Iflavirus Covert Infection Increases Susceptibility to Nucleopolyhedrovirus Disease in Spodoptera exigua
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect and Virus Stock
2.2. Establishment and Time-Course of Iflavirus Infection
2.3. Virus Detection and Quantification
2.4. Sublethal Effects of SeIV-1 Infection
2.5. Effects of Iflavirus Infection on SeMNPV Insecticidal Properties
3. Results
3.1. Time-Course of Iflavirus Infections
3.2. Sublethal Effects of SeIV-1 Infection
3.3. Effects of Iflavirus Infection on SeMNPV Insecticidal Properties
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asgari, S. MicroRNAs as regulators of insect host–pathogen interactions and immunity. Adv. Insect Phys. 2018, 55, 19–45. [Google Scholar]
- Benaets, K.; Van Geystelen, A.; Cardoen, D.; De Smet, L.; de Graaf, D.C.; Schoofs, L.; Larmuseau, M.H.D.; Brettell, L.E.; Martin, S.J.; Wenseleers, T. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162149. [Google Scholar] [CrossRef]
- Burden, J.P.; Nixon, C.P.; Hodgkinson, A.E.; Robert, D.; Sait, S.M.; Linda, A.; Hails, R.S. Covert infections as a mechanism for long-term persistence of baculoviruses. Ecol. Lett. 2003, 6, 524–531. [Google Scholar] [CrossRef]
- Cabodevilla, O.; Villar, E.; Virto, C. Intra-and intergenerational persistence of an insect nucleopolyhedrovirus: Adverse effects of sublethal disease on host development, reproduction, and susceptibility to superinfection. Appl. Environ. Microbiol. 2011, 77, 2954–2960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontes, I.; Hartikainen, H.; Williams, C.; Okamura, B. Persistence, impacts and environmental drivers of covert infections in invertebrate hosts. Parasit. Vect. 2017, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larem, A.; Ben Tiba, S.; Fritsch, E.; Undorf-Spahn, K.; Wennmann, J.T.; Jehle, J.A. Effects of a covert infection with Phthorimaea operculella granulovirus in insect populations of Phthorimaea operculella. Viruses 2019, 11, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llopis-Giménez, A.; Maria González, R.; Millán-Leiva, A.; Catalá, M.; Llacer, E.; Urbaneja, A.; Herrero, S. Novel RNA viruses producing simultaneous covert infections in Ceratitis capitata. Correlations between viral titers and host fitness, and implications for SIT programs. J. Invertebr. Pathol. 2017, 143, 50–60. [Google Scholar] [CrossRef]
- Murillo, R.; Hussey, M.S.; Possee, R.D. Evidence for covert baculovirus infections in a Spodoptera exigua laboratory culture. J. Gen. Virol. 2011, 92, 1061–1070. [Google Scholar] [CrossRef] [Green Version]
- Cory, J.S. Insect virus transmission: Different routes to persistence. Curr. Opin. Insect Sci. 2015, 8, 130–135. [Google Scholar] [CrossRef]
- Williams, T.; Virto, C.; Murillo, R.; Caballero, P. Covert infection of insects by baculoviruses. Front. Microbiol. 2017, 8, 1337. [Google Scholar] [CrossRef]
- Hughes, D.S.; Possee, R.D.; King, L.A. Evidence for the presence of a low-level, persistent baculovirus infection of Mamestra brassicae insects. J. Gen. Virol. 1997, 78, 1801–1805. [Google Scholar] [CrossRef] [PubMed]
- Vilaplana, L.; Wilson, K.; Redman, E.M.; Cory, J.S. Pathogen persistence in migratory insects: High levels of vertically-transmitted virus infection in field populations of the African armyworm. Evol. Ecol. 2010, 24, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Li, Y.; Ding, S.-W. Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 2019, 19, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Bronkhorst, A.W.; Vogels, R.; Overheul, G.J.; Pennings, B.; Gausson-Dorey, V.; Miesen, P.; van Rij, R.P. A DNA virus-encoded immune antagonist fully masks the potent antiviral activity of RNAi in Drosophila. Proc. Natl. Acad. Sci. USA 2019, 116, 24296–24302. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.B.; Watson, E.L.; Valverde-Garcia, P. Mixed infections and insect-pathogen interactions. Ecol. Lett. 2003, 6, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Kemp, E.M.; Woodward, D.T.; Cory, J.S. Detection of single and mixed covert baculovirus infections in eastern spruce budworm, Choristoneura fumiferana populations. J. Invertebr. Pathol. 2011, 107, 202–205. [Google Scholar] [CrossRef]
- Virto, C.; Navarro, D.; Tellez, M.M.; Herrero, S.; Williams, T.; Murillo, R.; Caballero, P. Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J. Invertebr. Pathol. 2014, 122, 22–27. [Google Scholar] [CrossRef]
