Roles of Hepatitis B Virus Mutations in the Viral Reactivation after Immunosuppression Therapies
Abstract
:1. Introduction
2. HBsAg Mutations Found in HBV-Reactivated Patients After Chemotherapies/Immunosuppression Therapies
3. Mechanisms by Which Immune Escape Mutations Arise in HBV-Reactivated Patients
4. Precore Mutation in Patients With HBV Reactivation
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Dienstag, J.L. Hepatitis B virus infection. N. Engl. J. Med. 2008, 359, 1486–1500. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M. Hepatitis B virus infection. N. Engl. J. Med. 1997, 337, 1733–1745. [Google Scholar] [CrossRef]
- Schweitzer, A.; Horn, J.; Mikolajczyk, R.T.; Krause, G.; Ott, J.J. Estimations of worldwide prevalence of chronic hepatitis B virus infection: A systematic review of data published between 1965 and 2013. Lancet 2015, 386, 1546–1555. [Google Scholar] [CrossRef]
- Hoofnagle, J.H. Reactivation of hepatitis B. Hepatology 2009, 49, S156–S165. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Maini, M.K. Innate and adaptive immune responses in hepatitis B virus infection. Dig. Dis. 2010, 28, 126–132. [Google Scholar] [CrossRef]
- Moriyama, T.; Guilhot, S.; Klopchin, K.; Moss, B.; Pinkert, C.A.; Palmiter, R.D.; Brinster, R.L.; Kanagawa, O.; Chisari, F.V. Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus transgenic mice. Science 1990, 248, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Kakimi, K.; Lane, T.E.; Wieland, S.; Asensio, V.C.; Campbell, I.L.; Chisari, F.V.; Guidotti, L.G. Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J. Exp. Med. 2001, 194, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Werle-Lapostolle, B.; Bowden, S.; Locarnini, S.; Wursthorn, K.; Petersen, J.; Lau, G.; Trepo, C.; Marcellin, P.; Goodman, Z.; Delaney, W.E.t.; et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 2004, 126, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Liang, T.J. Hepatitis B Reactivation Associated With Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology 2017, 152, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.P.; Lok, A.S. Management of patients with hepatitis B who require immunosuppressive therapy. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 209–219. [Google Scholar] [CrossRef]
- Colson, P.; Borentain, P.; Coso, D.; Motte, A.; Aurran-Schleinitz, T.; Charbonnier, A.; Stoppa, A.M.; Chabannon, C.; Serrero, M.; Bertrand, J.; et al. Hepatitis B virus reactivation in HBsAg-negative patients is associated with emergence of viral strains with mutated HBsAg and reverse transcriptase. Virology 2015, 484, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Salpini, R.; Colagrossi, L.; Bellocchi, M.C.; Surdo, M.; Becker, C.; Alteri, C.; Aragri, M.; Ricciardi, A.; Armenia, D.; Pollicita, M.; et al. Hepatitis B surface antigen genetic elements critical for immune escape correlate with hepatitis B virus reactivation upon immunosuppression. Hepatology 2015, 61, 823–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carman, W.F.; Zanetti, A.R.; Karayiannis, P.; Waters, J.; Manzillo, G.; Tanzi, E.; Zuckerman, A.J.; Thomas, H.C. Vaccine-induced escape mutant of hepatitis B virus. Lancet 1990, 336, 325–329. [Google Scholar] [CrossRef]
