics are significant at the 0.01 confidence level.
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3.2. BCS Dynamics of Forests in China

The national total forest area, biomass carbon stock, and average biomass carbon density would
increase gradually from 164.60 × 106 ha, 6.90 Tg C, and 41.90 Mg C ha−1 in 2010 to 218.02 × 106 ha,
14.79 Tg C, and 67.84 Mg C ha−1 in 2050, respectively, indicating that forests in China would function
as a persistent carbon sink in the next four decades (Table 3). The BCS of China’s forests in 2020, 2030,
2040, and 2050 is expected to be 221.57, 230.15, 178.65, and 159.94 Tg C year−1, respectively, with an
average of 184.04 Tg C year−1 over the period from 2010 to 2050. BCS would increase dramatically for
the period of 2010−2030, driven by considerable area expansion (31.61 × 106 ha) and forest growth
(i.e., an increase of 16.27 Mg C ha−1 in carbon density), and it was predicted to reach the maximum
around 2030. Since then, total forest BCS would slightly decrease, largely caused by the slowdown in
increases of forest area and biomass carbon density.
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Table 3. Projected forest area, biomass carbon stock (BCS), and carbon sequestration of China’s forests
between 2010 and 2050.

Year Area (106 ha) Carbon Stock (Pg C) Carbon Density (Mg C ha−1) BCS (Tg C year−1)

2010 a 164.60 6.90 41.90 130.90
2020 180.40 9.11 50.51 221.57
2030 196.21 11.41 58.17 230.15
2040 207.12 13.20 63.73 178.65
2050 218.02 14.79 67.84 159.94

2010–2050 184.04
a Data estimated from the national forest inventory data of 2009−2013. BCS in 2010 was calculated as the change
of biomass carbon stocks during the period from 2004−2008 to 2009−2013 divided by the interval between their
median years [14].

3.3. BCS in Different Forest Age Classes

Forest BCS in China greatly varied with age classes over the study period (Figure 3). All areas,
biomass carbon stock, and average biomass carbon density of young, middle-aged, premature, mature,
and overmature forests consistently increased from 2010 to 2050 (Figure 3a–c). BCS for young and
middle-aged forests would increase significantly, from 22.76 and 25.05 Tg C year−1 in 2010, to 113.63
and 64.80 Tg C year−1 in 2020, respectively, amounting to 100.2% and 43.8% of the national total
increase of forest BCS during the corresponding period (Figure 3d). The very large BCS of these two
age classes of forests could be attributable to the significant increase in areas and biomass carbon
density. The areas of young and middle-aged forests would increase by 6.26 × 106 and 5.08 × 106

ha, respectively. The biomass carbon density of these two age classes of forests would increase by
16.54 and 7.79 Mg C ha−1. However, 44.0% of the BCS increase of young and middle-aged forests
would be offset by the reduction in BCS of premature, mature, and overmature forests for the period
of 2010−2020. During the period from 2020 to 2030, the BCS of middle-aged, premature, mature, and
overmature forests would gradually shrink, owing to the decrease in increasing rates of forest area and
biomass carbon density. Over the entire study period, the BCS of premature, mature, and overmature
forests would decrease by 16.64, 23.47, and 12.56 Tg C year−1, respectively. Meanwhile, the BCS of
young and middle-aged forests would increase by 65.35 and 15.38 Tg C year−1 as a consequence of
accelerated area expansion and forest growth. Young and middle-aged forests together contributed to
36.5%, 80.5%, 82.0%, 81.8%, and 80.9% of the national total forest BCS in 2010, 2020, 2030, 2040, and
2050, respectively. Forests in China have great potential to sequester more biomass carbon in the future
because of large fractions of young and middle-aged forests.
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Figure 3. Changes in (a) projected forest area, (b) biomass carbon stock, (c) biomass carbon density,
and (d) BCS for five age classes (young, middle-aged, premature, mature, and overmature) during the
period from 2010 to 2050 in China. Data in 2010 were estimated from the national forest inventory data
of 2009−2013 [14].

