Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia
Abstract
:1. Introduction
2. Material and Methods
2.1. Studied Sites
2.2. Sampling, Isolation, and Morphological Identification of Phytophthora Spp.
2.3. Molecular identifIcation of Phytophthora Spp.
2.4. Soil Infestation Test
2.5. Underbark Inoculation Test
2.6. Statistical Analyses
3. Results
3.1. Phytophthora Species in Poplar Plantations
3.2. Soil Infestation Test
3.3. Underbark Inoculation Test
4. Discussion
5. Conclusions
- (1)
- A community of six different Phytophthora species, P. cactorum, P. gonapodyides, P. lacustris, P. pini, P, plurivora, and P. polonica, was detected in each of the three symptomatic and healthy, riparian poplar plantations in Serbia.
- (2)
- In both a soil infestation test and an underbark inoculation test, all six Phytophthora species proved their pathogenicity to four-month and one-year-old cuttings of poplar clones I-214 and Pánnonia, respectively.
- (3)
- The results suggest the involvement of soilborne Phytophthora species as fine root and bark pathogens in the decline of poplar plantations. The presence of these Phytophthora species in riparian poplar plantations might also pose a serious risk to other riparian forest communities, in particular the natural stands of Quercus robur and Fraxinus angustifolia.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beakes, G.W.; Thines, M.; Honda, D. Straminipile “Fungi” – Taxonomy. In Encyclopedia of Life Sciences (eLS); John Wiley and Sons, Ltd.: Chichester, UK, 2015; pp. 1–9. [Google Scholar]
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; American Phytopathological Society (APS) Press: St. Paul, MN, USA, 1996; p. 592. ISBN 0-89054-212-0. [Google Scholar]
- Jung, T.; Vettraino, A.M.; Cech, T.; Vannini, A. The impact of invasive Phytophthora species on European forests. In Phytophthora: A Global Perspective; Lamour, K., Ed.; Plant Protection Series 2; CABI: Wallingford, UK, 2013; pp. 146–158. ISBN 978-1-78064-093-8. [Google Scholar]
- Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguín Casal, O.; Bakonyi, J.; Cacciola, S.O.; Cech, T.; Chavarriaga, D.; et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016, 46, 134–163. [Google Scholar] [CrossRef]
- Jung, T.; Pérez–Sierra, A.; Durán, A.; Horta Jung, M.; Balci, Y.; Scanu, B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia 2018, 40, 182–220. [Google Scholar] [CrossRef]
- Brasier, C.M. The biosecurity threat to the UK and global environment from international plant trade. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Pérez-Sierra, A.; Jung, T. Phytophthora in woody ornamental nurseries. In Phytophthora: A Global Perspective; Lamour, K., Ed.; Plant Protection Series 2; CABI: Wallingford, UK, 2013; pp. 166–177. ISBN 978-1-78064-093-8. [Google Scholar]
- Scott, P.M.; Burgess, T.I.; Hardy, G.E.St.J. Globalization and Phytophthora. In Phytophthora: A Global Perspective; Lamour, K., Ed.; Plant Protection Series 2; CABI: Wallingford, UK, 2013; pp. 226–232. ISBN 978-1-78064-093-8. [Google Scholar]
- Keča, L.; Keča, N.; Pantić, D. Net present value and internal rate of return as indicators for assessment of cost-efficiency of poplar plantations: A Serbian case study. Int. For. Rev. 2012, 14, 145–156. [Google Scholar] [CrossRef]