- Brown, S.E.; Howard, C.R.; Zuckerman, A.J.; Steward, M.W. Affinity of antibody responses in man to hepatitis B vaccine determined with synthetic peptides. Lancet 1984, 2, 184–187. [Google Scholar] [CrossRef]
- Carman, W.F.; Korula, J.; Wallace, L.; MacPhee, R.; Mimms, L.; Decker, R. Fulminant reactivation of hepatitis B due to envelope protein mutant that escaped detection by monoclonal HBsAg ELISA. Lancet 1995, 345, 1406–1407. [Google Scholar] [CrossRef]
- Westhoff, T.H.; Jochimsen, F.; Schmittel, A.; Stoffler-Meilicke, M.; Schafer, J.H.; Zidek, W.; Gerlich, W.H.; Thiel, E. Fatal hepatitis B virus reactivation by an escape mutant following rituximab therapy. Blood 2003, 102, 1930. [Google Scholar] [CrossRef]
- Alexopoulou, A.; Dourakis, S.P.; Pandelidaki, H.; Archimandritis, A.J.; Karayiannis, P. Detection of a hepatitis B surface antigen variant emerging in a patient with chronic lymphocytic leukaemia treated with fludarabine. J. Med. Virol. 2006, 78, 1043–1046. [Google Scholar] [CrossRef]
- Svicher, V.; Cento, V.; Bernassola, M.; Neumann-Fraune, M.; Van Hemert, F.; Chen, M.; Salpini, R.; Liu, C.; Longo, R.; Visca, M.; et al. Novel HBsAg markers tightly correlate with occult HBV infection and strongly affect HBsAg detection. Antiviral Res. 2012, 93, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Shi, H.; Wang, Y.; Lu, M.; Xu, Y.; Chen, X. A case of hepatitis B reactivation due to the hepatitis B virus escape mutant in a patient undergoing chemotherapy. Virol. Sin. 2012, 27, 369–372. [Google Scholar] [CrossRef]
- Hyakumura, M.; Walsh, R.; Thaysen-Andersen, M.; Kingston, N.J.; La, M.; Lu, L.; Lovrecz, G.; Packer, N.H.; Locarnini, S.; Netter, H.J. Modification of Asparagine-Linked Glycan Density for the Design of Hepatitis B Virus Virus-Like Particles with Enhanced Immunogenicity. J. Virol. 2015, 89, 11312–11322. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, L.; Salpini, R.; Sarmati, L.; Svicher, V.; Bertoli, A.; Sordillo, P.; Ricciardi, A.; Perno, C.F.; Andreoni, M.; Sarrecchia, C. Late hepatitis B virus reactivation after lamivudine prophylaxis interruption in an anti-HBs-positive and anti-HBc-negative patient treated with rituximab-containing therapy. J. Infect. 2012, 65, 180–183. [Google Scholar] [CrossRef]
- Kfoury Baz, E.M.; Zheng, J.; Mazuruk, K.; Van Le, A.; Peterson, D.L. Characterization of a novel hepatitis B virus mutant: demonstration of mutation-induced hepatitis B virus surface antigen group specific "a" determinant conformation change and its application in diagnostic assays. Transfus. Med. 2001, 11, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Inoue, J.; Kondo, Y.; Wakui, Y.; Kogure, T.; Morosawa, T.; Fujisaka, Y.; Umetsu, T.; Takai, S.; Nakamura, T.; Shimosegawa, T. Reactivation of resolved hepatitis B virus infection with immune escape mutations after long-term corticosteroid therapy. Clin. J. Gastroenterol. 2016, 9, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.I.; Chan, H.L.; Leung, V.K.; Tse, C.H.; Fung, K.; Lin, S.Y.; Wong, A.; Wong, V.W.; Chau, T.N. Reactivation of hepatitis B virus infection with persistently negative HBsAg on three HBsAg assays in a lymphoma patient undergoing chemotherapy. J. Clin. Virol. 2010, 47, 193–195. [Google Scholar] [CrossRef]
