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Abstract: Abundant and refined structural information under forest canopy can be obtained by using
terrestrial laser scanning (TLS) technology. This study explores the methods of using TLS to obtain
point cloud data and estimate individual tree height and diameter at breast height (DBH) at plot level
in regions with complex terrain. Octree segmentation, connected component labeling and random
Hough transform (RHT) are comprehensively used to identify trunks and extract DBH of trees in
sample plots, and tree height is extracted based on the growth direction of the trees. The results show
that the topography, undergrowth shrubs, and forest density influence the scanning range of the plots
and the accuracy of feature extraction. There are differences in the accuracy of the results for different
morphological forest species. The extraction accuracy of Yunnan pine forest is the highest (DBH: Root
Mean Square Error (RMSE) = 1.17 cm, Tree Height: RMSE = 0.54 m), and that of Quercus semecarpifolia
Sm. forest is the lowest (DBH: RMSE = 1.22 cm, Tree Height: RMSE = 1.23 m). At plot scale, with the
increase of the mean DBH or tree height in plots, the estimation errors show slight increases, and
both DBH and height tend to be underestimated.

Keywords: diameter at breast height (DBH); tree height; random Hough transform; point cloud;
terrestrial laser scanning

1. Introduction

Earth’s forests, which cover 30% of the total land area, are dynamic systems that are constantly
in a state of change and drive/respond to the changes taking place in our environment. Tree height,
diameter at breast height (DBH) and other forest structure parameters are examples of the important
basic data recovered from a traditional forest resource survey. They are of great significance for the
research on forest biomass estimation, forest carbon cycle, carbon flow and global climate change.
With the development of remote sensing technology, especially the technology of Light Detection and
Ranging (LiDAR), many research results have been obtained by using remotely sensed data to extract
information on forest structure parameters. There are mainly two ways for estimating parameters
of forest structure using traditional passive optical imaging: (1) the correlation between forest
structural parameters and spectral information is established by using multi-spectral characteristics
of optical remote sensing data [1,2]; and (2) forest structure parameters are extracted using high
spatial resolution image texture features [3–5]. However, due to the complicated structure of forest
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canopy cover, atmospheric scattering, and topography, it is difficult for optical remote sensing to
provide accurate information about the vertical distribution of the forests [6,7]. As microwaves can
penetrate dense canopy to obtain information on the branches and trunks below forest canopies,
synthetic aperture radar (SAR) is more advantageous than passive optical remote sensing methods
to detect forest structure parameters and biomass [4]. Backscattering mechanism of SAR data [8–10]
and interferometric synthetic aperture radar (InSAR) [11,12], polarimetric synthetic aperture radar
interferometry (POLinSAR) [13,14] and polarization coherence tomography (PCT) [15,16] techniques
all have obtained many research results on forest structural parameters. Meanwhile, LiDAR has
been intensively applied to the study of forest structural parameters. As space-borne LiDAR can
obtain a wide extent of tree height information, it has been applied to studies on large-scale forest
biomass [17,18] and forest canopy height [19,20]. However, the new generation of LiDAR satellite
ICESat-2 has not yet been launched, and the lack of spaceborne LiDAR data remains a limiting
factor [21]. Airborne LiDAR has the ability to obtain the vertical structure of large areas of forest, but it
usually cannot reflect detailed structural information under tree canopy [22]. Compared with the
above two LiDAR platforms, terrestrial laser scanning (TLS) obtains high density point clouds and can
get more detailed information on forest internal structure, including tree location, DBH, tree height,
crown width, and other biophysical parameters.

TLS is a laser-based instrument that measures its surroundings using LiDAR for range
measurement and precise angular measurements through the optical beam deflection mechanism
to derive 3D point observations from the object surfaces [23]. The high-density point cloud data
obtained by TLS is widely used and researched in many fields such as engineering surveys [24,25],
Earth sciences [26,27], natural disasters [28–30], coastline erosion [31–33], vegetation monitoring [34,35],
and digital terrain mapping [35,36]. In recent years, TLS has been increasingly applied to forest resource
surveys, forest management and planning [37,38]. Among a variety of forest structural parameters,
DBH and tree height are the most important ones obtained in forest resource surveys. They can
provide not only structural parameters of individual trees but also information and data on sample
plot level, which are of great significance for the study of forest carbon storage and biomass estimation.
Many researchers have conducted investigations on how to extract DBH, tree height and others
structural parameters using TLS data efficiently and accurately.