- Banković, S.; Medarević, M.; Pantić, D.; Petrović, N.; Šljukić, B.; Obradović, S. The growing stock of the Republic of Serbia—State and problems. Bull. Fac. For. 2009, 100, 7–29, (In Serbian with English summary). [Google Scholar] [CrossRef]
- Cerny, K.; Strnadova, V.; Gregorova, B.; Holub, V.; Tomsovsky, M.; Mrazkova, M.; Gabrielova, S. Phytophthora cactorum causing bleeding canker of common beech, horse chestnut, and white poplar in the Czech Republic. Plant Pathol. 2009, 58, 394. [Google Scholar] [CrossRef]
- Pernek, M.; Županić, M.; Diminić, D.; Cech, T. Vrste roda Phytophthora na bukvi i topolama u Hrvatskoj (Phytophthora species on beech and poplars in Croatia). Šumar. List 2011, 135, 130–137. (In Croatian) [Google Scholar]
- Keča, N.; Milenković, I.; Keča, L. Mycological complex of poplars in Serbia. J. For. Sci. 2015, 61, 169–174. [Google Scholar] [CrossRef]
- Jung, T.; Blaschke, H.; Neumann, P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Path. 1996, 26, 253–272. [Google Scholar] [CrossRef]
- Jung, T. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For. Pathol. 2009, 39, 73–94. [Google Scholar] [CrossRef]
- Jung, T.; Blaschke, H.; Oßwald, W. Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol. 2000, 49, 706–718. [Google Scholar] [CrossRef]
- Stamps, D.J.; Waterhouse, G.M.; Newhook, F.J.; Hall, G.S. Revised Tabular Key to the Species of Phytophthora; Mycological Papers 162; CAB International Mycological Institute: Kew, UK, 1990; pp. 1–28. ISBN 0851986838. [Google Scholar]
- Jung, T.; Cooke, D.E.L; Blaschke, H.; Duncan, J.M.; Oßwald, W. Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol. Res. 1999, 103, 785–798. [Google Scholar] [CrossRef]
- Belbahri, L.; Moralejo, E.; Calmin, G.; Oszako, T.; Garcia, J.A.; Descals, E.; Lefort, F. Phytophthora polonica, a new species isolated from declining Alnus glutinosa stands in Poland. FEMS Microbiol. Lett. 2006, 261, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Burgess, T.I. Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia 2009, 22, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.X.; Gallegly, M.E.; Richardson, P.A.; Kong, P. Phytophthora pini Leonian resurrected to distinct species status. Mycologia 2011, 103, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Nechwatal, J.; Bakonyi, J.; Cacciola, S.O.; Cooke, D.E.L.; Jung, T.; Nagy, Z.Á.; Vannini, A.; Vettraino, A.M.; Brasier, C.M. The morphology, behaviour and molecular phylogeny of Phytophthora taxon Salixsoil and its redesignation as Phytophthora lacustris sp. nov. Plant Pathol. 2013, 62, 355–369. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. ISBN 0123721806. [Google Scholar]
- Cooke, D.E.L.; Drenth, A.; Duncan, J.M.; Wagels, G.; Brasier, C.M. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 2000, 30, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, A. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Hudler, G.W.; Jensen-Tracy, S.L.; Griffiths, H.M.; Fleischmann, F.; Oßwald, W. Involvement of Phytophthora spp. in the decline of European beech in Europe and the USA. Mycologist 2005, 19, 159–166. [Google Scholar] [CrossRef]