3.4. Regional Differences of Forest BCS

The BCS by China’s forests shows substantial spatial and temporal variations, ranging from
a minimum of 10.45 Tg C year−1 around 2010 in the northwestern region to a maximum of
55.82 Tg C year−1 around 2030 in the southern region (Figure 4a). Overall, BCS of forests would
increase from 2010 to 2050 in all but the northern region. The largest increase (14.72 Tg C year−1) of
forest BCS would occur in the southern region, accounting for 52.5% of the national total increase. The
large BCS in the southern region around 2030 would primarily be caused by the significant increases of
30.2% and 34.8% in forest area and biomass carbon density there (Table S4). Over the study period from
2010 to 2050, the southern region would have the largest average BCS of 43.87 Tg C year−1, followed
by the southwestern (36.79 Tg C year−1), east (34.64 Tg C year−1), northeastern (31.29 Tg C year−1),
northern (23.21 Tg C year−1), and northwestern (14.24 Tg C year−1) regions.

All Chinese regions except the eastern region would exhibit similar temporal variations of forest
BCS, increasing during the period from 2010 to 2030 and then gradually decreasing (Figure 4a).
The increase of BCS would be largely driven by the area expansion and forest growth of young and
middle-age forests during 2010−2030 (Table S4) resulting from intensive national afforestation and
reforestation practices (Table S2), as well as improved sustainable management of forest resources and
environmental conservation initiated in 1998 (Zhang et al., 2000). Forests in the northeastern, southern,
and southwestern regions would contribute to 20.9%, 30.7%, and 19.0% of national total of increase in
forest BCS between 2010 and 2030, respectively. Due to the concurrent decrease in the increasing rates
of forest area and biomass carbon density for different age classes of forests (Table S4), forest BCS in the
northern, northeastern, northwestern, southern, and southwestern regions would decrease from 29.31,
41.56, 17.88, 55.82, and 43.38 Tg C year−1 in 2030 to 18.34, 25.21, 13.55, 40.07, and 33.76 Tg C year−1
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in 2050, respectively. In the eastern region, the BCS of forests would significantly increase from 27.06
to 44.82 Tg C year−1 during 2010−2020, and decrease to 28.01 Tg C year−1 in 2050. From 2010 to
2050, the BCS of forests was estimated to increase in provinces accounting for 66.8% of the national
total forest area (Figure 4b). The BCS increase would occur mainly in southern provinces with large
forest areas, such as the Guangxi, Sichuan, Hunan, Guangdong, Jiangxi, and Tibet provinces (Table S5),
with values of 8.65, 5.81, 5.31, 4.81, 4.14, and 2.88 Tg C year−1, respectively. During 2010−2050,
forest BCS would decrease in most eastern provinces, such as Anhui, Fujian, Jiangsu, and Zhejiang,
and northern provinces such as Henan, Inner Mongolia, Jilin, and Qinghai. The largest decrease of
6.38 Tg C year−1 in the BCS of forests would occur in Inner Mongolia. The Liaoning province would
be an exception—the BCS of forests there would increase by 3.87 Tg C year−1.
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Figure 4. Trends of forest BCS in different (a) regions and (b) provinces of China during the period from
2010 to 2050. Data in 2010 were estimated from the national forest inventory data of 2009−2013 [14].
Negative values indicate a carbon source, and vice versa. Province letter designations are stated in the
Figure 1 caption.

4. Discussions

4.1. Methodology for Forest BCS Estimation

In this study, the BCS by forests was estimated according to biomass carbon stock retrieved from
the refined CBEF model and biomass–age relationships. The latter is of particular importance to BCS
estimation. The biomass–age relationship has been a widely used method for estimating forest BCS at
the national and regional scales [21,24,52,53]. Early studies indicated that the biomass–age relationship
could be described using a logistic [24,54], Richards [55,56] or Korf [43] function. It is hard to establish
biomass–age relationships using a uniform expression at present. Consequently, five types of stand
growth models (Table 2) were separately selected to fit the relationship between forest biomass and
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stand age. The biomass–age relationship changes depending on region and forest type, which should
be kept in mind.

