Target-Centered Drug Repurposing Predictions of Human Angiotensin-Converting Enzyme 2 (ACE2) and Transmembrane Protease Serine Subtype 2 (TMPRSS2) Interacting Approved Drugs for Coronavirus Disease 2019 (COVID-19) Treatment through a Drug-Target Interaction Deep Learning Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drug Screening Database Design
2.2. Affinity Prediction of Each Drug to ACE2 and TMPRSS2
2.3. Cross-Prediction of MT-DTI Results through AutoDock Vina Docking Tool
2.4. Connectivity Map Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Siegel, D.; Hui, H.C.; Doerffler, E.; Clarke, M.O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017, 60, 1648–1661. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Singh, A.; Singh, R.; Misra, A. Remdesivir in COVID-19: A critical review of pharmacology, pre-clinical and clinical studies. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 641–648. [Google Scholar] [CrossRef]
- Beck, B.R.; Shin, B.; Choi, Y.; Park, S.; Kang, K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 2020, 18, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020, 178, 104786. [Google Scholar] [CrossRef] [PubMed]
- Fintelman-Rodrigues, N.; Sacramento, C.Q.; Ribeiro Lima, C.; Souza da Silva, F.; Ferreira, A.C.; Mattos, M.; de Freitas, C.S.; Cardoso Soares, V.; da Silva Gomes Dias, S.; Temerozo, J.R.; et al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Kim, H.H.; Choi, Y. Tiotropium is predicted to be a promising drug for COVID-19 through transcriptome-based comprehensive molecular pathway analysis. Viruses 2020, 12, 776. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Sakagami, H.; Miwa, N. ACE2: The key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: Demon or angel? Viruses 2020, 12, 491. [Google Scholar] [CrossRef]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef]
- Keidar, S.; Kaplan, M.; Gamliel-Lazarovich, A. ACE2 of the heart: From angiotensin I to angiotensin (1-7). Cardiovasc. Res. 2007, 73, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Paoloni-Giacobino, A.; Chen, H.; Peitsch, M.C.; Rossier, C.; Antonarakis, S.E. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 1997, 44, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.; Irwin, J.J. ZINC 15 - Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- Shin, B.; Park, S.; Kang, K.; Ho, J.C. Self-Attention Based Molecule Representation for Predicting Drug-Target Interaction. arXiv 2019, arXiv:1908.06760. [Google Scholar]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [Green Version]
- Tanoli, Z.R.; Alam, Z.; Vähä-Koskela, M.; Ravikumar, B.; Malyutina, A.; Jaiswal, A.; Tang, J.; Wennerberg, K.; Aittokallio, T. Drug Target Commons 2.0: A community platform for systematic analysis of drug-target interaction profiles. Database 2018, 2018, bay083. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007, 35, D198–D201. [Google Scholar] [CrossRef] [Green Version]
- Oleg, T.; Arthur, J.O. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Huey, R.; Linkstrom, W.; Sanner, M.; Belew, R.; Goodsell, D. Olson AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2010, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Flynn, C.; Niepel, M.; Hafner, M.; Muhlich, J.L.; Fernandez, N.F.; Rouillard, A.D.; Tan, C.M.; Chen, E.Y.; Golub, T.R.; et al. LINCS Canvas Browser: Interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 2014, 42, W449–W460. [Google Scholar] [CrossRef]
- Brimacombe, K.R.; Zhao, T.; Eastman, R.T.; Hu, X.; Wang, K.; Backus, M.; Baljinnyam, B.; Chen, C.Z.; Chen, L.; Eicher, T.; et al. An OpenData portal to share COVID-19 drug repurposing data in real time. bioRxiv Prepr. Serv. Biol. 2020. [Google Scholar] [CrossRef]
- Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado del Pozo, C.; Prosper, F.; et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020, 181, 905–913.e7. [Google Scholar] [CrossRef]
- Lambert, D.W.; Yarski, M.; Warner, F.J.; Thornhill, P.; Parkin, E.T.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem. 2005, 280, 30113–30119. [Google Scholar] [CrossRef] [Green Version]