- Hong, C.X.; Gallegly, M.E.; Richardson, P.A.; Kong, P.; Moorman, G.W. Phytophthora irrigata, a new species isolated from irrigation reservoirs and rivers in Eastern United States of America. FEMS Microbiol. Lett. 2008, 285, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Weiland, G.E.; Nelson, A.H.; Hudler, G.W. Aggressiveness of Phytophthora cactorum, P. citricola I and P. plurivora from European beech. Plant Dis. 2010, 94, 1009–1014. [Google Scholar] [CrossRef]
- Rytkönen, А.; Lilja, A.; Werres, S.; Sirkiä, S.; Hantula, J. Infectivity, survival and pathology of Finnish strains of Phytophthora plurivora and Ph. pini in Norway spruce. Scand. J. For. Res. 2013, 28, 307–318. [Google Scholar] [CrossRef]
- Yang, X.; Tyler, B.M.; Hong, C. An expanded phylogeny for the genus Phytophthora. IMA Fungus 2017, 8, 355–384. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, J.; Lakatos, F.; Szabo, I. The role of Phytophthora species in the decline of Black walnut stands. In Proceedings of the International Scientific Conference on Sustainable Development and Ecological Footprint, Sopron, Hungary, 26–27 March 2012; University of West Hungary Press: Sopron, Hungary, 2012; pp. 1–5. [Google Scholar]
- Jankowiak, R.; Stępniewska, H.; Bilański, P.; Kolařík, M. Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiol. 2014, 59, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Milenković, I.; Keča, N.; Karadžić, D.; Radulović, Z.; Milanović, S.; Tomšovsky, M.; Jung, T. Phytophthora diversity in natural ecosystems in Serbia and Montenegro. Unpublished work. 2018. [Google Scholar]
- Jönsson, U. A conceptual model for the development of Phytophthora disease in Quercus robur. New Phytol. 2006, 171, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, U.; Jung, T.; Rosengren, U.; Nihlgard, B.; Sonesson, K. Pathogenicity of Swedish isolates of Phytophthora quercina to Quercus robur in two different soil types. New Phytol. 2003, 158, 355–364. [Google Scholar] [CrossRef]
- Jönsson, U.; Jung, T.; Sonesson, K.; Rosengren, U. Relationships between Quercus robur health, occurrence of Phytophthora species and site conditions in southern Sweden. Plant Pathol. 2005, 54, 502–511. [Google Scholar] [CrossRef]
- Brasier, C.M.; Cooke, D.E.L.; Duncan, J.M.; Hansen, E.M. Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides—P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycol. Res. 2003, 17, 277–290. [Google Scholar] [CrossRef]
- Jung, T.; Stukely, M.J.; Hardy, G.E.St.J.; White, D.; Paap, T.; Dunstan, W.A.; Burgess, T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Persoonia 2011, 26, 13–39. [Google Scholar] [CrossRef] [PubMed]
- Corcobado, T.; Cubera, E.; Pérez-Sierra, A.; Jung, T.; Solla, A. First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Dis. Rep. 2010, 22, 33. [Google Scholar] [CrossRef]
- Orlikowski, L.B.; Ptaszek, M.; Rodziewicz, A.; Nechwatal, J.; Thinggaard, K.; Jung, T. Phytophthora root and collar rot of mature Fraxinus excelsior in forest stands in Poland and Denmark. For. Pathol. 2011, 41, 510–519. [Google Scholar] [CrossRef]
- Nikić, Z.; Letić, L.; Nikolić, V.; Filipović, V. Procedure for underground water calculation regime of Pedunculate oak habitat in Plain Srem (in Serbian with English summary). Bull. Fac. For. 2010, 101, 125–138. [Google Scholar] [CrossRef]