In terms of methodology, the methods for automatically extracting DBH from TLS data
mainly include Hough transform [22,39,40], circle fitting algorithm [41–47], and cylinder fitting
algorithm [42,48,49]. Li [40] used the Hough transform method to detect circles on rasterized point
cloud data to estimate DBH and tree height. Liu et al. [22] applied the Hough transform method to
natural forest and plantation in Puer City, China, and concluded that TLS data could be used to extract
DBH (RMSE = 2.18 cm, R2 = 0.91). Bienert et al. [41] used a method for fitting circles to extract DBH
of trees accurately, and concluded that the tree trunks blocked each other when the tree density was
high, which resulted in the reduction of DBH extraction precision or even led to the unrecognizable
trees. Moskal et al. [38] used the method of cylindrical fitting to extract DBH, with an RMSE of 9.17 cm.
The main reasons for the relatively low accuracy were the poor visibility of the scanning station and
the blockage of individual tree trunks. Due to mutual occlusion between the canopy of individual
trees, tree heights extracted from TLS point cloud data are always lower than the measured values [22].
The most commonly used method for tree height extraction is to obtain the highest point over the
ground within a certain range of a single tree, and use the height of the highest cloud point as the tree
height [50]. In order to improve the extraction precision of tree height, most studies have employed
the circle fitting method to determine the growth direction of the tree trunk, and calculate the tree
height along the growth direction of the tree trunk [22,40,51]. In order to improve the efficiency of the
algorithm, the method of extracting DBH based on circle detection or circle fitting needs to rasterize
the point cloud data, which reduces the availability of data and the extraction accuracy [22].

As far as study areas are concerned, most of the studies on the extraction of forest structural
parameters from TLS data focus on plantations of single forest types or a small amount of natural
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forests, and research on tree height and DBH extraction of natural forests from typical tree species in a
particular area is lacking. Also, most of studies on DBH and tree height inversion have been carried
out at scales of individual woods, and studies at scales of forest sample plots with multiple tree species
and multi-aged forests are still lacking.

To improve the efficiency and accuracy of forest resource surveys, this study explores methods for
extracting tree height and DBH at plot level in complex terrain and different sub-wooded environments
using TLS data. Four types of dominant forest species (Pinus yunnanensis Franch., Pinus densata Mast.,
Picea Mill. & Abies fabri (Mast.) Craib, Quercus semecarpifolia Sm.) are investigated in Shangri-La,
northwest of Yunnan, China. Identification of individual trees and extraction of DBH from TLS point
cloud data are implemented by using octree segmentation, connected component labeling (CCL) and
Random Hough Transform (RHT), following the tree growth direction obtained from TLS point data.
Based on the extracted individual tree DBH and tree height, the average DBH and the average tree
height are obtained by method of square average.

2. Materials and Methods

2.1. Study Area and Sample Plots

Shangri-La is located in the northwestern part of Yunnan Province, China, the eastern part of
Diqing Tibetan Autonomous Prefecture, between 26◦52′~28◦52′ N and 99◦22′~100◦19′ E with an area
of 11,613 km2. It is one of the largest county-level administrative areas in Yunnan Province (Figure 1).
With elevations over 3000 m above sea level in most areas of Shangri-La, the main landform types in
the region are subalpine and alpine, which determines the distribution of cold-temperate coniferous
forests and temperate-cool coniferous forests in the area. The area of woodland is 962,159.3 hectares in
Shangri-La, and total volume of living wood is 133,224,410 m3; the forest coverage rate is 76.00%, and
the forest greening rate is 83.19%. Quercus semecarpifolia, Pinus yunnanensis, Pinus densata, and Picea &
Abies fabri (including Abies georgei Orr, Abies delavayi Franch., and Picea likiangensis (Franch.) E.Pritz.)
account for 90.8% of the total area of arbors in Shangri-La.
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This study used the Leica P40 to acquire high-precision 3D point cloud data. The P40 is Leica’s
latest generation 3D laser scanning device for fast, high-density point cloud and panoramic image
collection. The main performance indicators of the device are shown in Table 1.