- Lambert, D.W.; Clarke, N.E.; Hooper, N.M.; Turner, A.J. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett. 2008, 582, 385–390. [Google Scholar] [CrossRef]
- Sonawane, K.; Barale, S.; Dhanavade, M.; Waghmare, S.; Nadaf, N.; Kamble, S.; Mohammed, A.A.; Makandar, A.; Fandilolu, P.; Dound, A.; et al. Homology Modeling and Docking Studies of TMPRSS2 with Experimentally Known Inhibitors Camostat Mesylate, Nafamostat and Bromhexine Hydrochloride to Control SARS-Coronavirus-2. ChemRxiv 2020. [Google Scholar] [CrossRef]
- Uno, Y. Camostat mesilate therapy for COVID-19. Intern. Emerg. Med. 2020, 15, 1577–1578. [Google Scholar] [CrossRef] [PubMed]
- Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020, 248, 117477. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.A.; Rajpal, D.K. Applications of Connectivity Map in drug discovery and development. Drug Discov. Today 2012, 17, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Maggio, R.; Corsini, G.U. Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacol. Res. 2020, 157, 104837. [Google Scholar] [CrossRef] [PubMed]
- Balmeh, N.; Mahmoudi, S.; Mohammadi, N.; Karabedianhajiabadi, A. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Inform. Med. Unlocked 2020, 20, 100407. [Google Scholar] [CrossRef]
- Sun, M.L.; Yang, J.M.; Sun, Y.P.; Su, G.H. Inhibitors of RAS Might Be a Good Choice for the Therapy of COVID-19 Pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, E014. [Google Scholar] [CrossRef]
- Jia, Z.; Song, X.; Shi, J.; Wang, W.; He, K. Transcriptome-based drug repositioning for coronavirus disease 2019 (COVID-19). Pathog. Dis. 2020, 78, 1–7. [Google Scholar] [CrossRef]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Ledford, H. Coronavirus breakthrough: Dexamethasone is first drug shown to save lives. Nature 2020, 582, 469. [Google Scholar] [CrossRef]
- Du, F.; Liu, B.; Zhang, S. COVID-19: The role of excessive cytokine release and potential ACE2 down-regulation in promoting hypercoagulable state associated with severe illness. J. Thromb. Thrombolysis 2020. [Google Scholar] [CrossRef]
- Turner, A.J.; Tipnis, S.R.; Guy, J.L.; Rice, G.I.; Hooper, N.M. ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can. J. Physiol. Pharmacol. 2002, 80, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, F.S.; Amanlou, M. Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study. Life Sci. 2020, 258, 118205. [Google Scholar] [CrossRef] [PubMed]
- Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: Challenges and opportunities in drug discovery. J. Med. Chem. 2014, 57, 7874–7887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bai, Y.; Wang, Y.; Xiao, W. Polypharmacology in Drug Discovery: A Review from Systems Pharmacology Perspective. Curr. Pharm. Des. 2016, 22, 3171–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ACE2 | TMPRSS2 | ||
---|---|---|---|
Small Molecules | Predicted Kd in nM | Small Molecules | Predicted Kd in nM |
Pentostatin | 0.02 | Dasatinib | 0.37 |
Liothyronine | 0.43 | Pentostatin | 0.47 |
Emtricitabine | 0.45 | Tazemetostat | 2.88 |
Tiotropium | 0.92 | Tiotropium | 4.03 |
Obeticholic acid | 0.98 | Eluxadoline | 5.08 |
Mestranol | 1.02 | Pimecrolimus | 5.79 |
Gemcitabine | 1.10 | Tacrolimus | 5.82 |
Levorphanol | 1.30 | Ombitasvir | 5.91 |
Levallorphan | 1.37 | Brexpiprazole | 6.06 |
Methscopolamine | 1.40 | Venetoclax | 6.12 |
Enalaprilat | 1.46 | Daclatasvir | 6.66 |
Bremelanotide | 1.49 | Tolvaptan | 7.33 |
Norethynodrel | 1.51 | Aclidinium | 8.46 |
Epicriptine | 1.56 | Paritaprevir | 8.75 |
Rolitetracycline | 1.57 | Eprosartan | 9.19 |
Diacetyl benzoyl lathyrol | 1.77 | Cobimetinib | 10.59 |
Pizotifen | 1.80 | Entrectinib | 11.08 |
Dapagliflozin | 1.80 | Lisuride | 11.20 |
Clobetasol | 1.80 | Erdafitinib | 11.51 |
Lurasidone | 1.86 | Letermovir | 12.43 |
Small Molecules | Predicted ACE2 Kd (nM) | MT-DTI Rank Out of 460 | Alphalisa-AC50 (μM) | TruHit-AC50 (μM) |
---|---|---|---|---|
Enalaprilat | 1.46 | 11 | 7.52 | - |
Daclatasvir | 5.81 | 79 | 5.97-8.00 | 4.41–6.22 |