- Kanthong, N.; Khemnu, N.; Sriurairatana, S.; Pattanakitsakul, S.N.; Malasit, P.; Flegel, T.W. Mosquito cells accommodate balanced, persistent co-infections with a densovirus and dengue virus. Dev. Comp. Immunol. 2008, 32, 1063–1075. [Google Scholar] [CrossRef]
- DaPalma, T.; Doonan, B.P.; Trager, N.M.; Kasman, L.M. A systematic approach to virus-virus interactions. Virus Res. 2010, 149, 1–9. [Google Scholar] [CrossRef]
- Grzywacz, D. Basic and applied research: Baculovirus. In Microbial Control of Insect and Mite Pests: From Theory to Practice; Lacey, L.A., Ed.; Academic Press: Cambrige, MA, USA, 2017; pp. 27–46. ISBN 9780128035276. [Google Scholar]
- Rebolledo, D.; Lasa, R.; Guevara, R.; Murillo, R.; Williams, T. Baculovirus-induced climbing behavior favors intraspecific necrophagy and efficient disease transmission in Spodoptera exigua. PLoS ONE 2015, 10, e0136742. [Google Scholar] [CrossRef] [Green Version]
- Ryabov, E.V. Invertebrate RNA virus diversity from a taxonomic point of view. J. Invertebr. Pathol. 2017, 147, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Tripp, J.; Krueger, E.N.; Harrison, R.L.; Toth, A.L.; Miller, W.A.; Bonning, B.C. Lymantria dispar iflavirus 1 (LdIV1), a new model to study iflaviral persistence in lepidopterans. J. Gen. Virol. 2014, 95, 2285–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, P.; Li, W.; Lin, L.; de Miranda, J.R.; Emrich, S.; An, L.; Terenius, O. Genetic characterization of a novel iflavirus associated with vomiting disease in the Chinese oak silkmoth Antheraea pernyi. PLoS ONE 2014, 9, e92107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.A.; Ardisson-Araujo, D.M.P.; Tinoco, R.S.; Fernandes, O.A.; Melo, F.L.; Ribeiro, B.M. Complete genome sequence and structural characterization of a novel iflavirus isolated from Opsiphanes invirae (Lepidoptera: Nymphalidae). J. Invertebr. Pathol. 2015, 130, 136–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, H.; Xu, P.; Yang, X.; Graham, R.I.; Wilson, K.; Wu, K. Characterization of a novel member of genus Iflavirus in Helicoverpa armigera. J. Invertebr. Pathol. 2017, 144, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Millán-Leiva, A.; Jakubowska, A.K.; Ferré, J.; Herrero, S. Genome sequence of SeIV-1, a novel virus from the Iflaviridae family infective to Spodoptera exigua. J. Invertebr. Pathol. 2012, 109, 127–133. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, Y.-S.; Wang, Y.; Shin, S.W.; Kim, I.; Tao, X.Y.; Liu, Q.; Roh, J.Y.; Kim, J.S.; Je, Y.H. Complete genome sequence of a novel picorna-like virus isolated from Spodoptera exigua. J. Asia. Pac. Entomol. 2012, 15, 259–263. [Google Scholar] [CrossRef]
- Carballo, A.; Murillo, R.; Jakubowska, A.; Herrero, S.; Williams, T.; Caballero, P. Co-infection with iflaviruses influences the insecticidal properties of Spodoptera exigua multiple nucleopolyhedrovirus occlusion bodies: Implications for the production and biosecurity of baculovirus insecticides. PLoS ONE 2017, 12, e0177301. [Google Scholar] [CrossRef]
- Jakubowska, A.K.; Murillo, R.; Carballo, A.; Williams, T.; van Lent, J.W.M.; Caballero, P.; Herrero, S. Iflavirus increases its infectivity and physical stability in association with baculovirus. PeerJ 2016, 4, e1687. [Google Scholar] [CrossRef] [Green Version]
- Elvira, S.; Gorría, N.; Muñoz, D.; Williams, T.; Caballero, P. A simplified low-cost diet for rearing Spodoptera exigua (Lepidoptera: Noctuidae) and its effect on S. exigua nucleopolyhedrovirus production. J. Econ. Entomol. 2010, 103, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Caballero, P.; Zuidema, D.; Santiago-Alvarez, C.; Vlak, J.M. Biochemical and biological characterization of four isolates of Spodoptera exigua nuclear polyhedrosis virus. Biocontrol Sci. Technol. 1992, 2, 145–157. [Google Scholar] [CrossRef]
- Jakubowska, A.K.; D’Angiolo, M.; González-Martínez, R.M.; Millán-Leiva, A.; Carballo, A.; Murillo, R.; Caballero, P.; Herrero, S. Simultaneous occurrence of covert infections with small RNA viruses in the lepidopteran Spodoptera exigua. J. Invertebr. Pathol. 2014, 121, 56–63. [Google Scholar] [CrossRef] [PubMed]
- POLO-PC: A User’s Guide to Probit or Logit Analysis; LeOra software: Berkeley, CA, USA, 1987.