- Huai, W.X.; Tian, G.; Hansen, E.M.; Zhao, W.X.; Goheen, E.M.; Grünwald, N.J.; Cheng, C. Identification of Phytophthora species baited and isolated from forest soil and streams in northwestern Yunnan province, China. For. Pathol. 2013, 43, 87–103. [Google Scholar] [CrossRef]
- Hueberli, D.; Hardy, G.S.; White, D.; Williams, N.; Burgess, T.I. Fishing for Phytophthora from Western Australia’ s waterways: A distribution and diversity survey. Australas. Plant Pathol. 2013, 42, 251–260. [Google Scholar] [CrossRef]
- Hulvey, J.; Gobena, D.; Finley, L.; Lamour, K. 2010: Co-occurrence and genotypic distribution of Phytophthora species recovered from watersheds and plant nurseries of eastern Tennessee. Mycologia 2010, 102, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Chang, T.T.; Bakonyi, J.; Seress, D.; Pérez-Sierra, A.; Yang, X.; Hong, C.; Scanu, B.; Fu, C.H.; Hsueh, K.L.; et al. Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 2017, 66, 194–211. [Google Scholar] [CrossRef]
- Nagel, J.H.; Gryzenhout, M.; Slippers, B.; Wingfield, M.J.; Hardy, G.E.St.J.; Stukely, M.J.; Burgess, T.I. Characterization of Phytophthora hybrids from ITS clade 6 associated with riparian ecosystems in South Africa and Australia. Fungal Biol. 2013, 117, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Gryzenhout, M.; Wingfield, B.D.; Wingfield, M.J.; Burgess, T.I. Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus 2013, 4, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Reeser, P.W.; Hansen, E.M.; Sutton, W.; Remigi, P.; Adams, G.C. Phytophthora species in forest streams in Oregon and Alaska. Mycologia 2011, 103, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.K.; Zhou, Y.; Lamour, K. 2013: Oomycetes baited from streams in Tennessee 2010–2012. Mycologia 2013, 105, 1516–1523. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.X.; Richardson, P.A.; Kong, P. Pathogenicity to ornamental plants of some existing species and new taxa of Phytophthora from irrigation water. Plant Dis. 2008, 92, 1201–1207. [Google Scholar] [CrossRef]
- Hong, C.X.; Gallegly, M.E.; Richardson, P.A.; Kong, P.; Moorman, G.W. Phytophthora hydropathica, a new pathogen identified from irrigation water, Rhododendron catawbiense and Kalmia latifolia. Plant Pathol. 2010, 59, 913–921. [Google Scholar] [CrossRef]
- Jung, T.; Blaschke, M. 2004: Phytophthora root and collar rot of alders in Bavaria: Distribution, modes of spread and possible management strategies. Plant Pathol. 2004, 53, 197–208. [Google Scholar] [CrossRef]
- Orlikowski, L.B.; Trzewik, A.; Orlikowska, T. Water as potential source of Phytophthora citricola. J. Plant Prot. Res. 2007, 47, 125–132. [Google Scholar]
- Yang, X.; Hong, C.X. Phytophthora virginiana sp. nov., a high temperature tolerant species from irrigation water in Virginia. Mycotaxon 2013, 126, 167–176. [Google Scholar] [CrossRef]
- Yang, X.; Copes, W.E.; Hong, C.X. Phytophthora mississippiae sp. nov., a new species recovered from irrigation reservoirs at a plant nursery in Mississippi. J. Plant Pathol. Microbiol. 2013, 4, 5. [Google Scholar] [CrossRef]