Our estimated forest BCS at the decadal and annual scales was comparable to the national
mean value estimated using the FID-based relationship between forest biomass and stand age by
Xu et al. [21]. The estimate output from this study gives more detailed information on spatial and
temporal variations of forest BCS because of the combined use of information from FID and field
observations, and biomass–age relationships optimized for major forest types in different regions.
The future rate of forest BCS, to a large extent, might depend on disturbances and stand age [6,19].
BCS estimated from FID-based forest age and biomass–age relationships, which contained information
on historical forest disturbance, might have high accuracy [21]. However, this method may not be
applicable in other areas since the long-term spatially distributed FID used to establish the biomass–age
relationship is not always available. With the consideration of both data availability and the urgent
requirement for reliable BCS estimation of China’s forests, the eighth national FID of 2009−2013 was
first used to predict forest BCS in combination with the biomass-age relationship obtained from field
observations. To some extent, this method can alleviate the bias in forest BCS estimation compared
with methods using some models without consideration of forest age, since FID-based stand age is
embedded within the current framework of stand growth models. In addition, it can be conducted
with limited observations of forest biomass and stand age. Therefore, this method can be widely used
for many regional applications. The BCS estimates in this case are for the decadal intervals from 2010
to 2050. In the future, this approach might be utilized to estimate regional- and national-scale forest
BCS on a yearly basis if annual newly planted forest areas are available.

4.2. Uncertainties in BCS Estimations

This study was conducted using the national FID of 2009−2013 and the relationships between
forest biomass and stand age retrieved from field observations. We attempted to quantitatively explore
the dynamics of BCS in China’s forests from 2010 to 2050. Biomass carbon stock in the baseline year
2010 was estimated using the CBEF model, which was firstly developed by Fang et al. [42] and then
refined by Zhang et al. [41], and it is very sensitive to model parameters. Based on the refined CBEF
model parameters, estimates of forest biomass carbon stock in China could be improved in comparison
with early studies [14,41]. However, the study still contains some uncertainties. Biomass carbon stock
was estimated using the refined empirical relationships between biomass and volume, which were
developed using available field measurements. If the number of samples used to establish a biomass
model for a forest type is inadequate, the estimation error might reach about 10% [57]. We attempted
to collect almost all data published in recent decades in China. However, the number of plots is still
too small for some forest types, such as Acacia, Phoebe, and Sassafras [41]. In addition, the field data
might be collected using different methods, dates, and plot sizes. Uncertainties in field biomass data
would be propagated into estimated carbon stocks.

Stand growth models are generally applicable for quantifying age-related forest biomass dynamics
at plot or local scales [53], in which changes in species composition, stand age, site quality, and stand
density are relatively small. Thus, species-specific growth models should only be used in a small
region, and make predictions for limited time periods. Here, the optimal species-specific growth
models of major forest types, which account for large area proportions (96.0%) of China’s forests,
were parameterized for different regions. Forest BCS predicted with biomass–age relationships needs
adequate and representative field measurements. In this study, relationships from a neighboring region
were adopted if the relationship could not be developed for a certain forest type in a region due to the
unavailability of field data. Forest-growth conditions might spatially differ. One unique biomass–age
relationship used for a large region might result in uncertainties in forest BCS estimation. In addition,
the space-for-time substitution was employed to establish the biomass–age relationship for each forest
type because of a lack of long-term data. This approximation could lead to a bias in estimated biomass
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carbon stocks, since assumptions that the spatial and temporal variations in forest biomass in response
to stand age are equivalent [58–60].

