Topographic Controls on Vegetation Changes in Alpine Tundra of the Changbai Mountains
Abstract
:1. Introduction
2. Approach and Methods
2.1. Study Area
2.2. General Approach
2.3. Data Source and Processing
2.4. Landsat Vegetation Index
2.5. Topographic Variables
2.6. Trend Analysis
2.7. Binary Logistic Regression
2.8. Extraction of Volcanic Ashes and R. aureum Distribution Areas
3. Results
3.1. Vegetation Changes
3.2. Topographic Controls on Vegetation Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haeberli, W.; Beniston, M. Climate change and its impacts on glaciers and permafrost in the alps. Ambio 1998, 27, 258–265. [Google Scholar]
- Elmendorf, S.C.; Henry, G.H.; Hollister, R.D.; Björk, R.G.; Bjorkman, A.D.; Callaghan, T.V.; Collier, L.S.; Cooper, E.J.; Cornelissen, J.H.; Day, T.A. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecol. letters 2012, 15, 164–175. [Google Scholar] [CrossRef]
- Cannone, N.; Sgorbati, S.; Guglielmin, M. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 2007, 5, 360–364. [Google Scholar] [CrossRef]
- Wipf, S.; Stoeckli, V.; Bebi, P. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Clim. Ch. 2009, 94, 105–121. [Google Scholar] [CrossRef]
- Hallinger, M.; Manthey, M.; Wilmking, M. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in scandinavia. New Phytol. 2010, 186, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A.; Gundale, M.J.; Jäderlund, A.; Nilsson, M.C. Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology 2013, 94, 904–919. [Google Scholar] [CrossRef]
- Bowman, W.D.; Steltzer, H. Positive feedbacks to anthropogenic nitrogen deposition in rocky mountain alpine tundra. Ambio 1998, 514–517. [Google Scholar]
- Hwang, T.; Song, C.; Vose, J.M.; Band, L.E. Topography-mediated controls on local vegetation phenology estimated from modis vegetation index. Landsc. Ecol. 2011, 26, 541–556. [Google Scholar] [CrossRef]
- Riihimäki, H.; Heiskanen, J.; Luoto, M. The effect of topography on arctic-alpine aboveground biomass and ndvi patterns. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 44–53. [Google Scholar] [CrossRef]
- Isard, S.A. Factors influencing soil moisture and plant community distribution on niwot ridge, front range, colorado, USA. Arct. Alp. Res. 1986, 18, 83–96. [Google Scholar] [CrossRef]
- Holland, P.; Steyn, D. Vegetational responses to latitudinal variations in slope angle and aspect. J. Biogeogra. 1975, 2, 179–183. [Google Scholar] [CrossRef]
- McDonald, D.; Cowling, R.; Boucher, C. Vegetation-environment relationships on a species-rich coastal mountain range in the fynbos biome (south africa). Vegetatio 1996, 123, 165–182. [Google Scholar] [CrossRef]
- Carmel, Y.; Kadmon, R. Effects of grazing and topography on long-term vegetation changes in a mediterranean ecosystem in israel. Plant Ecol. 1999, 145, 243–254. [Google Scholar] [CrossRef]
- Qiu, B.; Zhong, M.; Zeng, C.; Tang, Z.; Chen, C. Effect of topography and accessibility on vegetation dynamic pattern in mountain-hill region. J. Mt. Sci. 2012, 9, 879–890. [Google Scholar] [CrossRef]
- Gottfried, M.; Pauli, H.; Reiter, K.; Grabherr, G. A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Divers. Distrib. 1999, 5, 241–251. [Google Scholar] [CrossRef]
- Salinger, M.; Mullan, A. New zealand climate: Temperature and precipitation variations and their links with atmospheric circulation 1930–1994. Int. J. Climatol. J. R. Meteorol. Soc. 1999, 19, 1049–1071. [Google Scholar] [CrossRef]
- Efthymiadis, D.; Jones, P.D.; Briffa, K.R.; Böhm, R.; Maugeri, M. Influence of large-scale atmospheric circulation on climate variability in the greater alpine region of Europe. J. Geophys. Res. Atmos. 2007, 112, D12104. [Google Scholar] [CrossRef]
