A Subcontinental Analysis of Forest Fragmentation Effects on Insect and Disease Invasion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forest Pest Data
2.2. Habitat Fragmentation Data
2.3. Data Analysis
3. Results
3.1. Effects of Fragmentation
3.2. Edge Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCullough, D.G.; Work, T.T.; Cavey, J.F.; Liebhold, A.M.; Marshall, D. Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol. Invasions 2006, 8, 611–630. [Google Scholar] [CrossRef]
- Mack, R.N.; Simberloff, D.; Lonsdale, W.M.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Liebhold, A.M.; McCullough, D.G.; Blackburn, L.M.; Frankel, S.J.; Von Holle, B.; Aukema, J.E. A highly aggregated geographical distribution of forest pest invasions in the USA. Divers. Distrib. 2013, 19, 1208–1216. [Google Scholar] [CrossRef]
- Oswalt, C.; Fei, S.; Guo, Q.; Iannone, B., III; Oswalt, S.; Pijanowski, B.; Potter, K. A subcontinental view of forest plant invasions. NeoBiota 2015, 24, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Rejmanek, M.; Wen, J. Geographical, socioeconomic, and ecological determinants of exotic plant naturalization in the United States: Insights and updates from improved data. NeoBiota 2012, 12, 41. [Google Scholar] [CrossRef]
- Iannone, B.V.; Potter, K.M.; Guo, Q.; Liebhold, A.M.; Pijanowski, B.C.; Oswalt, C.M.; Fei, S. Biological invasion hotspots: A trait-based perspective reveals new sub-continental patterns. Ecography 2016, 39, 961–969. [Google Scholar] [CrossRef]
- Guo, Q. Plant hybridization: The role of human disturbance and biological invasion. Divers. Distrib. 2014, 20, 1345–1354. [Google Scholar] [CrossRef]
- Riitters, R.; Potter, K.M.; Iannone, B.V., III; Oswalt, C.; Guo, Q.; Fei, S. Exposure of protected and unprotected forest to plant invasions in the eastern United States. Forests 2018, 9, 723. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological responses to habitat fragmentation per se. Ann. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Wade, T.G.; Riitters, K.H.; Wickham, J.D.; Jones, K.B. Distribution and causes of global forest fragmentation. Conser. Ecol. 2003, 7, 7. [Google Scholar] [CrossRef]
- Riitters, K.; Potter, K.; Iannone, B.V.; Oswalt, C.; Fei, S.; Guo, Q. Landscape correlates of forest plant invasions: A high-resolution analysis across the eastern United States. Divers. Distrib. 2018, 24, 274–284. [Google Scholar] [CrossRef]
- Pauchard, A.; Alaback, P.B. Edge type defines alien plant species invasions along Pinus contorta burned, highway and clearcut forest edges. For. Ecol. Manag. 2006, 223, 327–335. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J.; Chen, J.; Brosofske, K.D.; Saunders, S.C.; Euskirchen, E.S.; Roberts, D.; Jaiteh, M.S.; Esseen, P.A. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Slancarova, J.; Benes, J.; Kristynek, M.; Kepka, P.; Konvicka, M. Does the surrounding landscape heterogeneity affect the butterflies of insular grassland reserves? A contrast between composition and configuration. J. Insect Conser. 2014, 18, 1–12. [Google Scholar] [CrossRef]
- Ries, L.; Sisk, T.D. A predictive model of edge effects. Ecology 2004, 85, 2917–2926. [Google Scholar] [CrossRef]
- Kappler, R.H.; Knight, K.S.; Koch, J.; Root, K.V. Neighboring Tree Effects and Soil Nutrient Associations with Surviving Green Ash (Fraxinus pennsylvanica) in an Emerald Ash Borer (Agrilus planipennis) Infested Floodplain Forest. Forests 2018, 9, 183. [Google Scholar] [CrossRef]
- USDA Forest Service. Alien Forest Pest Explorer Database. Available online: https://www.nrs.fs.fed.us/tools/afpe (accessed on 25 June 2018).
- USGS. National Geospatial Data Asset (NGDA) Land Use Land Cover (2011 Edition); US Geological Survey: Sioux Falls, SD, USA, 2014.