Estimates of FID-based stand age directly represent the dynamics of forest age induced by both
disturbed and nondisturbed factors [19,27], and were used as benchmarks to predict forest BCS in
combination with the biomass–age relationship. The national FID does not include age observations
per se. Forest-stand age was estimated as the median value of each age class for given forest types in a
province. This is a widely used method for estimating mean forest age from national FID. However, if
forest ages are not evenly distributed within individual age classes, the mean forest age calculated in
this way might include uncertainties.

Uncertainties also arise from several assumptions used to estimate forest BCS. First, the forest
density index (Equation (1)) was used to correct possible biases in biomass carbon stocks estimated
using the biomass–age relationships with the assumption that forest density index would change
marginally during the study period. This assumption is not always realistic. Second, we assumed
that neither clear-cuts nor die-offs would occur, and all existing forests would naturally grow. This
simplification ignores the impacts of disturbances and the stochastic process of recovery. Third, we
assigned the area of newly planted forests to each forest type according to the area proportion of
planted forests reported by the national FID of 2009−2013. However, many factors would actually
hamper future forestation, such as the availability of suitable forest lands, the rate at which plantations
can be established, and the long-term sustainability of forestry projects [22–34]. Furthermore, our
current estimation does not consider environmental change factors. Changes in climate, CO2

enrichment, and nitrogen deposition have been shown to affect future forest growth and biomass
carbon accumulation [19,24,25], which is difficult to be incorporated into the method used in this study.

4.3. Implications for Future Forest BCS in China

Our nationwide FID and field data provide both an up-to-date estimate of forest BCS in China
and a baseline for understanding future dynamics of the terrestrial carbon cycle and climate-change
mitigation policies. Within the limits of reported uncertainties, our results suggest that the national
forest BCS was estimated to continuously increase between 2010 and 2030, and then gradually decrease
for the period of 2030−2050. The increment of forest biomass carbon stock in China was estimated
at 7.89 Pg C over the entire study period, with an average annual BCS of 184.04 Tg C year−1. These
findings are comparable to values reported by Xu et al. [21], who reported that forest biomass carbon
would increase by 7.23 Pg C, and CBS would be 144.56 Tg C year−1 on the basis of FID and biomass–age
relationships. However, our estimates were lower than the corresponding values of 13.92 Pg C and
340.00 Tg C year−1 reported by He et al. [24] with a forest carbon sequestration model. If the BCS of
four other carbon pools (dead wood, litter, soil organic carbon, and harvested wood products) are
also considered, the whole forest sector would act as a carbon sink of about 291.26 Tg C year−1 from
2010 to 2050 with the ratios of different carbon pools in China’s forests following Pan et al. [2]. This
forest carbon sink could offset 10.4% of the national contemporary CO2 emissions from fossil fuel
and industry (~2.81 Pg C year−1 in 2017) [61]. The projected increase in future BCS indicates that
forests have high carbon-uptake capacity to mitigate atmospheric CO2 buildup from deforestation and
fossil-fuel combustion in China.

In this study, we quantified the BCS of China’s forests in the near future, integrating the effects of
stand development, human activities, and historic factors. A large BCS is directly associated with areal
expansion and forest growth from large-scale afforestation and reforestation, and ecological restoration
programs. According to the China Forestry Sustainable Development Strategy Research Group [51],
the quantity and quality of forests in China are expected to enter into a steady development stage,
which implies that the potential for the increase of BCS might be limited. Under the assumption that
the planted forest area from 2009 to 2013 could be used as a proxy of future forest area expansion, the
total area of newly planted forests would be 0.53 × 108 ha between 2010 and 2050 (Table S2). However,
the area of wastelands currently available for forest development in China is only 0.39 × 108 ha (about
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half of the preserved plantation area) [35]. About two-thirds of these wastelands are located in the vast
northwestern and southwestern regions, where plantations are restricted by cold and drought climate
conditions, and have low survival rates. Therefore, enhancing BCS through forestation in the future
might become more difficult, because the newly planted forest area would markedly decrease after
2030. Compared with human impact, restoration and conservation practices may enable carbon gains
to continually increase and compensate for the ecological footprint in China’s forest ecosystems [11].