- Pereira, J.; Itami, R. Gis-based habitat modeling using logistic multiple regression- a study of the mt. Graham red squirrel. Photogramm. Eng. Remote Sens. 1991, 57, 1475–1486. [Google Scholar]
- Suggitt, A.J.; Gillingham, P.K.; Hill, J.K.; Huntley, B.; Kunin, W.E.; Roy, D.B.; Thomas, C.D. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 2011, 120, 1–8. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, X.; Chuvieco, E.; Warner, T.; Wilson, J.P. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sen. Environ. 2007, 111, 122–134. [Google Scholar] [CrossRef]
- Dobrowski, S.Z. A climatic basis for microrefugia: The influence of terrain on climate. Glob. Change Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Scherrer, D.; Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 2011, 38, 406–416. [Google Scholar] [CrossRef]
- Scherrer, D.; Koerner, C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 2010, 16, 2602–2613. [Google Scholar] [CrossRef]
- SANZ-ELORZA, M.; Dana, E.D.; González, A.; Sobrino, E. Changes in the high-mountain vegetation of the central iberian peninsula as a probable sign of global warming. Ann. Bot. 2003, 92, 273–280. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Grabherr, G. Effects of climate change on the alpine and nival vegetation of the alps. J. Mt. Ecol. 2014, 7, 9–12. [Google Scholar]
- Ruiz-Labourdette, D.; Nogués-Bravo, D.; Ollero, H.S.; Schmitz, M.F.; Pineda, F.D. Forest composition in mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 2012, 39, 162–176. [Google Scholar] [CrossRef]
- Zong, S.; Xu, J.; Wu, Z. Analysis on the process and impacts of deyeuxia angustifolia invasion on the alpine tundra, changbai mountain. Acta Ecol. Sin. 2013, 34, 6837–6846. [Google Scholar]
- Shi, P.; Li, W. Boundary form effects of timberline ecotone on colonization of woody plants and timberline dynamics in changbai mountain. Acta Ecol. Sin. 2000, 20, 573–580. [Google Scholar]
- Zong, S.; Xu, J.; Wu, Z. Investigation and mechanism analysis on the invasion of deyeuxia. Angustifolia to tundra zone in western slope of changbai mountain. J. Mt. Sci. 2013, 31, 448–455. [Google Scholar]
- Huang, X.; Li, C. An analysis on the ecology of alpine tundra landscape of changbai mountains. Acta Geogr. Sin. 1984, 39, 285–297. [Google Scholar]
- Available online: http://glovis.usgs.gov/ (accessed on 10 March 2018).
- Beers, T.W.; Dress, P.E.; Wensel, L.C. Notes and observations: Aspect transformation in site productivity research. J. For. 1966, 64, 691–692. [Google Scholar]
- Maggini, R.; Lehmann, A.; Zimmermann, N.E.; Guisan, A. Improving generalized regression analysis for the spatial prediction of forest communities. J. Biogeogr. 2006, 33, 1729–1749. [Google Scholar] [CrossRef]
- Bader, M.Y.; Ruijten, J.J. A topography-based model of forest cover at the alpine tree line in the tropical andes. J. Biogeogr. 2008, 35, 711–723. [Google Scholar] [CrossRef]
- Zong, S. Mechanism research on the vegetation changes of the sub-alpine tundra, changbai mountains. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2014. [Google Scholar]
- Pauchard, A.; Alaback, P.B. Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central chile. Conserv. Biol. 2004, 18, 238–248. [Google Scholar] [CrossRef]
- Pauchard, A.; Kueffer, C.; Dietz, H.; Daehler, C.C.; Alexander, J.; Edwards, P.J.; Arévalo, J.R.; Cavieres, L.A.; Guisan, A.; Haider, S. Ain’t no mountain high enough: Plant invasions reaching new elevations. Front. Ecol. Environ. 2009, 7, 479–486. [Google Scholar] [CrossRef]
- Becker, T.; Dietz, H.; Billeter, R.; Buschmann, H.; Edwards, P.J. Altitudinal distribution of alien plant species in the swiss alps. Perspect. Plant Ecol. Evol. Syst. 2005, 7, 173–183. [Google Scholar] [CrossRef]
