Supplementary 1

Table S1: Definitions and Equations for GLCM texture measures¹

Factor	Equation	Description
Contrast	$\sum_{i,j=0}^{M-1} Pij (i-j)^2$	Overall amount of local grey
	$\sum_{ij=0}^{n} ij(i-j)$	level variation within a
		window (Yuan et al., 1991).
Correlation	$\sum_{i,j=0}^{M-1} Pij \left[\frac{(i-\mu_i)(i-u_j)}{(\sigma_i^2)(\sigma_i^2)} \right]$	Measurement of linear
	$\angle_{ij=0}^{I \ ij} \left[\overline{(\sigma_i^2)(\sigma_j^2)} \right]$	dependency of grey levels
		within an image (Kayitakire et
		al. 2006).
Entropy	$\sum\nolimits_{ij=0}^{M-1} Pij\left(-lnP_{ij}\right)$	Measure of uncertainty within
		an image (Yuan et al., 1991).
Dissimilarity	$\sum_{i,j=0}^{M-1} Pij i-j $	Measure of the local variation
	$\sum_{ij=0}^{n} ij=0$	(Rubner
		et al. 2001).
Homogeneity	$\sum_{i,j=0}^{M-1} \frac{Pij}{1 + (i-i)^2}$	Measures the smoothness of
		the image texture (grey level
		distributions) (Tuttle
		et al. 2006).
Mean	$\mu_i = \sum_{ij=0}^{M-1} i(Pij)$	Average grey levels present in
	$\mu_i = \sum_{i,j=0}^{M-1} j(Pij)$	the small neighbourhood
	,	(Materka and Stralecki 1998).
Second moment	$\sum_{i=1}^{M-1} P_{ij^2}$	Provides indication of local
	$\angle_{ij=0}^{ij^2}$	homogeneity (Yuan et al.,
		1991).
Variance	$\sigma_i^2 = \sum_{ij=0}^{M-1} Pij (i - \mu_i)^2$	Variability of pixels spectral
	$\sigma_i^2 = \sum_{i,j=0}^{M-1} Pij \left(i - \mu_i\right)^2$	response (Materka and
	-j <u> </u>	Stralecki 1998).
		1

[&]quot;Where P(i,j) is the normalised co-occurrence matrix where the sum of (i,j=0,M-1) (P(i,j))=1"

¹ Adapted from Hlatshwayo et al. (2019)