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Abstract: Aegle marmelos (L.) Corr. is a medicinally and horticulturally important tree member of
the family Rutaceae. It is native to India, where it is also known as Bael. Despite its importance,
the genomic resources of this plant are scarce. This study presented the first-ever report of expressed
transcripts in the leaves of Aegle marmelos. A total of 133,616 contigs were assembled to 46,335 unigenes
with minimum and maximum lengths of 201 bp and 14,853 bp, respectively. There were 7002
transcription factors and 94,479 simple sequence repeat (SSR) markers. The A. marmelos transcripts
were also annotated based on information from other members of Rutaceae; namely Citrus
clementina and Citrus sinensis. A total of 482 transcripts were annotated as cytochrome p450s
(CYPs), and 314 transcripts were annotated as glucosyltransferases (GTs). In the A. marmelos leaves,
the monoterpenoid biosynthesis pathway was predominant. This study provides an important
genomic resource along with useful information about A. marmelos.

Keywords: Aegle marmelos (L.) Corr.; transcripts; transcriptome assembly; simple sequence repeats;
transcription factors; cytochrome p450; glycotransferases; metabolic pathway

1. Introduction

Aegle marmelos (L.) Corr. (2 n = 18) or Bael is an underexploited member of family Rutaceae.
Believed to be native to the Indian subcontinent, it is well distributed throughout the tropical and
subtropical belts of southeast Asia [1,2]. Botanically, A. marmelos is a deciduous tree stretching up
to 10 m in height that flowers during the months of May–June [3,4]. It is also commonly grown as
a horticultural plant in India, and its fruits are processed as juice or candies, as well as eaten fresh.
During the past few decades, a spike in its cultivation as a horticulture plant has been attributed to its
medicinal properties, along with a hardy nature that allows it to be cultivated on marginal lands with
acidic or alkaline soils [5,6].

The traditional medicine system of Ayurveda in India routinely uses every part of A. marmelos
as a therapy for medical conditions [7,8]. The leaves are most easily accessible, and are therefore
more regularly used for the treatments than any other plant part. A. maremelos leaves are used to
treat jaundice and help in wound-healing when applied as a paste on a wound surface [9]. Moreover,
A. marmelos leaf extracts have been proved to be a better cure for gastrointestinal and hematopoietic
damage than its fruits [10]. The leaf extract of A. marmelos is used as a medication against a number of
chronic diseases such as diabetes, pancreatic cancer, and arthritis [11–14]. All of these medicinal
properties of A. marmelos leaves are attributed to various phytochemicals present in the leaves
such as aeglin, rutin, γ-sitosterole, β-sitosterol, eugenol, marmesinin, glycoside, skimmianine, etc.
Broadly, these phytochemicals can be divided into three main classes: alkaloids, phenylpropanoids,
and terpenoids [15,16]. However, there is no genomic data-based information about the pathways
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of these important metabolic compounds that are present in the A. marmelos leaf. The information
regarding the biosynthetic pathways and the encoding enzymes present in the A. marmelos leaf will be
highly useful for the functional genomics in A. marmelos via transgenics and metabolic engineering
approaches. Furthermore, A. marmelos leaf extract is used for the green synthesis of gold and silver
nanoparticles [17,18].

The sum total of all of the transcripts captured in the cell of an individual organism is called its
transcriptome [19]. There are two ways to capture the expressed transcripts: either by microarray,
which is limited to predefined sequences, or by performing RNA-Seq using second-generation
sequencing technologies [20]. This kind of sequencing has revolutionized the understanding
of non-model organisms, and has evolved as one of the first choices of methods to apply to
gene discovery and the expression profiling of non-model organisms [21,22]. The availability of
well-defined computational tools, along with a well-applied methodology, has further demonstrated
the effectiveness of de novo transcriptome assemblies in organisms even without a reference
genome [23,24].

Genomic resources in A. marmelos are scarce compared with other members of Rutaceae,
such as Citrus sinensis (Sweet Orange) and Citrus clementina (Clementine), both having well-annotated
genomes [25,26]. Moreover, the unavailability of molecular markers based on the genomic information
has further decelerated the molecular breeding efforts in A. marmelos. Earlier, a diversity study was
carried out using only 12 random amplification of polymorphic DNA (RAPDs) [1]. This limitation
can be overcome by developing an appropriate resource of genomic information-based molecular
markers using a next-generation sequencing (NGS)-based approach such as transcriptomics [20,22].
To the best of our knowledge, this is the first detailed report on the transcriptome of this medically
important plant. Moreover, only six expressed sequence tag (ESTs) are available in the National Center
for Biotechnology Information (NCBI) database (accessed on 25 May 2018) [27]. An investigation into
the leaf transcriptome of A. marmelos can help answer key questions regarding various aspects related
to genes and their gene function, via the pathways involved in the metabolic compound formation.
Therefore, we used RNA sequencing followed by the de novo transcriptome assembly of A. marmelos
leaves to identify the transcription factors, simple sequence repeats (SSRs), and transcripts related to
important metabolic pathways in the leaves of A. marmelos. Also, the information regarding cytochrome
P450s (CYPs) and glucosyltransferases (GTs) extant in the leaf of A. marmelos was also accomplished.