- Ropars, P.; Boudreau, S. Shrub expansion at the forest–tundra ecotone: Spatial heterogeneity linked to local topography. Environ. Res. Letters 2012, 7, 015501. [Google Scholar] [CrossRef]
- McDougall, K.L.; Alexander, J.M.; Haider, S.; Pauchard, A.; Walsh, N.G.; Kueffer, C. Alien flora of mountains: Global comparisons for the development of local preventive measures against plant invasions. Divers. Distrib. 2011, 17, 103–111. [Google Scholar] [CrossRef]
- Carbutt, C. The emerging invasive alien plants of the drakensberg alpine centre, southern africa. Bothalia 2012, 42, 71–85. [Google Scholar] [CrossRef]
- Dearborn, K.D.; Danby, R.K. Aspect and slope influence plant community composition more than elevation across forest–tundra ecotones in subarctic canada. J. Veg. Sci. 2017, 28, 595–604. [Google Scholar] [CrossRef]
- Kambo, D.; Danby, R.K. Factors influencing the establishment and growth of tree seedlings at subarctic alpine treelines. Ecosphere 2018, 9. [Google Scholar] [CrossRef]
- Orbán, I.; Birks, H.H.; Vincze, I.; Finsinger, W.; Pál, I.; Marinova, E.; Jakab, G.; Braun, M.; Hubay, K.; Bíró, T. Treeline and timberline dynamics on the northern and southern slopes of the retezat mountains (romania) during the late glacial and the holocene. Quat. Int. 2018, 477, 59–78. [Google Scholar] [CrossRef]
- Winkler, M.; Lamprecht, A.; Steinbauer, K.; Hülber, K.; Theurillat, J.P.; Breiner, F.; Choler, P.; Ertl, S.; Gutiérrez Girón, A.; Rossi, G. The rich sides of mountain summits–a pan-european view on aspect preferences of alpine plants. J. Biogeogr. 2016, 43, 2261–2273. [Google Scholar] [CrossRef]
- Zong, S.; Jin, Y.; Xu, J.; Wu, Z.; He, H.; Du, H.; Wang, L. Nitrogen deposition but not climate warming promotes deyeuxia angustifolia encroachment in alpine tundra of the changbai mountains, northeast china. Sci. Total Environ. 2016, 544, 85–93. [Google Scholar] [CrossRef]
- Pearson, R.G. Climate change and the migration capacity of species. Trends Ecol. Evol. 2006, 21, 111–113. [Google Scholar] [CrossRef]
- Rull, V. Microrefugia. J. Biogeogr. 2009, 36, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Klanderud, K.; Birks, H.J.B. Recent increases in species richness and shifts in altitudinal distributions of norwegian mountain plants. The Holocene 2003, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Simpson, M.; Prots, B. Predicting the distribution of invasive plants in the ukrainian carpathians under climatic change and intensification of anthropogenic disturbances: Implications for biodiversity conservation. Environ. Conserv. 2013, 40, 167–181. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Chong, G.W.; Schell, L.D.; Rimar, K.A.; Otsuki, Y.; Lee, M.; Kalkhan, M.A.; Villa, C.A. Assessing vulnerability to invasion by nonnative plant species at multiple spatial scales. Environ. Manag. 2002, 29, 566–577. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, G.; Xu, Q.; Wang, Y.; Wang, H. Simulation of soil respiration in response to temperature under snowpacks in the changbai mountain, china. J. Plant Ecol. (Chinese Version) 2010, 34, 477–487. [Google Scholar]
- Jin, Y.; Xu, J.; Liang, Y.; Zong, S. Effects of volcanic interference on the vegetation distribution of changbai mountain. Sci. Geogr. Sin. 2013, 33, 203–208. [Google Scholar]
- Del Moral, R. Initial recovery of subalpine vegetation on mount st. Helens, washington. Am. Midland Naturalist 1983, 72–80. [Google Scholar] [CrossRef]
- Efford, J.; Clarkson, B.; Bylsma, R. Persistent effects of a tephra eruption (ad 1655) on treeline composition and structure, mt taranaki, new zealand. N. Z. J. Bot. 2014, 52, 245–261. [Google Scholar] [CrossRef]