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Gass, L.; Dewitz, J.A.; Sorenson, D.G.; Granneman, B.J.; Poss, R.V.; Baer, L.A. Thematic accuracy assessment of the 2011 national land cover database (NLCD). Remote Sens. Environ. 2017, 191, 328–341. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Golden, D.M.; Crist, T.O. Experimental effects of habitat fragmentation on old-field canopy insects: Community, guild and species responses. Oecologia 1999, 118, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Baranchikov, Y.N.; Mattson, W.J.; Hain, F.P.; Payne, T.L. Forest Insect Guilds: Patterns of Interaction with Host Trees; General Technical Report NE-153; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1991.
- Klein, A.-M.; Steffan-Dewenter, I.; Tscharntke, T. Predator—Prey ratios on cocoa along a land-use gradient in Indonesia. Biodivers. Conserv. 2002, 11, 683–693. [Google Scholar] [CrossRef]
- Lin, Y.P.; Cook, D.H.; Gullan, P.J.; Cook, L.G. Does host-plant diversity explain species richness in insects? A test using Coccidae (Hemiptera). Ecol. Entomol. 2015, 40, 299–306. [Google Scholar] [CrossRef]
- Valente, J.J.; Betts, M.G. Response to fragmentation by avian communities is mediated by species traits. Divers. Distrib. 2018, in press. [Google Scholar] [CrossRef]
- Brown, J.K.; Hovmoller, M.S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 2002, 297, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Novais, S.; Macedo-Reis, L.E.; DaRocha, W.D.; Neves, F.S. Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems. Rev. Biol. Trop. 2016, 64, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, M.R.; Gonzalez, E.; Salvo, A.; Valladares, G. Not all in the same boat: Trends and mechanisms in herbivory responses to forest fragmentation differ among insect guilds. Arthropod-Plant Interact. 2014, 8, 593–603. [Google Scholar] [CrossRef]
- Barbaro, L.; Van Halder, I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 2009, 32, 321–333. [Google Scholar] [CrossRef]
- Yamawo, A.; Tagawa, J.; Hada, Y.; Suzuki, N. Different combinations of multiple defence traits in an extrafloral nectary-bearing plant growing under various habitat conditions. J. Ecol. 2014, 102, 238–247. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 1973, 43, 95–124. [Google Scholar] [CrossRef]
- McAvoy, T.J.; Mays, R.; Johnson, N.G.; Salom, S.M. The effects of shade, fertilizer, and pruning on eastern hemlock trees and hemlock woolly adelgid. Forests 2017, 8, 156. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, D.; Guo, Q.; Liu, J.; Wang, L. Interactive effects of large herbivores and plant diversity on insect abundance in a meadow steppe in China. Agric. Ecosyst. Environ. 2015, 212, 245–252. [Google Scholar] [CrossRef]
- Fei, S.; Guo, Q.; Potter, K. Macrosystems ecology: Novel methods and new understanding of multi-scale patterns and processes. Landsc. Ecol. 2016, 31, 217–218. [Google Scholar] [CrossRef]
- Guo, Q.; Brockway, D.G.; Larson, D.L.; Wang, D.; Ren, H. Improving ecological restoration to curb biotic invasion—A practical guide. Invas. Plant Sci. Manag. 2019, in press. [Google Scholar]
Variable | OLS Coefficient | SAR Coefficient | T | p |
---|---|---|---|---|
Constant | 0.726 | 0.374 | 2.309 | 0.021 |
Forest area | 0.235 | 0.157 | 1.597 | 0.110 |
Core | −0.143 | −0.051 | −0.654 | 0.513 |
Islet | −0.014 | −0.028 | −1.206 | 0.228 |
Edge | −0.047 | −0.037 | −4.119 | <0.001 |
Fxag | −0.075 | 0.002 | 0.095 | 0.925 |
Fxde | 0.240 | 0.260 | 9.960 | <0.001 |
Fxgs | −0.497 | −0.348 | −15.947 | <0.001 |