Table 1. Main performance indicators of Leica P40.

Indicators Descriptions

Range Accuracy 1.2 mm + 10 ppm

3D position Accuracy 3 mm @ 50 m
6 mm @ 100 m

Wavelength 1550nm (invisible); 658 nm (visible)

Scan Rate Up to 1,000,000 points per second

Field-of-View 360◦ (Horizontal); 290◦ (Vertical)

Range and Reflectivity
Minimum range: 0.4 m

Maximum range at reflectivity:
120 m (8%), 180 m (18%), 270 m (34%)

Range Noise 0.4 mm RMS at 10 m
0.5 mm RMS at 50 m

Point cloud data were obtained at three different times (August 2016, July 2017 and September
2017) respectively. Because the point cloud data of all trees in a sample plot cannot be acquired by only
one scanning station, the method of measuring from multiple stations is used in the study. In each
plot, five stations (four stations in some samples) were scanned. One station was in the center of the
plot with refined scanning method for 10-min scanning, and panoramic photos were obtained at the
same time. Other stations were set up on the edge of the sample plot with a 5-min scanning. The study
obtained 196 stations of LiDAR point cloud data in 39 forest sample plots (Table 2), which were
distributed in various townships in Shangri-La (Figure 2).

In order to obtain a sufficient amount of data for verification and ensure the reliability of research
results, we used DBH rulers, Trueyard SP1500H laser rangefinder and steel tape to obtain forest
structural parameters in all 39 forest sample plots (Figure 2). The range of forest plots varies according
to topography and forest density, but the diameter of each plot is not less than 40 m. With the
topographical conditions permitting, the range of the sample plot was expanded as much as possible
to obtain more data of the tree and to verify the range and accuracy of laser scanning.

Table 2. Number of different types of forest sample plots in the study.

Dominant Forest
Species

Age of
Stand

Number of
Sample Plots

Number of
Stations

Average Altitude
(Unit: m)

Average Slope
(Unit: Degree)

Quercus
semecarpifolia Sm.

Young 1 5 3892 11.0
Middle 2 10 3673 15.0
Mature 1 4 3723 30.0

Pinus densata
Mast.

Young 3 17 3225 16.0
Middle 4 20 3210 16.4
Mature 2 9 3128 23.5

Pinus yunnanensis
Franch.

Young 3 14 2538 19.3
Middle 5 25 2692 15.3
Mature 8 43 2316 13.9

Picea Mill. &
Abies fabri (Mast.)

Craib

Young 2 10 3453 23.3
Middle 4 20 3604 13.0
Mature 4 19 3680 15.6
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2.2. Data Acquisition and Processing

The main research process includes point cloud data preprocessing, normalization of point cloud
height, point cloud segmentation, trunk identification, and tree height and DBH extraction. A flowchart
detailing the methods in this study is shown in Figure 3. First, a software, Leica Cyclone, is used to
stitch multi-site point cloud data based on the Leica 4.5” circular black & white target. Because there is
a lot of redundancy in multi-site point cloud data, the software also is used to deduct data so that we
can reduce the time cost in data processing under the premise of ensuring data extraction accuracy.
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Figure 3. Flowchart detailing the methods in this study. (a) In order to remove useless data and
reduce the amount of data, point cloud data needs to be preprocessed; (b) Normalization of points
height facilitates the extraction of DBH and tree height; (c) The slicing and segmenting point clouds
can improve the efficiency and accuracy of trunk recognition; (d) According to the trunk position,
directly we extract or fit the DBH. Tree heights are obtained based on the tree growth direction and
continuity detecting.