- Hsu, C.W.; Yeh, C.T.; Chang, M.L.; Liaw, Y.F. Identification of a hepatitis B virus S gene mutant in lamivudine-treated patients experiencing HBsAg seroclearance. Gastroenterology 2007, 132, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Kucinskaite-Kodze, I.; Pleckaityte, M.; Bremer, C.M.; Seiz, P.L.; Zilnyte, M.; Bulavaite, A.; Mickiene, G.; Zvirblis, G.; Sasnauskas, K.; Glebe, D.; et al. New broadly reactive neutralizing antibodies against hepatitis B virus surface antigen. Virus Res. 2016, 211, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Martel, N.; Cotte, L.; Trabaud, M.A.; Trepo, C.; Zoulim, F.; Gomes, S.A.; Kay, A. Probable corticosteroid-induced reactivation of latent hepatitis B virus infection in an HIV-positive patient involving immune escape. J. Infect. Dis. 2012, 205, 1757–1761. [Google Scholar] [CrossRef]
- Blaich, A.; Manz, M.; Dumoulin, A.; Schuttler, C.G.; Hirsch, H.H.; Gerlich, W.H.; Frei, R. Reactivation of hepatitis B virus with mutated hepatitis B surface antigen in a liver transplant recipient receiving a graft from an antibody to hepatitis B surface antigen- and antibody to hepatitis B core antigen-positive donor. Transfusion 2012, 52, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, Z.; Cheng, J.; Lin, Y.; Lau, G.K.; Sun, J.; Zhou, F.; Waters, J.; Karayiannis, P.; Luo, K. Prevalence of naturally occurring surface gene variants of hepatitis B virus in nonimmunized surface antigen-negative Chinese carriers. Hepatology 2001, 34, 1027–1034. [Google Scholar] [CrossRef]
- Ito, K.; Qin, Y.; Guarnieri, M.; Garcia, T.; Kwei, K.; Mizokami, M.; Zhang, J.; Li, J.; Wands, J.R.; Tong, S. Impairment of hepatitis B virus virion secretion by single-amino-acid substitutions in the small envelope protein and rescue by a novel glycosylation site. J. Virol. 2010, 84, 12850–12861. [Google Scholar] [CrossRef]
- Zheng, X.; Weinberger, K.M.; Gehrke, R.; Isogawa, M.; Hilken, G.; Kemper, T.; Xu, Y.; Yang, D.; Jilg, W.; Roggendorf, M.; et al. Mutant hepatitis B virus surface antigens (HBsAg) are immunogenic but may have a changed specificity. Virology 2004, 329, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, A.; Shirvani-Dastgerdi, E.; Tacke, F.; Yagmur, E.; Poortahmasebi, V.; Poorebrahim, M.; Mohraz, M.; Hajabdolbaghi, M.; Rasoolinejad, M.; Abbasian, L.; et al. HBsAg mutations related to occult hepatitis B virus infection in HIV-positive patients result in a reduced secretion and conformational changes of HBsAg. J. Med. Virol. 2017, 89, 246–256. [Google Scholar] [CrossRef]
- Verheyen, J.; Neumann-Fraune, M.; Berg, T.; Kaiser, R.; Obermeier, M. The detection of HBsAg mutants expressed in vitro using two different quantitative HBsAg assays. J. Clin. Virol. 2012, 54, 279–281. [Google Scholar] [CrossRef]
- Fylaktou, A.; Daoudaki, M.; Dimou, V.; Sianou, E.; Papaventsis, D.; Mavrovouniotis, I.; Fouzas, I.; Papanikolaou, V. Hepatitis B reactivation in a renal transplant patient due to a surface antigen mutant strain: a case report. Transplant Proc. 2012, 44, 2773–2775. [Google Scholar] [CrossRef]