- Yang, X.; Richardson, P.A.; Hong, C. Phytophthora ×stagnum nothosp. nov., a new hybrid from irrigation reservoirs at ornamental plant nurseries in Virginia. PLoS ONE 2014, 9, e103450. [Google Scholar] [CrossRef] [PubMed]
- Moralejo, E.; Pérez-Sierra, A.; Alvarez, L.A.; Belbahri, L.; Lefort, F.; Descals, E. Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathol. 2009, 58, 100–110. [Google Scholar] [CrossRef]
- Hardy, G.S.; Barrett, S.; Shearer, B.L. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australas. Plant Path. 2001, 30, 133–139. [Google Scholar] [CrossRef]
Stand, Location (River) | Tree No. | Populus Species/Clone | Age | Disease Symptoms | Sample | Phytophthora Species (No. Isolates) | GenBank Accession Numbers |
---|---|---|---|---|---|---|---|
Stand No. 1, Klenak 44°45′48″ N 19°48′18″ E 86 m asl (Sava River) | 1 | Populus deltoides | 10 | No symptoms | Rhizosphere soil | P. plurivora P. cactorum | |
2 | P. deltoides | 10 | No symptoms | Wet rhizosphere soil | P. lacustris | ||
3 | P. deltoides | 10 | No symptoms | Wet rhizosphere soil | P. gonapodyides | ||
4 | P. deltoides | 10 | No symptoms | Rhizosphere soil | P. plurivora P. cactorum | ||
5 | P. deltoides | 10 | No symptoms | Wet rhizosphere soil | P. gonapodyides | ||
6 | P. deltoides | 10 | No symptoms | Rhizosphere soil | - | ||
Stand No. 2, Kupinovo, Kupinski Kut 44°40′01″ N 19°59′34″ E 76 m asl (Sava River) | 7 | Populus × euramericana clone I-214 | 31 | No symptoms | Wet rhizosphere soil | P. gonapodyides P. cactorum | |
8 | I-214 | 31 | No symptoms | Rhizosphere soil | P. plurivora | ||
9 | I-214 | 31 | No symptoms | Rhizosphere soil | - | ||
10 | I-214 | 31 | No symptoms | Rhizosphere soil | P. pini (2) P. plurivora P. lacustris | KF234654 KF234736 | |
11 | I-214) | 31 | No symptoms | Rhizosphere soil | P. lacustris P. plurivora | ||
12 | I-214 | 31 | No symptoms | Rhizosphere soil | P. pini P. plurivora (2) | KF234655 KF234737 | |
13 | I-214 | 31 | High crown transparency | Rhizosphere soil | P. plurivora P. pini | ||
Stand No. 3, Kupinovo, Kupinski Kut 44°39′52″ N 19°59′43″ E 80 m asl (Sava River) | 14 | I-214 | 33 | No symptoms | Rhizosphere soil | P. plurivora P. pini (3) | KF234740 KF234656 |
15 | I-214 | 33 | No symptoms | Wet rhizosphere soil | P. lacustris | ||
16 | I-214 | 33 | No symptoms | Rhizosphere soil | P. plurivora P. cactorum | JX276094 | |
17 | I-214 | 33 | No symptoms | Rhizosphere soil | P. pini P. pini | KF234660 KF234657 | |
18 | I-214 | 33 | No symptoms | Rhizosphere soil | P. plurivora (2) P. pini | KF234658 | |
Stand No. 4, Kupinovo, Jasenska Belilo44°43′02″ N 20°06′20″ E 91 m asl (Sava River) | 19 | P. deltoides | 5 | No symptoms | Rhizosphere soil | - | |
20 | P. deltoides | 5 | Yellowing of leaves | Rhizosphere soil | P. plurivora P. polonica | KF234729 KF234759 | |
21 | P. deltoides | 5 | Yellowing of leaves | Rhizosphere soil | - | ||
22 | P. deltoides | 5 | Yellowing of leaves | Rhizosphere soil | P. polonica (2) | ||
23 | P. deltoides | 5 | High crown transparency | Rhizosphere soil | P. plurivora P. polonica | KF234727 | |
24 | P. deltoides | 5 | Crown transparency | Rhizosphere soil | P. plurivora P. polonica | KF234760 | |
25 | P. deltoides | 5 | Yellowing of leaves | Rhizosphere soil | P. plurivora | KF234728 | |