- Grishin, S.Y.; del Moral, R.; Krestov, P.V.; Verkholat, V.P. Succession following the catastrophic eruption of ksudach volcano (kamchatka, 1907). Vegetatio 1996, 127, 129–153. [Google Scholar] [CrossRef]
- del Moral, R.; Wood, D.M. Dynamics of herbaceous vegetation recovery on mount st. Helens, washington, USA, after a volcanic eruption. Vegetatio 1988, 74, 11–27. [Google Scholar] [CrossRef]
Satellite | Sensor | Scene | Acquired Date | Resolution | Cloud Cover (%) |
---|---|---|---|---|---|
Landsat-5 | Thematic Mapper (TM) | LT51160311988271HAJ01 | 27 September 1988 | 30 m | 2 |
Landsat-5 | TM | LT51160311990276HAJ01 | 3 October 1990 | 30 m | 1 |
Landsat-5 | TM | LT51160311992266HAJ01 | 22 September 1992 | 30 m | 3 |
Landsat-5 | TM | LT51160311999269BJC00 | 26 September 1999 | 30 m | 9 |
Landsat-5 | TM | LT51160312004267BJC00 | 23 September 2004 | 30 m | 0 |
Landsat-7 | Enhanced Thematic Mapper Plus (ETM+) | LE71160312006264EDC00 | 21 September 2006 | 30 m | 0 |
Landsat-5 | TM | LT51160312007275IKR00 | 2 October 2007 | 30 m | 0 |
Landsat-7 | ETM+ | LE71160312009272EDC00 | 29 September 2009 | 30 m | 1 |
Landsat-7 | ETM+ | LE71160312012281EDC00 | 7 October 2012 | 30 m | 0 |
Landsat-7 | ETM+ | LE71160312013283EDC00 | 10 October 2013 | 30 m | 0 |
Landsat-7 | ETM+ | LE71160312017278EDC00 | 5 October 2017 | 30 m | 0 |
GaoFen-2 (GF-2) | Panchromatic and Multispectral CCD Camera Sensors2 (PMS2) | GF2_PMS2_E128.0_N42.0_20170923_L1A0002620874 | 23 September 2017 | 0.8 m | 0 |
Advanced Land Observing Satellite (ALOS) | Panchromatic Remotesensing Instrument for Stereo Mapping (PRISM) | N42080E127826_N41650E128200_LT_DSM | 5 m |
Topographic Variables | Ecological Relevance | Calculations |
---|---|---|
Altitude | Temperature and wetness | Raw DEM |
Slope | Soil moisture and solar radiation | Slope |
Mountain aspect | Solar radiation and precipitation | sin(α+45°) + 1 |
Local aspect | Solar radiation | sin(β+45°) + 1 |
CVE | Habitat heterogeneity and erosion capability | Std (Regional altitude)/Mean (Regional altitude) |
DVA | Disturbance from volcanic ashes | Distance (pixel, nearest ash) |
Vegetation Changes | Variables | Coefficient | S.E. | Sig. | OR | Predictive Accuracy | AUC |
---|---|---|---|---|---|---|---|
Low-altitude plant encroachment | CVE | 0.23 | 0.04 | 0.00 | 1.25 | 80.2% | 0.78 |
Local aspect | 0.16 | 0.04 | 0.00 | 1.18 | |||
Mountain aspect | −0.60 | 0.04 | 0.00 | 0.55 | |||
Altitude | −1.18 | 0.06 | 0.00 | 0.31 | |||
constant | −1.72 | 0.05 | 0.00 | 0.18 | |||
Tundra endemic plant expansion | CVE | −0.14 | 0.06 | 0.02 | 0.87 | 91.4% | 0.77 |
DVA | −1.37 | 0.11 | 0.00 | 0.25 | |||
Constant | −2.92 | 0.09 | 0.00 | 0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; He, H.S.; Zong, S.; Tan, X.; Du, H.; Zhao, D.; Liu, K.; Liang, Y. Topographic Controls on Vegetation Changes in Alpine Tundra of the Changbai Mountains. Forests 2018, 9, 756. https://doi.org/10.3390/f9120756
Wu M, He HS, Zong S, Tan X, Du H, Zhao D, Liu K, Liang Y. Topographic Controls on Vegetation Changes in Alpine Tundra of the Changbai Mountains. Forests. 2018; 9(12):756. https://doi.org/10.3390/f9120756
Chicago/Turabian StyleWu, Miaomiao, Hong S. He, Shengwei Zong, Xinyuan Tan, Haibo Du, Dandan Zhao, Kai Liu, and Yu Liang. 2018. "Topographic Controls on Vegetation Changes in Alpine Tundra of the Changbai Mountains" Forests 9, no. 12: 756. https://doi.org/10.3390/f9120756
APA StyleWu, M., He, H. S., Zong, S., Tan, X., Du, H., Zhao, D., Liu, K., & Liang, Y. (2018). Topographic Controls on Vegetation Changes in Alpine Tundra of the Changbai Mountains. Forests, 9(12), 756. https://doi.org/10.3390/f9120756