2.2.1. Normalization of Point Cloud Height

A morphological filtering method [52] is used to separate ground points from non-ground
points. The main idea of morphological filtering is to use the corrosion and expansion operations in
mathematical morphology to remove the higher point cloud in the point cloud and keep the lower
point cloud to achieve the purpose of extracting ground points [53]. Ground points are interpolated
and meshed by Inverse Distance Weighting (IDW) method. Finally, using the generated grid of
ground, points heights are normalized to eliminate the difference in tree height caused by differences
in elevation (Figure 4).
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Figure 4. Normalization of point cloud height. (a) Original point cloud data acquired using TLS; (b)
Filtering results with ground points in red and non-ground points in gray; (c) Ground points with RGB
color; (d) Points with normalized height.

2.2.2. Slicing Point Clouds

When obtaining 3D point cloud data in forest sample plots with higher density trees or
undergrowth shrubs, it is more likely that trees will block one another and undergrowth shrubs
will block the trunks, producing incomplete point cloud data at a certain height which leads to
missing or misidentification of trees. Several studies [22,40,42] have shown that the method of slicing
point clouds can effectively improve accuracy of octree identification. Unlike existing studies using
hierarchical rasterization of collected point clouds, this research directly deals with point cloud data to
ensure the accuracy of point clouds and make full use of all acquired data. The thickness of each layer
of point cloud is also an important factor that affects tree identification and DBH estimation. In order
to ensure the accuracy of DBH estimation, tree diameters were calculated at 1.3 m using multi-layer
thickness of point clouds, and the accuracy results are shown in Table 3.

Table 3. Point Cloud Thickness and Accuracy.

Thickness (cm) RMSE 1 Number of Trees
Detected Correctly

Number of Trees
Undetected Error Detection 2

1.00 2.92 53 27 22
2.00 3.04 63 17 20
3.00 2.58 75 5 29
4.00 2.99 74 6 14
5.00 2.57 74 6 8
6.00 2.33 75 5 5
7.00 2.53 75 5 7
8.00 2.62 78 2 17
9.00 2.65 78 2 15

10.00 2.74 76 4 12
1 RMSE: Root mean square error compared with the measurement result; 2 Error Detection: Number of misidentified
trees compared with manual recognition.

It can be seen from Table 3 that, when the thickness of slicing point cloud is 6 cm, the RMSE of
individual tree DBH is the smallest (2.33 cm). Therefore, point clouds at 0.97 m–2.03 m are sliced
into 11 layers with an interval of 0.10 m and a thickness of 0.06 m (0.97 m–1.03 m, 1.07 m–1.13 m,
1.17 m–1.23 m, 1.27 m–1.33 m, 1.37 m–1.43 m, 1.47 m–1.53 m, 1.57 m–1.63 m, 1.67 m–1.73 m,
1.77 m–1.83 m, 1.87 m–1.93 m and 1.97 m–2.03 m).
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2.2.3. Octree Segmentation and Connected Component Labeling

In order to reduce redundancy and improve processing efficiency and accuracy, octree
segmentation and connected component labeling are combined to segment the point clouds before
trunks are identified.

The method of connected component labeling [54] is usually used to detect connected areas of
binary images in the field of computer vision. It can be used for processing color images and higher
dimensional data as well. Different from the image data, point cloud data is composed of a large
number of independent, discrete points with spatial coordinates. Therefore, the method of octree
segmentation is used to obtain voxelization data of the hierarchical point cloud. Voxelization is a
processing of point cloud segmentation based on octree. First, a closed minimal cube is determined as
a root node or a zero-level node, and then the root node is subdivided into eight voxels recursively.
Non-empty voxels continue to be divided until they are divided into the remaining thresholds or the
minimum pixel size criteria are reached [55].