- Schubert, A.; Michel, D.; Mertens, T. Late HBsAg seroreversion of mutated hepatitis B virus after bone marrow transplantation. BMC Infect. Dis. 2013, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Yuan, Q.; Chen, P.J.; Zhang, Y.L.; Chen, C.R.; Zheng, Q.B.; Yeh, S.H.; Yu, H.; Xue, Y.; Chen, Y.X.; et al. Influence of mutations in hepatitis B virus surface protein on viral antigenicity and phenotype in occult HBV strains from blood donors. J. Hepatol. 2012, 57, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, K.H.; Chang, H.Y.; Ahn, S.H.; Tong, S.; Yoon, Y.J.; Seong, B.L.; Kim, S.I.; Han, K.H. Evolution of hepatitis B virus sequence from a liver transplant recipient with rapid breakthrough despite hepatitis B immune globulin prophylaxis and lamivudine therapy. J. Med. Virol. 2003, 71, 367–375. [Google Scholar] [CrossRef]
- Ando, T.; Kojima, K.; Isoda, H.; Eguchi, Y.; Honda, T.; Ishigami, M.; Kimura, S. Reactivation of resolved infection with the hepatitis B virus immune escape mutant G145R during dasatinib treatment for chronic myeloid leukemia. Int. J. Hematol. 2015, 102, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Protzer-Knolle, U.; Naumann, U.; Bartenschlager, R.; Berg, T.; Hopf, U.; Meyer zum Buschenfelde, K.H.; Neuhaus, P.; Gerken, G. Hepatitis B virus with antigenically altered hepatitis B surface antigen is selected by high-dose hepatitis B immune globulin after liver transplantation. Hepatology 1998, 27, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Yatsuji, H.; Noguchi, C.; Hiraga, N.; Mori, N.; Tsuge, M.; Imamura, M.; Takahashi, S.; Iwao, E.; Fujimoto, Y.; Ochi, H.; et al. Emergence of a novel lamivudine-resistant hepatitis B virus variant with a substitution outside the YMDD motif. Antimicrob. Agents Chemother. 2006, 50, 3867–3874. [Google Scholar] [CrossRef] [PubMed]
- Karatayli, E.; Karayalcin, S.; Karaaslan, H.; Kayhan, H.; Turkyilmaz, A.R.; Sahin, F.; Yurdaydin, C.; Bozdayi, A.M. A novel mutation pattern emerging during lamivudine treatment shows cross-resistance to adefovir dipivoxil treatment. Antivir. Ther. 2007, 12, 761–768. [Google Scholar] [PubMed]
- Huang, Y.H.; Hsiao, L.T.; Hong, Y.C.; Chiou, T.J.; Yu, Y.B.; Gau, J.P.; Liu, C.Y.; Yang, M.H.; Tzeng, C.H.; Lee, P.C.; et al. Randomized controlled trial of entecavir prophylaxis for rituximab-associated hepatitis B virus reactivation in patients with lymphoma and resolved hepatitis B. J. Clin. Oncol. 2013, 31, 2765–2772. [Google Scholar] [CrossRef]
- Hsu, C.; Tsou, H.H.; Lin, S.J.; Wang, M.C.; Yao, M.; Hwang, W.L.; Kao, W.Y.; Chiu, C.F.; Lin, S.F.; Lin, J.; et al. Chemotherapy-induced hepatitis B reactivation in lymphoma patients with resolved HBV infection: a prospective study. Hepatology 2014, 59, 2092–2100. [Google Scholar] [CrossRef]
- Seto, W.K.; Chan, T.S.; Hwang, Y.Y.; Wong, D.K.; Fung, J.; Liu, K.S.; Gill, H.; Lam, Y.F.; Lie, A.K.; Lai, C.L.; et al. Hepatitis B reactivation in patients with previous hepatitis B virus exposure undergoing rituximab-containing chemotherapy for lymphoma: a prospective study. J. Clin. Oncol. 2014, 32, 3736–3743. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, S.; Tanaka, Y.; Suzuki, R.; Watanabe, T.; Nakata, M.; Takasaki, H.; Fukushima, N.; Fukushima, T.; Moriuchi, Y.; Itoh, K.; et al. Monitoring of Hepatitis B Virus (HBV) DNA and Risk of HBV Reactivation in B-Cell Lymphoma: A Prospective Observational Study. Clin. Infect. Dis. 2015, 61, 719–729. [Google Scholar] [CrossRef] [Green Version]