Stand No. 5, Veliki Jastrebac-Blace43°21′19″ N 21°15′36″ E 492 m asl (stream Popovačka reka) | 26 | I-214 | 25 | Dieback | Wet rhizosphere soil | P. gonapodyides P. plurivora | |
27 | I-214 | 25 | Crown transparency and dieback | Wet rhizosphere soil | P. gonapodyides | ||
Stand No. 6 Brus, Brzeće 43°18′07″ N 20°53′08″ E 1011 m asl (stream Bela reka) | 28 | I-214 | 2 | Dieback, root necroses | Rhizosphere soil | P. gonapodyides | |
No. of positive samples | 24 | ||||||
No. of obtained isolates | 46 | ||||||
No. of sequenced isolates | 15 |
Poplar Clone | Phytophthora Species (Isolates) | No. of Inoculated Plants | No. of Dead Plants | No. of Plants with Bark Necroses | No. of Plants with 100% Root Rot | Dry Weight of Small Roots (g) | Re-Isolation Frequency (%) | |
---|---|---|---|---|---|---|---|---|
Necroses | Fine Roots | |||||||
I-214 | Control | 12 | 0 | 0 | 0 | 3.591 | 0 | 0 |
P. cactorum (JX276094) | 12 | 8 | 22 | 9 | 2.073 | 100 | 100 | |
P. cryptogea (KF234765) | 12 | 7 | 1 a; 2 b | 9 | 2.199 | 100 | 100 | |
P. gonapodyides (2011/Pop.04) | 12 | 9 | 1 a; 1 b | 10 | 1.506 | 83.3 | 100 | |
P. lacustris (2011/Pop.Blato.03) | 12 | 9 | 2 a; 1 b | 10 | 1.59 | 66.67 | 100 | |
P. pini (KF234655) | 12 | 10 | 2 a | 9 | 1.155 | 100 | 100 | |
P. pini (KF234658) | 12 | 10 | 3 a | 10 | 1.143 | 100 | 100 | |
P. plurivora (KF234737) | 12 | 7 | 4 a;1 b | 10 | 1.092 | 100 | 100 | |
P. plurivora (KF234740) | 12 | 11 | 3 a | 11 | 1.26 | 100 | 83.3 | |
P. polonica (JX276065) | 12 | 9 | 2 a; 1 b | 9 | 1.542 | 100 | 100 | |
P. polonica (KF234760) | 12 | 6 | 4 a; 1 b | 8 | 1.773 | 100 | 100 | |
P. × cambivora (JX276088) | 12 | 5 | 4 a | 5 | 2.112 | 100 | 100 | |
P. × serendipita (KM272262) | 12 | 11 | 2 a | 10 | 2.199 | 100 | 100 | |
Pánnonia | Control | 12 | 0 | 0 | 0 | 4.014 | 0 | 0 |
P. cactorum (JX276094) | 12 | 10 | 1 a; 1 b | 4 | 1.245 | 100 | 100 | |
P. cryptogea (KF234765) | 12 | 9 | 1 b | 10 | 1.239 | 100 | 100 | |
P. gonapodyides (2011/Pop.04) | 12 | 12 | 0 | 12 | 1.02 | 100 | 100 | |
P. lacustris (2011/Pop.Blato.03) | 12 | 8 | 2 a; 1 b | 9 | 1.209 | 50 | 100 | |
P. pini (KF234655) | 12 | 9 | 2 b | 11 | 1.509 | 100 | 100 | |
P. pini (KF234658) | 12 | 12 | 0 | 12 | 1.077 | 100 | 100 | |
P. plurivora (KF234737) | 12 | 7 | 3 a; 1 b | 8 | 1.158 | 100 | 100 | |
P. plurivora (KF234740) | 12 | 7 | 3 a; 2 b | 9 | 1.357 | 100 | 100 | |
P. polonica (JX276065) | 12 | 10 | 2 a | 10 | 1.626 | 100 | 100 | |
P. polonica (KF234760) | 12 | 10 | 1 b | 10 | 1.434 | 100 | 100 | |
P. × cambivora (JX276088) | 12 | 10 | 1 b | 9 | 1.359 | 100 | 91.67 | |
P. × serendipita (KM272262) | 12 | 9 | 3 a | 11 | 1.131 | 100 | 100 |
Poplar Clone | Phytophthora Species (Isolates) | Number of Inoculated Plants | Stem Diameter (x− ± SЕ (mm) | Plant Height (x− ± SЕ (cm) | Number of Plants with Lesions (Bleeding) | Number of Plants with Secondary Shoots at Necroses Margins | Number of Plants with Dieback | Reisolation Frequency (%) |
---|---|---|---|---|---|---|---|---|
I-214 | Control | 12 | 10.6 ± 0.29 | 103.6 ± 3.16 | 0 | 0 | 0 | 0 |
P. cactorum (JX276094) | 12 | 9.3 ± 0.26 | 95.7 ± 3.47 | 12 (9) | 2 | 0 | 100 | |
P. gonapodyides (2011/Pop.04) | 12 | 9.7 ± 0.21 | 93.7 ± 2.74 | 12 (2) | 0 | 0 | 83.3 | |
P. lacustris (2011/Pop.Blato.03) | 12 | 9.1 ± 0.36 | 90.1 ± 3.72 | 12 (3) | 0 | 0 | 83.3 | |