Generalists | Specialists | |||||
---|---|---|---|---|---|---|
r2 | AICc | r2 | AICc | |||
OLS | 0.355 | −1596.820 | 0.297 | 218.502 | ||
SAR | 0.362 | −1617.926 | 0.368 | −5.357 | ||
Variable | OLS Coefficient | SAR Coefficient | T | OLS Coefficient | SAR Coefficient | T |
Constant | 0.072 | −0.077 | −0.736 | 0.8 | 0.532 | 3.519 *** |
Forest area | 0.09 | 0.052 | 0.838 | 0.362 | 0.247 | 2.761 ** |
Core | −0.02 | 0.017 | 0.336 | −0.278 | −0.15 | −2.113 * |
Islet | −0.04 | −0.03 | −2.060 * | 0.005 | −0.021 | −1.012 |
Edge | −0.005 | −0.004 | −0.676 | −0.044 | −0.035 | −4.34 ** |
Fxag | 0.059 | 0.082 | 4.927 ** | −0.153 | −0.046 | −1.896 |
Fxde | 0.261 | 0.239 | 12.839 *** | 0.158 | 0.192 | 7.141 ** |
Fxgs | −0.203 | −0.134 | −8.439 ** | −0.489 | −0.341 | −14.946 *** |
Pathogens | Insects | |||||
---|---|---|---|---|---|---|
r2 | AICc | r2 | AICc | |||
OLS | 0.404 | −1108.708 | 0.251 | 21.133 | ||
SAR | 0.415 | −1146.721 | 0.360 | −309.589 | ||
Variable | OLS Coefficient | SAR Coefficient | T | OLS Coefficient | SAR Coefficient | T |
Constant | 0.375 | 0.006 | 0.056 | 0.383 | 0.353 | 2.482 * |
Forest area | 0.06 | 0.062 | 0.908 | 0.49 | 0.307 | 3.654 *** |
Core | 0.037 | 0.035 | 0.646 | −0.392 | −0.202 | −3.027 ** |
Islet | −0.031 | <0.001 | −0.055 | −0.013 | −0.062 | −3.113 ** |
Edge | −0.031 | −0.02 | −3.291 ** | −0.019 | −0.018 | −2.40 * |
Fxag | 0.009 | −0.01 | −0.529 | −0.122 | 0.034 | 1.505 |
Fxde | 0.182 | 0.157 | 7.659 *** | 0.228 | 0.268 | 10.591 *** |
Fxgs | −0.331 | −0.248 | −14.180 *** | −0.397 | −0.257 | −11.963 *** |
Defoliator | Sap Feeder | Wood Borer | |||||||
---|---|---|---|---|---|---|---|---|---|
r2 | AICc | r2 | AICc | r2 | AICc | ||||
OLS | 0.350 | −968.647 | 0.233 | −1524.781 | 0.174 | −398.459 | |||
SAR | 0.381 | −1069.443 | 0.314 | −1757.464 | 0.25 | −601.435 | |||
Variable | OLS Coefficient | SAR Coefficient | T | OLS Coefficient | SAR Coefficient | T | OLS Coefficient | SAR Coefficient | T |
Constant | −0.244 | −0.287 | −2.407 * | 0.083 | 0.197 | 1.952 | 0.566 | 0.565 | 0.267 |
Forest area | 0.377 | 0.269 | 3.809 *** | 0.231 | 0.141 | 2.358* | 0.229 | 0.05 | 0.644 |
Core | −0.196 | −0.106 | −1.903 | −0.178 | −0.084 | −1.774 | −0.305 | −0.109 | −1.755 |
Islet | −0.128 | −0.109 | −6.541 *** | 0.022 | −0.021 | −1.505 | 0.123 | 0.06 | 3.228 *** |
Edge | −0.005 | −0.004 | −0.672 | 0.001 | −0.006 | −1.033 | −0.021 | −0.019 | −2.651 ** |
Fxag | 0.027 | 0.076 | 4.010 *** | −0.232 | −0.086 | −5.389 *** | −0.092 | 0.017 | 0.815 |
Fxde | 0.264 | 0.233 | 10.970 *** | 0.108 | 0.125 | 6.990 *** | 0.101 | 0.163 | 6.921 *** |
Fxgs | −0.236 | −0.155 | −8.616 *** | −0.2 | −0.148 | −9.689 *** | −0.296 | −0.174 | −8.722 *** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Riitters, K.H.; Potter, K.M. A Subcontinental Analysis of Forest Fragmentation Effects on Insect and Disease Invasion. Forests 2018, 9, 744. https://doi.org/10.3390/f9120744
Guo Q, Riitters KH, Potter KM. A Subcontinental Analysis of Forest Fragmentation Effects on Insect and Disease Invasion. Forests. 2018; 9(12):744. https://doi.org/10.3390/f9120744
Chicago/Turabian StyleGuo, Qinfeng, Kurt H. Riitters, and Kevin M. Potter. 2018. "A Subcontinental Analysis of Forest Fragmentation Effects on Insect and Disease Invasion" Forests 9, no. 12: 744. https://doi.org/10.3390/f9120744
APA StyleGuo, Q., Riitters, K. H., & Potter, K. M. (2018). A Subcontinental Analysis of Forest Fragmentation Effects on Insect and Disease Invasion. Forests, 9(12), 744. https://doi.org/10.3390/f9120744