As shown in Figure 5, the raw point cloud contains a large number of useless points (shrubs,
weeds, etc.). With the increasing depth of octree (Figure 5b–h), the points are divided into relatively
independent spaces. When the octree level = 10, trunks, shrubs and weeds show better separability.
By further increasing the depth of the octree (Octree level = 11 or Octree level = 12), the original
separability between the trees is maintained, but the amount of data has increased substantially.
Therefore, this study uses the octree segmentation method with octree level = 10 to voxelize each layer
of cloud data of trunks. Based on voxelization of points, we use the method of connected component
labeling to get point cloud voxels connected and complete the segmentation of tree stem form stratified
point clouds. The segmentation results are shown in Figure 5i.
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Figure 5. Processing of octree segmentation and connected component labeling (top view). (a) Raw
point cloud with shrubs and weeds; (b–h) With the increasing depth of octree, the points are divided
into independent spaces relatively; (i) The point cloud is divided into different parts (represented by
different colors), and randomly taking points within a single area can effectively reduce the invalid loop.
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2.2.4. Random Hough Transform and DBH Extraction

The detailed process of extracting DBH using random Hough transform is shown in Figure 6.
For sliced point cloud data, the RHT method is used to sequentially perform circular detection from
multiple sub-regions in each layer respectively until extraction of all sliced point cloud is completed.
The process of extracting each sub-partition (point cloud set P) of each layer is as follows:

(1) First, the point set P is projected onto the X–Y plane in the direction of Z-axis to form a 2-D
point cloud set P′ (Figure 6f). Defining the Hough space M (m, n, r) is carried out, where m is
the number of grids with 0.01 m intervals for point cloud set P’ in the direction of X-axis, n is
the number of grids with 0.01 m intervals for P′ in the direction of Y-axis, and r is the radius
stored in millimeters (Figure 6g, the gray grid under points). Three points p1(x1, y1), p2(x2, y2),
p3(x3, y3) that are non-collinear and where the distance between any two points is greater than
0.02 m are selected from the point cloud set P’ randomly. The condition of three non-collinear
points p1(x1, y1), p2(x2, y2), p3(x3, y3) can be expressed as:∣∣∣∣∣∣∣

x− x1 y− y1 z− z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣ = 0 (1)

The distance conditions between the points are:√
(x1 − x2)

2 + (y1 − y2)
2 > 0.02√

(x1 − x3)
2 + (y1 − y3)

2 > 0.02√
(x2 − x3)

2 + (y2 − y3)
2 > 0.02

(2)

Then, these 3 points can form a circle C1, with the center point O1 (a1, b1) (Figure 6g) and the
radius r1 of the circle can be obtained. According to our field survey results, if r1 > 0.7 or r1 < 0.03
(trees with DBH larger than 1.40 m or less than 0.06 m are not extracted), a new set of three points
should be selected for calculating the radius ri until ri satisfies 0.03 ≤ ri ≤0.7. The corresponding
Hough parameter space is voted in as M(ai,bi,ri) = M(ai,bi,ri) + 1.

(2) This method is repeatedly performed on the remaining point clouds until the elements in P′ are
depleted, so that the final M is obtained. If the difference between the radii of two concentric
circles in M is less than 0.01 m, the circles are considered to be the same circle, the average radius
of all concentric circles is used as the final radius, and the final voting result is the sum of all
circles that meet the conditions. Formula (3) expresses the voting result in M:

M(ai, bi, ri)

max(M)
> ε (3)

where, ε is the threshold value of a circle detected for sliced point cloud of trees. Many tests in
the study show that the accuracy of DBH extraction is high when ε = 0.80. The next condition
needing to be tested is the relative position between any point (xi,yi) in point cloud P’ and the
circle Ci (ai,bi,ri) satisfying the voting result in M:√

(xi − ai)
2 + (yi − bi)

2 < 0.7× ri (4)

Equation (4) indicates that there are points inside the identified trunk, which are inconsistent
with the actual results and should be excluded from the circle that satisfies the voting result.