P. pini (KF234655) | 12 | 11.2 ± 0.49 | 103.8 ± 3.58 | 12 (8) | 5 | 5 | 100 | |
P. pini (KF234658) | 12 | 10.6 ± 0.31 | 100.2 ± 2.16 | 12 (11) | 10 | 1 | 100 | |
P. plurivora (KF234737) | 12 | 9.3 ± 0.34 | 89 ± 3.02 | 12 (6) | 0 | 1 | 100 | |
P. plurivora (KF234740) | 12 | 10.1 ± 0.3 | 100.5 ± 3.49 | 12 (9) | 4 | 1 | 100 | |
P. polonica (JX276065) | 12 | 9.3 ± 0.22 | 94.1 ± 2.57 | 7 (0) | 0 | 0 | 91.67 | |
P. polonica (KF234760) | 12 | 10.1 ± 0.37 | 95.7 ± 2.15 | 9 (0) | 0 | 0 | 100 | |
P. × cambivora (JX276088) | 12 | 9.8 ± 0.51 | 100.6 ± 3.87 | 10 (0) | 1 | 0 | 58.3 | |
Pánnonia | Control | 12 | 9.4 ± 0.56 | 110.7 ± 5.74 | 0 | 0 | 0 | 0 |
P. cactorum (JX276094) | 12 | 10.9 ± 0.64 | 111.2 ± 6.11 | 12 (2) | 3 | 2 | 100 | |
P. gonapodyides (2011/Pop.04) | 12 | 9.9 ± 0.4 | 118 ± 5.48 | 12 (2) | 0 | 7 | 91.67 | |
P. lacustris (2011/Pop.Blato.03) | 12 | 7.9 ± 0.28 | 74.8 ± 2.27 | 12 (3) | 5 | 0 | 66.67 | |
P. pini (KF234655) | 12 | 9.9 ± 0.42 | 103.7 ± 4.49 | 12 (6) | 0 | 1 | 100 | |
P. pini (KF234658) | 12 | 9.8 ± 0.55 | 113 ± 7.39 | 12 (4) | 2 | 1 | 100 | |
P. plurivora (KF234737) | 12 | 8.4 ± 0.29 | 98.6 ± 6.06 | 12 (7) | 0 | 0 | 100 | |
P. plurivora (KF234740) | 12 | 9.9 ± 0.56 | 114.1 ± 6.01 | 12 (5) | 0 | 1 | 100 | |
P. polonica (JX276065) | 12 | 9.2 ± 0.25 | 103.6 ± 3.57 | 11 (4) | 2 | 0 | 100 | |
P. polonica (KF234760) | 12 | 10.3 ± 0.54 | 104.4 ± 6.45 | 10 (0) | 0 | 0 | 91.67 | |
P. × cambivora (JX276088) | 12 | 10.5 ± 0.53 | 104.2 ± 7.28 | 8 (0) | 2 | 0 | 83.3 |
Poplar Clone Host | Treatment | Length | Width | Surface | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Estimate | t Value | (p) | Estimate | t Value | (p) | Estimate | t Value | (p) | ||
I214 | Control | 2.32 | 19.44 | 0.000 | 1.95 | 33.29 | 0.000 | 4.03 | 21.78 | 0.000 |
P. cactorum | 1.66 | 10.04 | 0.000 | 0.63 | 7.70 | 0.000 | 2.35 | 9.17 | 0.000 | |
P. gonapodyides | 0.11 | 0.67 | 0.506 | -0.07 | -0.84 | 0.405 | 0.05 | 0.18 | 0.855 | |
P. lacustris | 0.45 | 2.71 | 0.008 | 0.01 | 0.14 | 0.890 | 0.49 | 1.92 | 0.057 | |
P. pini (KF234655) | 1.72 | 9.96 | 0.000 | 0.67 | 7.91 | 0.000 | 2.47 | 9.21 | 0.000 | |
P. pini (KF234658) | 1.46 | 8.65 | 0.000 | 0.56 | 6.69 | 0.000 | 2.05 | 7.82 | 0.000 | |
P. plurivora (KF234737) | 0.89 | 5.24 | 0.000 | 0.32 | 3.89 | 0.000 | 1.25 | 4.78 | 0.000 | |
P. plurivora (KF234740) | 1.45 | 8.59 | 0.000 | 0.57 | 6.98 | 0.000 | 2.0 | 7.62 | 0.000 | |
P. polonica (JX276065) | -0.03 | -0.18 | 0.861 | 0.01 | 0.07 | 0.947 | -0.02 | -0.09 | 0.933 | |
P. polonica (KF234760) | -0.02 | -0.12 | 0.909 | -0.08 | -0.99 | 0.323 | -0.1 | -0.38 | 0.703 | |
P. × cambivora | 0.50 | 2.96 | <0.010 | -0.05 | -0.56 | 0.579 | 0.66 | 2.53 | 0.013 | |
Residual deviance | 12.4 | 4.05 | 27.33 | |||||||
Pánnonia | Control | 2.29 | 14.83 | 0.000 | 1.99 | 22.85 | 0.000 | 4.05 | 15.02 | 0.000 |
P. cactorum | 1.07 | 4.76 | 0.000 | 0.19 | 1.48 | 0.141 | 1.32 | 3.38 | <0.010 | |
P. gonapodyides | 1.11 | 3.89 | 0.000 | 0.56 | 3.45 | <0.010 | 2.16 | 4.33 | 0.000 | |
P. lacustris | 0.57 | 2.62 | <0.010 | 0.02 | 0.16 | 0.870 | 0.64 | 1.68 | 0.096 | |
P. pini (KF234655) | 1.03 | 4.61 | 0.000 | 0.48 | 3.81 | 0.000 | 1.72 | 4.41 | 0.000 | |