2. Materials and Methods

2.1. RNA Isolation and Sequencing

Young and tender leaves from three mature and healthy plants of A. marmelos variety “Kaghzi”
(~five years old) were collected from the Government Garden Nursery (coordinates at 29◦58′06.9” N
76◦52′50.8” E) in Haryana, India. The sampled leaf tissues were stored in RNAlater (Life Technologies,
Carlsbad, CA, USA) till further use. RNA was extracted with a TRIZOL reagent (Life Technologies
Corporation, Carlsbad, CA, USA) based RNA extraction protocol for plant leaves [28,29]. The quality of
the extracted RNA was checked on a 1% formaldehyde denaturing agarose gel, and further quantified
using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Montchanin, DE, USA).
A pooled sample of RNA from three selected plants was used for a single cDNA library preparation.
The library was prepared with a TruSeq RNA Library Prep Kit v2 from Illumina® (Illumina Inc.,
San Diego, CA, USA), and the library quantification was done using a Qubit Fluorometer (Qubit™
dsDNA HS Assay Kit, Life Technologies Corporation, Carlsbad, California, USA) and Agilent D1000
ScreenTape system (Agilent Technologies, Santa Clara, CA, USA). The library was further sequenced
on the Illumina HiSeq 2500 (2 × 150 bp) platform (Illumina, Dedham, MA, USA).



Forests 2018, 9, 450 3 of 14

2.2. De Novo Assembly and Identification Coding Sequences

The cleaned reads were assembled using Trinity software (version 2.4.0) and TransDecoder v. 3.0.1
(http://transdecoder.sourceforge.net/) [30] was used to identify candidate coding regions within the
generated transcripts and look for the open reading frames (ORF) that were at least 100 amino acids
long in order to decrease the chances of false positives.

2.3. Gene Function Annotation

The transcripts with ORFs were annotated with BLASTX (default parameters, e-value cut-off 10-5)
by resemblance counter to NR (non-redundant protein sequences database of NCBI), protein family
(Pfam), Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/) [31],
e-value cut-off of 1 × 10−5, and cluster of orthologous groups (COG) (https://www.ncbi.nlm.nih.
gov/COG/) [32]. The gVolantes server (https://gvolante.riken.jp) [33] was used for the assessment
of the completeness of transcriptome assembly via BUSCO_v3 selecting the plant ortholog set. Only
transcripts pertaining to plant species were extracted and used for gene ontology. Pfam annotation
was done with Hmmerscan, while Blast2Go was used for Gene Ontology (GO) annotation [34,35].
KEGG orthologies were estimated using the KEGG Automated Annotation Server (KAAS) by means
of single-directional best hit method (http://www.genome.jp/kegg/kaas/) [36].

2.4. Identification of Transcription Factors

Transcription factors families present in the leaves of A. marmelos were identified by searching
coding sequences identified by TransDecoder against the plant transcription factor database (PlnTFDB)
(http://plntfdb.bio.uni-potsdam.de/v3.0/downloads.php) [37] with an e-value cut-off of < 1 × 10−10.

2.5. Identification of Simple Sequence Repeats (SSRs)

The presence of SSRs was determined by using MIcroSAtelliteidentification tool v1.0 (MISA)
(http://pgrc.ipk-gatersleben.de/misa/) [38]. Briefly, the transcripts were checked 10 times for
monorepeats, six times for direpeats, and five times for tri/tetra/penta/hexarepeats.

3. Results

3.1. De Novo Assembly, Gene Prediction, and Functional Annotation

RNA-Seq targeting expressed coding sequences has been used successfully in many medicinal
and non-model plant species that do not have a reference genome (e.g., Prosopis cineraria L. [39],
Andrographis paniculata Burm.f. [40], Phyllanthus emblica L. [41], Picrorhiza kurroa [42], and Azadirachta
indica Royle ex Benth. [43]). Moreover, being a tree, A. marmelos can have a large genome size,
which further restricts genome sequencing efforts [44].