- Tur-Kaspa, R.; Burk, R.D.; Shaul, Y.; Shafritz, D.A. Hepatitis B virus DNA contains a glucocorticoid-responsive element. Proc. Natl. Acad. Sci. USA 1986, 83, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Thibault, V.; Servant-Delmas, A.; Ly, T.D.; Roque-Afonso, A.M.; Laperche, S. Performance of HBsAg quantification assays for detection of Hepatitis B virus genotypes and diagnostic escape-variants in clinical samples. J. Clin. Virol. 2017, 89, 14–21. [Google Scholar] [CrossRef]
- Steinberg, J.L.; Yeo, W.; Zhong, S.; Chan, J.Y.; Tam, J.S.; Chan, P.K.; Leung, N.W.; Johnson, P.J. Hepatitis B virus reactivation in patients undergoing cytotoxic chemotherapy for solid tumours: precore/core mutations may play an important role. J. Med. Virol. 2000, 60, 249–255. [Google Scholar] [CrossRef]
- Yeo, W.; Zhong, S.; Chan, P.K.; Ho, W.M.; Wong, H.T.; Chan, A.S.; Johnson, P.J. Sequence variations of precore/core and precore promoter regions of hepatitis B virus in patients with or without viral reactivation during cytotoxic chemotherapy. J. Viral Hepat. 2000, 7, 448–458. [Google Scholar] [CrossRef]
- Dai, M.S.; Lu, J.J.; Chen, Y.C.; Perng, C.L.; Chao, T.Y. Reactivation of precore mutant hepatitis B virus in chemotherapy-treated patients. Cancer 2001, 92, 2927–2932. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.M.; Yao, N.S.; Wu, C.M.; Yang, M.H.; Lin, Y.C.; Hsiao, L.T.; Yen, C.C.; Wang, W.S.; Fan, F.S.; Chiou, T.J.; et al. Detection of reactivation and genetic mutations of the hepatitis B virus in patients with chronic hepatitis B infections receiving hematopoietic stem cell transplantation. Transplantation 2002, 74, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, A.; Theodorou, M.; Dourakis, S.P.; Karayiannis, P.; Sagkana, E.; Papanikolopoulos, K.; Archimandritis, A.J. Hepatitis B virus reactivation in patients receiving chemotherapy for malignancies: role of precore stop-codon and basic core promoter mutations. J. Viral Hepat. 2006, 13, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Sugauchi, F.; Tanaka, Y.; Kusumoto, S.; Matsuura, K.; Sugiyama, M.; Kurbanov, F.; Ueda, R.; Mizokami, M. Virological and clinical characteristics on reactivation of occult hepatitis B in patients with hematological malignancy. J. Med. Virol. 2011, 83, 412–418. [Google Scholar] [CrossRef]
- Marusawa, H.; Imoto, S.; Ueda, Y.; Chiba, T. Reactivation of latently infected hepatitis B virus in a leukemia patient with antibodies to hepatitis B core antigen. J. Gastroenterol. 2001, 36, 633–636. [Google Scholar] [CrossRef]
- Inoue, J. Factors involved in the development of fulminant hepatitis B: Are the mutations of hepatitis B virus implicated? Hepatol. Res. 2009, 39, 1053–1055. [Google Scholar] [PubMed]
- Inoue, J.; Ueno, Y.; Wakui, Y.; Fukushima, K.; Kondo, Y.; Kakazu, E.; Ninomiya, M.; Niitsuma, H.; Shimosegawa, T. Enhanced replication of hepatitis B virus with frameshift in the precore region found in fulminant hepatitis patients. J. Infect. Dis. 2011, 204, 1017–1025. [Google Scholar] [CrossRef]
- Milich, D.; Liang, T.J. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 2003, 38, 1075–1086. [Google Scholar] [CrossRef] [Green Version]