(3) Using this method, all layers of point clouds are extracted, and the trunk position and the trunk
section radius of each layer of trees are obtained. If the position of tree trunk is detected in four
or more layers, it is assumed that there is a tree at this position, and the single-wood position is
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the center of the trunk closest to the ground. If a trunk can be accurately identified at a height
of 1.30 m, DBH of the tree is diameter of the circle identified (Figure 6k). If the trunk cannot be
identified, the linear regression method is used to fit the trunk radius and trunk height to obtain
DBH (Figure 6i).
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Figure 6. The detailed process of extracting DBH using random Hough transform. After extracting
and slicing point cloud data from normalized data, each layer of point cloud is processed separately.
Methods of octree segmentation and connected component labeling are used to segment each layer’s
points. Finally, RHT method is used to extract the trunk and obtain the DBH.

2.2.5. Tree Height Extraction

According to the field surveys, trees in most sample plots in the study area grow in a vertical
direction and the trunks are relatively straight. Using the extracted tree locations, point clouds are
sliced at an interval of 1.00 m with a thickness of 0.06 m. The RHT method is used to obtain the
diameter of multi-layer trunks and the centers of the circles, and the multi-layer centers of circles are
used to fit a straight line in the space, which is the growth direction of the tree. Based on the different
DBH of each tree, the point clouds are cropped from the bottom to the top along the fitted line within
a certain range. These point clouds are considered to be from the same tree, and the height of the
tree is considered to be the height of the highest point of all points. However, for sample plots with
higher density of forest trees, this method cannot be applied to the lower trees because there may be
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point clouds of other trees along the growth direction of the trunk, as shown in Figure 7a. To handle
such situations, Liu et al. [22] adopted a method of vertical detection along the growth direction of
the trunk to calculate the tree height of the lower tree by counting the changes in the voxel of the
point cloud. However, the method can only reflect the change of the number of point clouds in the
direction of Z-axis, and cannot accurately stratify the different levels of trees. In order to detect the
attributions of the tree point cloud effectively, extracted tree points (Figure 7b) are segmented using
the CCL method based on the octree segmentation described previously. The segmentation result is
shown in Figure 7c. It can be seen from Figure 7c that the algorithm separates points of the low tree
and points of high-level tree accurately, and the height of the low tree can be obtained from the highest
z value of the segmented tree.
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Figure 7. Height extraction of trees in a natural forest. (a) Mixture of trees with different heights; (b)
The height of the highest point of a point cloud may not represent tree height; (c) Segmented tree points.

3. Results and Discussion

3.1. Analysis of the Influence of Forest Density on Scanning Range and Accuracy

Forest point clouds collected by TLS are often affected by mutual shelter between trees. Mutual
obstruction between trunks results in lower accuracy in tree segmentation and DBH extraction, while
mutual shelter between canopies leads to lower accuracy of tree height extraction. From Table 1, it can
be seen that the Leica P40 can obtain a large range of high-precision 3D data. However, due to the
shelter between trees, the extent of scanning is limited, and the density of trees in forest limits the
size of forest sample plots. In order to ensure the accuracy of tree height and DBH extraction, three
typical sample plots of Pinus yunnanensis (plot numbers 20170726012, 20160831017 and 20160824002)
are selected to analyze the accuracy of the same tree species with different forest density (Table 4).
According to the result of that, we can determine a range of sample plots suitable.

It can be seen from Figure 8 and Table 4 that topography and forest density affect the scanning
range and scanning accuracy of the terrestrial laser scanner.

(1) The scanning range of high-density young forest sample plots is seriously affected by the mutual
obstruction between trees. Trees can be identified more accurately (99/106) within a range of
15 m centered on the central station, but there are a small number of missing trees (7 trees) due
to mutual shelter between trees within the forest sample plot (5 m–10 m). The identification
accuracy of trees near the edge of the young sample plot (distance from the center of the sample
plot > 15 m) is low, and there are a large number of missed trees (35). The DBH and extraction
accuracy of tree height of the entire sample plot is relatively high (mean RMSE of DBH is 1.03 cm,
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and mean RMSE of the tree height is 0.51 m). The maximum error is also located near the edge of
the sample plot.