Stand age is a major determinant of forest biomass carbon stock [7,14,53], and, thus, also forest
BCS [24,25,62]. Therefore, information on the stage of stand development should be included in
the prediction of future forest BCS. It was found here that forest biomass carbon stock accumulated
rapidly at a young stand age and gradually saturated at later stages (Figure 3), as indicated in other
studies [24,53]. In contrast, forest BCS was predicted to decline with stand age as forests grow following
ongoing afforestation and reforestation without mortality and harvest. Mature and overmature forests
could continue to accumulate carbon with stand age, and play an important role in the carbon cycle
despite the decreasing growth efficiency. This conclusion is consistent with previous studies [3,63].
The increases in forest area and biomass carbon density through ecological restoration projects and
sustainable forest managements in the next four decades would make forests in different age classes
function as carbon sinks in China (Figure 3). Most of the forests are young and middle-aged, and
have significant potential in future carbon sequestration. Middle-aged and mature forests have high
biomass carbon density. If young and middle-aged forests could evolve into mature forests, large
amounts of carbon will be sequestered by China’s forests in the future. Therefore, afforestation and
reforestation, as well as increasing forest productivity, would be efficient methods to maintain both the
carbon amount and annual rate of carbon uptake.

5. Conclusions

In this study, the BCS dynamics for China’s forests from 2010 to 2050 were systematically
assessed using the national FID of 2009−2013 and the biomass–age relationships, optimized using
field observations for major forest types in each region of China. The following conclusions could
be drawn:

(1) The biomass–age relationships are well-fitted using field observations with statistical
significance of R2 values above 0.70 for most forest types. These relationships can be best described
using mostly the logistic function. Forest biomass increases quickly at a young stand age, and gradually
saturates when forests become mature. For forest types in 96.0% of the national forest area, their
current ages are much younger than the ages at which forest biomass peaks, indicating strong BCS
potential in China’s forests.

(2) The national BCS would increase from 130.90 Tg C year−1 in 2010 to 230.15 Tg C year−1 in
2030, and then decrease to 159.94 Tg C year−1 by 2050. Forests in China function as an averaged
biomass carbon sink of 184.04 Tg C year−1 in the next four decades, mainly driven by the increases in
forest area and biomass carbon density. Young and middle-aged forests would contribute 65.35 and
15.38 Tg C year−1 of this BCS increase, respectively, during the period of 2010−5050. The decreased
BCS of premature, mature, and overmature forests would counteract 187.8% of BCS increase of
younger forests.

(3) Forest BCS would increase in all but the northern region during the study period. The
southern region holds the largest increase of 14.72 Tg C year−1 in BCS, followed by the southwestern,
northeastern, northwestern, and eastern regions. The area expansion and forest growth of young and
middle-aged forests from afforestation and reforestation are the major contributors to the BCS increase
in these regions. The slowdown in the increases of forest area and biomass carbon density for different
age classes of forests is primarily responsible for the BCS reduction in the northern region.

This study is an up-to-date estimate of future BCS by China’s forests based on FID and field data.
Our results provide new insights to the characteristics of forest BCS increase in the next four decades
and highlight the importance of explicit representation of forest age in analyzing regional and national
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carbon balance. They are fundamental for the validation and parameterization of carbon models in
China. However, it should be kept in mind that there are still uncertainties in our estimates, largely
due to inadequate field observations and simplified estimation parameters, without consideration of
spatial variability of forest ages, and the application of the biomass–age relationships at large scales.
Future studies may incorporate high-quality data into the current framework of stand growth models
to reduce these uncertainties.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/11/689/s1:
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between 2010 and 2050 in six regions of China; Table S5. Projected forest area, biomass carbon stock and carbon
density between 2010 and 2050 in different provinces of China.
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