HBsAg Region | Amino Acid Position | Specific HBV Genotype a | Mutant Amino Acid | References | Note b |
---|---|---|---|---|---|
N-terminal | F8 | A, C, D | L, P | [11] | rtI16T, rtP17T/A |
C48 | G | [12] | rtV56G | ||
V96 | A | [12] | |||
MHR | Y100 | [12] | Reduces recognition by antibodies in vitro (Y100S) [18] | ||
M103 | I | [11,12] | rtV112F/L/I | ||
L109 | Del, I, Q | [11,12] | rtS117Y | ||
L110 | C | R, I | [16,19] | Shown only in case reports, rtT118N | |
S114 | B, C, D | [12] | |||
T115 | [12] | ||||
T116 | N | [11] | Reduces recognition by antibodies in vitro [18], make an additional N-glycosylation site [20], rtH124Q | ||
T118 | K | [12,21] | Reduces recognition by antibodies with P120Q in vitro [22], rtH126Q | ||
P120 | A, T | [12,23,24] | Reduces recognition by antibodies in vitro (P120A) [25], rtT128S/N | ||
R122 | D | K | [16] | Reduces recognition by antibodies in vitro [26], rtP130Q | |
K122 | A, B, C | R | [24,27] | Reduces recognition by antibodies in vitro [27] | |
c | C124 | N | [17] | Shown only in a case report, rtL132K | |
c | T126 | A, B, D | N, I | [11] | rtD134E |
c | I126 | C | T | [11] | |
c | P127 | S | [28] | Shown only in a case report, rtS135F | |
c | Q129 | R | [28] | Shown only in a case report | |
c | G130 | R | [17] | Reduces recognition by antibodies with M133T and F134L in vitro [29], rtR138K/T | |
c | M133 | T | [24] | Makes an additional N-glycosylation site [30] | |
c | F134 | A, B, C | I, Y, S, L | [11,16,24] | Reduces recognition by antibodies in vitro (F134S) [31], rtV142D, S143T/A |
c | Y134 | D | F, N, H | [11,12] | rtV142E/A |
c | S136 | Y, F | [11] | Reduces recognition by antibodies in vitro (S136Y) [32] | |
c | P142 | L | [16] | Reduces recognition by antibodies in vitro [33] | |
c | S143 | C, D | L | [12] | Reduces recognition by antibodies with Y100S or T116N in vitro [18] |
c | D144 | A, E | [11,12,16,24,27,34,35] | Reduces recognition by antibodies in vitro (D144A [36], D144E [27,37]), rtR153G | |
c | G145 | R, A, E | [11,15,23,24,35,38] | Reduces recognition by antibodies in vitro (G145R [31], G145A [39]), rtR153Q/P | |
c | N146 | S | [17] | Shown only in a case report | |
E164 | G, V | [11] | |||
C-terminal | S171 | F | [12,17] | ||
W172 | L, C | [11] | rtA181T/S [40,41] | ||
S174 | N | [11] | |||
L175 | S | [11,12,17] | |||
V177 | A, L | [11] | rtS185T | ||
G185 | E | [12,17] | |||
V190 | A | [12] | |||
S193 | L | [11] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoue, J.; Nakamura, T.; Masamune, A. Roles of Hepatitis B Virus Mutations in the Viral Reactivation after Immunosuppression Therapies. Viruses 2019, 11, 457. https://doi.org/10.3390/v11050457
Inoue J, Nakamura T, Masamune A. Roles of Hepatitis B Virus Mutations in the Viral Reactivation after Immunosuppression Therapies. Viruses. 2019; 11(5):457. https://doi.org/10.3390/v11050457
Chicago/Turabian StyleInoue, Jun, Takuya Nakamura, and Atsushi Masamune. 2019. "Roles of Hepatitis B Virus Mutations in the Viral Reactivation after Immunosuppression Therapies" Viruses 11, no. 5: 457. https://doi.org/10.3390/v11050457
APA StyleInoue, J., Nakamura, T., & Masamune, A. (2019). Roles of Hepatitis B Virus Mutations in the Viral Reactivation after Immunosuppression Therapies. Viruses, 11(5), 457. https://doi.org/10.3390/v11050457