P. pini (KF234658) | 0.53 | 2.36 | 0.020 | 0.14 | 1.11 | 0.270 | 0.68 | 1.73 | 0.086 | |
P. plurivora (KF234737) | 0.55 | 2.51 | 0.014 | 0.16 | 1.26 | 0.212 | 0.72 | 1.88 | 0.063 | |
P. plurivora (KF234740) | 0.64 | 2.85 | <0.010 | 0.16 | -0.43 | 0.210 | 0.79 | -0.02 | 0.045 | |
P. polonica (JX276065) | 0.05 | 0.22 | 0.826 | -0.05 | 2.66 | 0.670 | -0.01 | 2.95 | 0.982 | |
P. polonica (KF234760) | 0.50 | 2.26 | 0.026 | 0.33 | 1.18 | <0.010 | 1.12 | 1.61 | <0.010 | |
P. × cambivora | 0.26 | 1.20 | 0.232 | 0.15 | 1.26 | 0.241 | 0.61 | 2.02 | 0.111 | |
Residual deviance | 20.89 | 7.36 | 53.52 |
Phytophthora Species (Isolates) | Poplar Clone I-214 (Mean ± SE+Tukey’s Test) | Poplar Clone Pánnonia (Mean ± SE+Tukey’s Test) | ||||
---|---|---|---|---|---|---|
Necrosis Length (mm) | Necrosis Width (mm) | Necrosis Area (mm2) | Necrosis Length (mm) | Necrosis Width (mm) | Necrosis Area (mm2) | |
Control | 10.2 ± 0.18f | 7 ± 0.18F | 56.5 ± 1.87f | 9.9 ± 0.38d | 7.3 ± 0.19c | 57.5 ± 3.30d |
P. cactorum | 53.7 ± 5.61abcd | 13.2 ± 1.13abcd | 592.9 ± 104.52abcd | 28.8 ± 5.14abc | 8.9 ± 0.42abc | 214.9 ± 47.02abcd |
P. gonapodyides | 11.4 ± 0.61f | 6.6 ± 0.14f | 59.2 ± 3.88f | 30 ± 17.43 aabc | 12.8 ± 3.61 aabc | 496.4 ± 404.56 aabcd |
P. lacustris | 16 ± 1.69ef | 7.1 ± 0.29f | 92.4 ± 13.19ef | 17.6 ± 1.54abcd | 7.5 ± 0.46c | 109.3 ± 16.97abcd |
P. pini (KF234655) | 57.2 ± 6.39abcd | 13.8 ± 1.12abcd | 668.8 ± 128.10abcd | 27.8 ± 6.24abc | 11.9 ± 1.50abc | 321.5 ± 118.21abcd |
P. pini (KF234658) | 44 ± 3.69abcd | 12.3 ± 0.52abcde | 437.1 ± 59.78abcd | 16.8 ± 0.96abcd | 8.4 ± 0.54cbc | 113.2 ± 11.83abcd |
P. plurivora (KF234737) | 24.7 ± 2.93ef | 9.7 ± 0.46cde | 197.2 ± 33.26cdef | 17.2 ± 0.70abd | 8.6 ± 0.40cbc | 117.7 ± 10.72abcd |
P. plurivora (KF234740) | 43.5 ± 4.76abcd | 11.6 ± 0.72abcde | 415.5 ± 60.22abcde | 18.8 ± 1.27abcd | 8.6 ± 0.38cbc | 126.8 ± 6.29abcd |
P. polonica (JX276065) | 9.9 ± 0.25f | 7.1 ± 0.22f | 55.3 ± 2.57f | 10.4 ± 0.41d | 7 ± 0.15c | 57 ± 2.67d |
P. polonica (KF234760) | 10 ± 0.24f | 6.5 ± 0.20f | 51.2 ± 2.22f | 16.3 ± 4.35abcd | 10.2 ± 1.31cbc | 177 ± 93.63abcd |
P. × cambivora | 16.8 ± 4.99ef | 6.7 ± 0.59f | 109.4 ± 51.31ef | 12.9 ± 2.14ad | 8.5 ± 1.20cbc | 106.2 ± 39.73abcd |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milenković, I.; Keča, N.; Karadžić, D.; Radulović, Z.; Nowakowska, J.A.; Oszako, T.; Sikora, K.; Corcobado, T.; Jung, T. Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia. Forests 2018, 9, 330. https://doi.org/10.3390/f9060330
Milenković I, Keča N, Karadžić D, Radulović Z, Nowakowska JA, Oszako T, Sikora K, Corcobado T, Jung T. Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia. Forests. 2018; 9(6):330. https://doi.org/10.3390/f9060330
Chicago/Turabian StyleMilenković, Ivan, Nenad Keča, Dragan Karadžić, Zlatan Radulović, Justyna A. Nowakowska, Tomasz Oszako, Katarzyna Sikora, Tamara Corcobado, and Thomas Jung. 2018. "Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia" Forests 9, no. 6: 330. https://doi.org/10.3390/f9060330
APA StyleMilenković, I., Keča, N., Karadžić, D., Radulović, Z., Nowakowska, J. A., Oszako, T., Sikora, K., Corcobado, T., & Jung, T. (2018). Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia. Forests, 9(6), 330. https://doi.org/10.3390/f9060330