The pooled RNA sample of A. marmelos leaves with RIN values around 8.0 generated a total of
115.92 million paired reads of high quality (Phred score > 30). Trinity assembler was used for the
assembly, and after trimming of adapters, there was a total of 133,616 contigs (only from reads of
200 bp and above in length) clustered into 46,345 unigenes (Table 1). The raw data that was obtained as
a result of sequencing was submitted to NCBI BioProject (PRJNA433585). The assembly completeness
report from gVolante estimated that the transcriptome assembly was 90.15% complete (Figure S1).
We scrutinized for an open reading frame that was at least 100 amino acids long in order to decrease
the chances of false positives during open reading frames (ORF) predictions. The annotated transcripts
with ORFs are listed in Table 2. A total of 90,525 transcripts were annotated to GO terms (Table S1).
The transcripts related to plant species were extracted and used for gene ontology (Table 2).

http://transdecoder.sourceforge.net/
http://www.genome.jp/kegg/
https://www.ncbi.nlm.nih.gov/COG/
https://www.ncbi.nlm.nih.gov/COG/
https://gvolante.riken.jp
http://www.genome.jp/kegg/kaas/
http://plntfdb.bio.uni-potsdam.de/v3.0/downloads.php
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Table 1. Assembly statistics of the leaf transcriptome.

A. marmelos Assembly Statistics

Number of assembled sequences 133,616
Total length (nt) 225,969,847

Range of coding sequence length (nt) 201–14,853
Mean sequence length (nt) 1691

Median sequence length (nt) 1395
N50 sequence length (nt) 2544

L50 sequence count 30,077
Number of sequences > 1K (nt) 81,171 (60.7%)
Number of sequences > 10K (nt) 96 (0.1%)

Base composition (%) A: 29.75
T: 29.75
G: 20.36
C: 20.14

Guanine-Cytosine content (%) 40.50

Table 2. Annotation summary of A. marmelos leaf transcripts. COG: cluster of orthologous groups, GO:
gene ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes, ORFs: open reading frames, Pfam:
protein family.

Parameters Numbers

Total Transcripts 133,616
Total ORFs 165,230

Transcript BLASTX (Plant Species) 126,101
Transcript annotated with GO terms 90,525

Transcript BLASTP 82,445
Transcript BLASTX against Pfam 67,451

Transcript annotations against KEGG 83,221
Transcript annotated with COG 81,636

3.2. GO Annotation

In total, 600,642 Gene Ontology (GO) terms were mapped to the A. marmelos leaf contigs
belonging to all the three possible classes, i.e., biological process (227,921 transcripts), cellular
component (188,465 transcripts), and molecular function (184,25 transcripts) in the GO database
(Figure 1). The breakdown of the proteins associated with the various biological process, cellular
components, and molecular functions is illustrated in Figure 2. The “integral component of membrane”
(GO: 0016021) associated with various cellular components, “transcription DNA-templated”
(GO: 00006351) associated with biological processes and “ATP binding” (GO: 00005524) associated
with molecular function were the most mapped terms in their respective categories (Figure 2.).

The GO terms primarily define three categories of functions: namely, the biological, cellular,
and molecular functions for a gene product. This is achieved by associating a gene with their
ontologies [45,46]. Earlier studies have pointed out a higher metabolic activity in the leaves of
A. marmelos, which is because of the presence of phytochemicals such as alkaloids, flavonoids,
and phenols [47,48]. We have identified a number of GO terms in the leaves of A. marmelos;
this information could lead to the identification of important pathways of metabolic compounds
in A. marmelos [49].
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Figure 1. Genes associated with the biological process, cellular components, and molecular functions
in the A. marmelos leaf transcriptome assembly.
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Figure 2. Gene Ontology (GO) classification of A. marmelos transcripts. GO term are divided in three
main categories: biological process (a), cellular component (b), and molecular function (c).

3.3. Citrus Database Annotation

The A. marmelos transcripts were also annotated via Phytozome (https://phytozome.jgi.doe.gov/)
with reference to the Citrus clementina and Citrus sinensis genomes. This resulted in the mapping of
78.44% of the transcripts to the Citrus clementine, and 79.85% to the Citrus sinensis genome (Table 3).
An almost similar number of transcripts were annotated with GO terms and KEGG annotation,
respectively (Tables S2 and S3). However, recently, an extensive amount of relatedness was observed
within the members of genus Citrus of family Rutaceae, which was based on the study performed by
using the whole genome sequences of 60 members in the Citrus genus; the authors even pointed out
the need for reformulation of the genus [50].

https://phytozome.jgi.doe.gov/
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Table 3. Annotation summary of A. marmelos leaf transcripts with Citrus sinensis and Citrus clementine genome.