Mifepristone | 10.3 | 124 | 5.97 | 2.78 |
Estradiol cypionate | 11.79 | 136 | 9.47 | 5.55 |
Estramustine phosphate | 19.34 | 196 | 6.70 | 8.79 |
Ombitasvir | 20.91 | 208 | 4.50–5.97 | 2.78–3.50 |
Norgestimate | 21.06 | 210 | 9.47 | 4.41 |
d-alpha-Tocopherol acetate | 21.18 | 212 | 10.62 | 2.21 |
Mitoxantrone | 25.85 | 243 | 0.40–0.60 | 0.25–0.31 |
Pasireotide | 28.29 | 257 | 3.67 | 2.69 |
Ergotamine | 33.64 | 281 | 2.67 | 0.44 |
Flupentixol | 38.26 | 303 | 8.44 | 4.94 |
Venetoclax | 44.77 | 324 | 8.44 | 3.50 |
Anthralin | 61.92 | 380 | 2.38 | 6.22 |
Ciclopirox | 88.25 | 439 | 2.67 | 1.56 |
Thiethylperazine | 88.98 | 440 | 5.66–6.70 | 3.12 |
Posaconazole | 94.7 | 449 | 2.01–6.70 | 2.78–3.50 |
ACE2 | TMPRSS2 | ||||
---|---|---|---|---|---|
Small Molecules | Predicted Kd (nM) | AutoDock Vina ∆G (kcal/mol) | Small Molecules | Predicted Kd (nM) | AutoDock Vina ∆G (kcal/mol) |
Bremelanotide | 1.49 | −8.1 | Tazemetostat | 2.88 | −7.1 |
Talazoparib | 7.04 | −8 | Eluxadoline | 5.08 | −7.5 |
Avapritinib | 14.68 | −8 | Entrectinib | 11.08 | −7.9 |
Dihydroergocristine | 14.94 | −9.2 | Erdafitinib | 11.51 | −7.1 |
Tezacaftor | 15.90 | −8 | Aprepitant | 13.52 | −7.5 |
Dutasteride | 16.35 | −8.8 | Canagliflozin | 27.12 | −7 |
Rifapentine | 17.81 | −8 | Naldemedine | 46.74 | −7.2 |
Acetyldigitoxin | 18.93 | −8.6 | Adapalene | 52.49 | −7.5 |
Alatrofloxacin | 24.46 | −8 | Droperidol | 68.38 | −7.7 |
Deslanoside | 24.75 | −9.1 | Larotrectinib | 71.78 | −7.4 |
Dihydroergocornine | 25.99 | −8.4 | Zanubrutinib | 75.18 | −7.8 |
Irinotecan | 28.37 | −8.2 | |||
Naldemedine | 29.94 | −8.8 | |||
Ciclesonide | 31.43 | −8.1 | |||
Ubrogepant | 33.50 | −8.1 | |||
Ergotamine | 33.64 | −9.1 | |||
Lumacaftor | 36.26 | −8 | |||
Venetoclax | 44.77 | −9.2 | |||
Adapalene | 45.11 | −8 | |||
Letermovir | 50.73 | −8 | |||
Paritaprevir | 53.21 | −9.2 | |||
Entrectinib | 54.40 | −8.5 | |||
Glycyrrhizic acid | 61.94 | −8.1 | |||
Simeprevir | 67.03 | −8.7 | |||
Glecaprevir | 75.81 | −8.5 | |||
Lifitegrast | 94.67 | −8.3 | |||
Posaconazole | 94.70 | −8 |
Small Molecules | Predicted TMPRSS2 Kd (nM) | Bromhexine Connectivity Score | Probucol Connectivity Score |
---|---|---|---|
Dasatinib | 0.37 | 17.58 | 15.38 |
Tacrolimus | 5.82 | 10.40 | 70.67 |
Eprosartan | 9.19 | 91.13 | 51.17 |
Lisuride | 11.20 | 34.70 | 92.18 |
Aprepitant | 13.52 | 54.69 | 12.72 |
Panobinostat | 15.31 | 33.30 | 41.78 |
Bosutinib | 15.95 | 0.44 | 5.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Shin, B.; Kang, K.; Park, S.; Beck, B.R. Target-Centered Drug Repurposing Predictions of Human Angiotensin-Converting Enzyme 2 (ACE2) and Transmembrane Protease Serine Subtype 2 (TMPRSS2) Interacting Approved Drugs for Coronavirus Disease 2019 (COVID-19) Treatment through a Drug-Target Interaction Deep Learning Model. Viruses 2020, 12, 1325. https://doi.org/10.3390/v12111325
Choi Y, Shin B, Kang K, Park S, Beck BR. Target-Centered Drug Repurposing Predictions of Human Angiotensin-Converting Enzyme 2 (ACE2) and Transmembrane Protease Serine Subtype 2 (TMPRSS2) Interacting Approved Drugs for Coronavirus Disease 2019 (COVID-19) Treatment through a Drug-Target Interaction Deep Learning Model. Viruses. 2020; 12(11):1325. https://doi.org/10.3390/v12111325
Chicago/Turabian StyleChoi, Yoonjung, Bonggun Shin, Keunsoo Kang, Sungsoo Park, and Bo Ram Beck. 2020. "Target-Centered Drug Repurposing Predictions of Human Angiotensin-Converting Enzyme 2 (ACE2) and Transmembrane Protease Serine Subtype 2 (TMPRSS2) Interacting Approved Drugs for Coronavirus Disease 2019 (COVID-19) Treatment through a Drug-Target Interaction Deep Learning Model" Viruses 12, no. 11: 1325. https://doi.org/10.3390/v12111325
APA StyleChoi, Y., Shin, B., Kang, K., Park, S., & Beck, B. R. (2020). Target-Centered Drug Repurposing Predictions of Human Angiotensin-Converting Enzyme 2 (ACE2) and Transmembrane Protease Serine Subtype 2 (TMPRSS2) Interacting Approved Drugs for Coronavirus Disease 2019 (COVID-19) Treatment through a Drug-Target Interaction Deep Learning Model. Viruses, 12(11), 1325. https://doi.org/10.3390/v12111325