(2) The scanning range of the medium–density plot is mainly affected by the topography and low
bushes under the forest canopy. In areas with low tree density and relatively flat terrain, a larger
range of scanning areas can be obtained and the accuracy of tree identification and height/DBH
extraction are higher as well. For the sample plot of NO. 20160831017, within the range of 20 m
from the center of the sample plot, 64 out of 66 trees are identified, with an RMSE of 1.28 cm for
DBH, and an RMSE of 0.57 m for tree height. When the distance from the tree to the center of the
sample plot exceeds 20 m, the tree recognition accuracy decreases slightly. The tree height and
DBH extraction accuracy also slightly decreases with the increase of the distance from the tree to
the center of the sample plot.

(3) Low–density mature forests have a relatively complete vertical structure of individual trees.
The growth space under the forest canopy is sufficient for the growth of low shrubs. It can be
seen from the point clouds (Plot 20160824002) that a large number of shrub points are included
in the point cloud near the ground. Meanwhile, the effective range of sample plots obtained
by multi–station scanning is limited due to terrain influences. It can be seen from Table 4 that
extraction results obtained within the range of 20 m is better than those beyond the range: The tree
detection rate is high (36/40), with an RMSE of 1.24 cm for DBH, and an RMSE of 0.46 m for tree
height. When the distance from the tree to the TLS scanner is more than 20 m, the accuracy of
tree detection is slightly reduced (40/51) due to the longer distance and the influence of shrubs
around the station.
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Table 4. Effects of Forest Density and Distance on Scanning Range and Accuracy.

Plot #
Stand
Age

Mean
DBH

Mean
T.H. 1

<5 m 5 m–10 m

RMSE Trees
Num.

ER
Trees 2

RMSE Trees
Num.

ER
TreesDBH T.H. DBH T.H.

20170726012 Young 11.30 8.2 0.91 0.41 13 0 1.09 0.44 43 7
20160831017 Middle-age 24.70 15.2 1.27 0.54 2 0 1.20 0.89 18 0
20160824002 Mature 28.40 18.0 0.68 0.59 2 0 1.64 0.46 6 0

10 m–15 m 15–20 m >20 m

RMSE Trees
Num

ER
Trees

RMSE Trees
Num.

ER
Trees

RMSE Trees
Num.

ER
TreesDBH T.H. DBH T.H. DBH T.H.

0.81 0.57 43 0 1.30 0.60 12 35 – – � –
1.28 0.56 18 1 1.36 0.30 26 1 1.33 0.78 218 30
1.64 0.52 10 2 1.00 0.17 18 2 1.43 0.84 40 11

1 T.H.: Tree Height; 2 ER Trees: Error trees, misidentified trees.

3.2. Analysis of the Influence of Forest Types on the Accuracy of Results

The morphological characteristics of forest trees often change with forest species, forest age and
growing environment. Pinus yunnanensis and Pinus densata are genus Pinus, and their trunks are
mostly straight–lined and their crowns clustered (Figure 9a,b). The trunk of Picea and Abies fabri grows
upright and the lateral branches grow into the surrounding layers. The shape of the tree crown shows
an approximate cone (Figure 9c). Quercus semecarpifolia is significantly different in morphology from
the other three tree species, with a more curved trunk and wider coverage of the crown (Figure 9d).
The young, middle-aged and mature forest sample plots of the four types of dominant forest species
are selected to analyze the differences in extraction accuracy of tree height and DBH for different forest
types and different tree shapes.
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(1) The influence of forest types on DBH extraction accuracy

It can be seen from Figure 10 that the accuracy of DBH extracted from point cloud data of four
main tree species is very high using the method described in Figure 3, with an average RMSE of 1.28 cm,
and a minimum error of 1.17 cm for Pinus yunnanensis. The RMSE of DBH extracted is 1.52 cm, but the
correlation is highest among all forest types (R2 = 0.986). It can be seen from Figure 9 that the four tree
species have different morphologies, but the trunks are all nearly circular and are mostly straight near
the ground. The results suggest that it is conducive to use the RHT method to extract DBH.
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(c,d) Pinus densata; (e,f) Picea & Abies fabri; (g,h) Quercus semecarpifolia.