Genome Citrus clementina Citrus sinensis

No. of transcripts annotated 98,917 (78.44) 100,701 (79.85)
No. of transcripts annotated by Gene Ontology 98,184 100,053

No. of transcripts annotated by KEGG 48,184 48,881

3.4. Simple Sequence Repeats (SSRs) Prediction

Simple sequence repeats (SSRs), or short tandem repeats or microsatellites, are short repeat motifs
that show length polymorphism due to the insertion or deletion mutations of one or more repeat
types [51]. We analyzed for the abundance of SSRs of annotated plant transcripts for A. marmelos leaf
transcripts using the MISA tool, and the predicted SSRs statistics are shown in Figure 3. There were
58,354 transcripts that contained SSRs, and among these, 23,034 had more than one SSRs (Table S4).
In total, 94,479 SSRs were identified, of which 65.27% were monorepeats, 19.78% were direpeats,
and 13.40% were trirepeats (Figure 3). Tetra, penta and hexarepeats made up 1.01%, 0.26% and 0.24%
of the total, respectively (Figure 3). However, out of a total of 94,479 identified SSRs, 11,400 (12.06%)
were related to the compound formation.
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Figure 3. Simple sequence repeats (SSRs) classes identified in the leaf transcripts of A. marmelos.

SSRs are codominant markers that are well dispersed throughout plant genomes. SSRs are
popularly used for marker-assisted selection, fingerprinting, diversity assessment, and quantitative
trait loci (QTLs) identification [52]. Routinely, SSRs are identified in the medicinal plants via
transcriptome assemblies, because they are more robust and can also be transferred among different
species within the same genus. These identified SSRs can also be used for the marker-assisted breeding
in A. marmelos i.e., to breed this tree for a particular environment or condition. Otherwise, until recently,
only diversity-related studies were conducted in A. marmelos using universal primers, and researchers
were even limited to only 12 RAPDs and 16 universal ISSRs to access diversity among their A. marmelos
genotypes collection [1,53]. Furthermore, these genomic information-based SSRs can help to identify
and differentiate between homozygous and heterozygous individuals. SSRs are also commonly used
for the map-based cloning of genes; a close association between genes and their SSRs is crucial in the
context of genotyping and haplotyping [51,52].

3.5. Transcriptional Factors Identification

Gene expression patterns are regulated by transcription factors that in turn determine the different
biological process [54]. A total of 7002 transcription factors were retrieved from the PlnTFDB.
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The 52 transcription factors were unique to the A. marmelos leaves; although these were out of a
total 6122 that were extant above 100 in the unigenes (Table S5). The most abundant were Auxin
response factors (ARFs) (717), myeloblastosis (MYB-related) (562), a basic domain/leucine zipper
(bZIP) (437), and basic helix–loop–helix (bHLH) (417), whereas HB-Other (132) and CAMATA (109)
were the least abundant (Figure 4).
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Figure 4. Top 21 families of transcription factors identified in the A. marmelos leaf.

Auxin is the plant hormone that regulates the different plant processes from growth to senescence.
Auxin response factors are necessary for the plant to response to auxin stimuli; they channelize
the response via auxin response DNA elements that are present in the primary auxin response
genes. ARFs switch the auxin response gene on and off via their transcriptional activation domain
or transcriptional repression domain [55,56]. MYB-related transcription factors play many roles like
protection against biotic and abiotic stresses. MYB transcription factors also regulate the metabolism
of the phenylpropanoid pathway, and are well studied with respect to the regulation of primary
and secondary metabolism in the plant [57,58]. Likewise, bZIP and bHLH transcription factors are
also involved in the metabolic biosynthesis in plants, especially by activation of phenylpropanoid
genes [59,60].

3.6. Transcripts Encoding Cytochrome p450s (CYPs) and Glucosyltransferase (GTs)

CYPs help in the primary and secondary metabolism of plants by catalyzing monooxygenation
reactions. These cytochromes assist in the diversification of metabolic pathways in plants. Currently,
these are potential targets for metabolic engineering for the overproduction of metabolites of
interest [61]. There were 477 transcripts in total that were annotated cytochrome p450s (Table S6).
Considering their vital role inmetabolic pathways, we further analyzed the abundance of SSRs
annotated within these cytochrome p450 transcripts (Table 4). Among the 128 identified SSRs, 85 were
with monorepeats, seven were with direpeats, and 36 were with trirepeats (Table S7).
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Table 4. Prediction of simple sequence repeats (SSRs) for the annotated transcripts with cytochrome
p450s (CYPs) and glucosyltransferase (GTs).

Description (CYPs) (GTs)

Total number of annotated transcripts encoding 477 314
Total size of annotated transcripts (bp) 1,111,258 778,664

Number of SSRs identified 128 247
Number of annotated transcripts containing SSR 94 165

Number of annotated transcripts containing more
than 1 SSR 30 64

Number of SSRs present in the compound
formation 5 16

The last step in the production of plant secondary metabolites is glycosylation, which is carried
out by glycotransferases (GTs) [62–64]. A total of 314 transcripts were annotated as glucosyltransferase
(Table S8). We analyzed the abundance of SSRs that were present in these transcripts (Table S9),
and among the 247 identified, 109 were monorepeats, 79 were direpeats, 58 were trirepeats, and only
one was identified as a tetrarepeat (Table 4). The SSRs that were identified as using CYPs and GTs can
be of immense potential for identifying genetic diversity among different A. marmelos accessions with
divergent metabolic profiles.

3.7. Identification of Biosynthetic Pathways in A. Marmelos Leaf

A. marmelos leaves are used for the treatment of several medical conditions in Ayurveda
and Yunani medicine systems [65]. The transcripts with the highest fragments per kilobase per
million mapped reads (FPKM) values were extracted from an annotation file along with the Kyoto
Encyclopedia of Genes and Genomes (KEGG) ID and sorted from the RNA-Seq by Expectation
Maximization (RSEM) file that was obtained from the assembly for transcript quantification. Using
the KEGG ID, pathways were identified (Table S10). RSEM is commonly used to obtain information
regarding transcript abundance from the RNA-Seq data of an organism, even without a reference
genome [66]. The pathway analysis identified that monoterpenoid biosynthesis and thiamine pathways
were the two most expressed pathways present in the A. marmelos leaves (Figure 5).
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A. marmelos leaves have been reported to contain monoterpenoids as the principal metabolites in
the leaves in levels as high as 93.9% [67,68]. Moreover, this monoterpenoid content is not affected by
the geographic location of the plant, as it remains unaffected by changes in altitude, unlike many other
metabolites [69]. Thiamine is naturally produced in the plants as a sulfur-comprising and water-soluble
compound. A. marmelos contains thiamine, although thiamine concentration is higher in the fruits than
the leaves, and is among the fruits with the highest thiamine content [70,71]. Detailed information
regarding the routes, reactions, and encoded enzymes of the two most expressed pathways identified
in the leaf transcriptome of A. marmelos is provided in Figures 6 and 7. This detailed information
generated regarding the monoterpenoid and thiamine biosynthetic pathway will be useful for further
genetic analysis of the production of these important metabolites and their pathway engineering.
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4. Conclusions

In cases of underexploited plant species, there is often not enough genomic information available
to proceed with their genetic improvement, and subsequently transfer important genes from them
to cultivated crops. Transcriptome assembly is a cost-effective alternative to genome sequencing for
obtaining the information of expressed genes and assisting in the more effective development of
underexploited crops and medicinal plants. RNA-Seq shines a light on genes and their functions,
as well as the pathways that are present, and can subsequently lead to evolutionary studies via
molecular markers. We have successfully performed the first de novo transcriptome assembly of
A. marmelos, which is a plant with religious, medicinal, and horticultural importance. It is the first-ever
information about this plant, which will be of immense value for evolutionary studies and represents
the development of a valuable resource for A. marmelos. Also, once a transcriptome reference is
available, anchored-based transcriptome assemblies and different types of evolutionary studies can be
performed within family Rutaceae involving genus Aegle.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1999-4907/9/8/
450/s1. Figure S1. Completeness assessment of A. maremelos leaf transcriptome assembly using gVolante server.
Table S1. A. marmelos detailed annotation results. Table S2. Detail list of A. maremlos transcripts annotation with
Citrus sinensis genome. Table S3. Detail result of A. maremlos transcripts annotation against Citrus clementina
genome. Table S4. Detailed of SSRs in the A. marmelos leaf transcriptome. Table S5. Transcriptional factors family
identified in A. marmelos leaf. Table S6. Detail list of cytochrome 450s (CYPs) annotation result. Table S7. SSRs
identified in the cytochromes P450s transcripts. Table S8. Detail list of glycosyltransferases (GTs) annotation result.
Table S9. SSRs identified in Glycosyltransferases (GTs) transcripts. Table S10. FPKM based top KEGG IDS in
A. maremlos leaf transcriptome.
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