(2) The effect of tree species on tree height extraction accuracy

Several studies [38,56,57] have shown that the extraction of forest trees by TLS cannot obtain
the point cloud information at the top of the canopy due to the mutual occlusion between canopies,
which leads to an underestimation of tree height. The forest in the study area is mainly coniferous with
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some broad-leaved trees. Compared with broadleaf forests, coniferous forest canopy has some voids,
and relatively accurate tree heights can be obtained in a certain range when the stations are properly
arranged. It can be seen from Figure 10 that the largest underestimation of tree height is from Picea
& Abies fabri (RMSE = 1.28 m), followed by Quercus semecarpifolia, Pinus densata and Pinus yunanensis.
The mean RMSE of 4 species is 0.95 m, and all of them showed good correlation.

3.3. Accuracy Analysis of Results in Forest Sample Plots

Major elements of forest surveys include tree diameter, height, coverage, and density, among
which the tree height and diameter are the most important ones. Mean DBH is the diameter
corresponding to the average basal area of dominant tree species, which is a basic index reflecting
the forest roughness. The methods of calculating mean DBH include the arithmetic mean method,
quadratic mean method, volume mean method, mode method, and median method. At present,
the method of quadratic mean is commonly used in forest surveys:

D =

√
∑ d2

i
n

(5)

where, D is the mean DBH, di is the DBH of tree i, and n is the total number of trees in forest
sample plots.

The mean stand height is an important indicator that reflects the height level of stands, and it is
an important tree parameter in forest surveys. For the measurement of arborous forest, it should be
determined by selecting 3 to 5 average sample trees among the main forest layer dominant tree species
according to the average DBH, and the average tree height should be calculated using the arithmetic
mean method.

In this paper, the mean DBH and mean stand height are calculated by using the methods above,
and compared with the measured data in sample plots for accuracy assessment. It can be seen from
Figure 11 that the mean DBH and mean tree height extracted by the RHT method combined with
octree segmentation have strong correlations (correlation of DBH is R2 = 0.957, correlation of tree
height is R2 = 0.905) with the measured data. The mean RMSE of the extracting method is 1.96 cm.
The smaller the mean DBH, the higher the extraction accuracy. With the increase of the mean DBH
in plots, the errors tend to increase slightly. The RMSE of the extracted mean stand height is 1.40 m.
Because the canopy obscures the point cloud, results of tree height extracted by TLS data are slightly
lower than the actual tree height in forest sample plots with higher average tree heights.
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4. Conclusions

The study focused on extracting tree height and DBH data of natural forest species at plot level in
Shangri-La, Northwest Yunnan, China. Combining methods of octree segmentation, CCL and RHT
algorithm, tree heights and DBH of natural forests at individual tree level and plot level were obtained.
Topography, understory shrubs and tree density influence the TLS scanning range and accuracy
of results. Because of different morphology of different tree species in Shangri-La, the accuracy of
tree height and DBH extraction for different tree species is different using the method. In general,
Pinus yunnanensis, Pinus densata and Picea & Abies fabria are coniferous forests, with vertical trunks and
similar morphological structures and tree height extraction precision is high. Quercus semecarpifolia is a
broad–leaved forest species, and its morphology is different from that of coniferous forest, leading
to relatively low extraction accuracy. In general, the methods used in the study have high accuracy
for the extraction of DBH and tree height for four dominant tree species in Shangri-La. The average
RMSE of DBH is 1.28 cm, and the average RMSE of tree height is 0.95 m. The results at forest sample
plot levels also show that the method can obtain the mean tree height and mean DBH accurately in
complex terrains. In the last few years, mobile/personal laser scanning and image-based techniques
have become capable of providing similar 3D point cloud data, and have their own advantages,
e.g., lower cost when using image-based techniques and high efficiency when using mobile/personal
laser scanning. Further studies need to demonstrate the added value of using TLS, which most
probably comes from the highly accurate tree attribute estimates.
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