- Crawley, M.J. GLIM for Ecologists; Blackwell: Oxford, UK, 1993. [Google Scholar]
- Yuan, H.; Xu, P.; Xiao, Y.; Yang, L.; Yang, X.; Wu, K. Infection of cotton bollworm by Helicoverpa armigera iflavirus decreases larval fitness. J. Invertebr. Pathol 2020, 107384, in press. [Google Scholar]
- Fannon, J.M.; Ryabov, E. V Iflavirus (Deformed Wing Virus). In Molecular Detection of Animal Viral Pathogens; Liu, D., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 37–46. [Google Scholar]
- Ryabov, E.V.; Wood, G.R.; Fannon, J.M.; Moore, J.D.; Bull, J.C.; Chandler, D.; Mead, A.; Burroughs, N.; Evans, D.J. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 2014, 10, e1004230. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, P.; Guillot, S.; Antùnez, K.; Köglberger, H.; Kryger, P.; de Miranda, J.R.; Franco, S.; Chauzat, M.P.; Thiéry, R.; Ribière, M. Development and validation of a real-time two-step RT-qPCR TaqMan® assay for quantitation of sacbrood virus (SBV) and its application to a field survey of symptomatic honey bee colonies. J. Virol. Meth. 2014, 197, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Yamada, H.; Hamajima, R.; Kobayashi, M. Baculovirus genes modulating intracellular innate antiviral immunity of lepidopteran insect cells. Virology 2013, 435, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Clem, R.J. The Role of apoptosis in defense against baculovirus infection in insects. In Role of Apoptosis in Infection; Griffin, D.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 289, pp. 113–129. [Google Scholar]
- Jayachandran, B.; Hussain, M.; Asgari, S. RNA interference as a cellular defense mechanism against the DNA virus baculovirus. J. Virol. 2012, 86, 13729. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, Y.; Bonning, B.C. RNA virus discovery in insects. Curr. Opin. Insect Sci. 2015, 8, 54–61. [Google Scholar] [CrossRef]
- Jakubowska, A.; Nalcacioglu, R.; Millán-Leiva, A.; Sanz-Carbonell, A.; Muratoglu, H.; Herrero, S.; Demirbag, Z. In search of pathogens: Transcriptome-based identification of viral sequences from the pine processionary moth (Thaumetopoea pityocampa). Viruses 2015, 7, 456–479. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Macias-Muñoz, A.; Briscoe, A.D. Genome sequence of a novel Iflavirus from mRNA sequencing of the butterfly Heliconius erato. Genome Announc. 2014, 2, e00398-14. [Google Scholar] [CrossRef] [Green Version]
- van Oers, M.M. Iflavirus. In Encyclopedia of Virology; Mahy, B.W.J., van Regenmortel, M.H., Eds.; Elsevier: Oxford, UK, 2008; pp. 42–46. [Google Scholar]
Treatment Group | Median Larval Weight (mg) 1 | Median Pupal Weight (mg) 1 | Median Development Time to Pupae (Days) 1 | Mean Adult Emergence 2 ± SE (%) | Mean Sex Ratio ±SE (% Female) 2 | Mean Fecundity ±SE (Eggs/Group of Females) 2 |
---|---|---|---|---|---|---|
Control | 170.0a (134; n = 68) | 98.0a (35; n = 45) | 17.3a (12; n = 31) | 76.6 ± 5.3a (n = 43) | 54.8 ± 2.9a (n = 41) | 1203 ± 427.5a (n = 15) |
SeIV-1 | 117.0b (130; n = 58) | 99.0a (21; n = 39) | 17.4a (12; n = 26) | 72.0 ± 5.9a (n = 38) | 39.1 ± 4.6b (n = 36) | 446 ± 104.5a (n = 15) |
Treatment | LC50 1 (×104 OBs/mL) | Relative Potency | 95% Fiducial Limits | χ2 | MTD 2 (h) | 95% Fiducial Limits | ||
---|---|---|---|---|---|---|---|---|
Low | High | Low | High | |||||
Control | 5.87 | 1.00 | - | - | 5.27 | 90.77a | 88.83 | 92.74 |
SeIV-1 + SeIV-2 | 1.56 | 3.76 | 2.23 | 6.35 | 5.93 | 78.93b | 77.62 | 80.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carballo, A.; Williams, T.; Murillo, R.; Caballero, P. Iflavirus Covert Infection Increases Susceptibility to Nucleopolyhedrovirus Disease in Spodoptera exigua. Viruses 2020, 12, 509. https://doi.org/10.3390/v12050509
Carballo A, Williams T, Murillo R, Caballero P. Iflavirus Covert Infection Increases Susceptibility to Nucleopolyhedrovirus Disease in Spodoptera exigua. Viruses. 2020; 12(5):509. https://doi.org/10.3390/v12050509
Chicago/Turabian StyleCarballo, Arkaitz, Trevor Williams, Rosa Murillo, and Primitivo Caballero. 2020. "Iflavirus Covert Infection Increases Susceptibility to Nucleopolyhedrovirus Disease in Spodoptera exigua" Viruses 12, no. 5: 509. https://doi.org/10.3390/v12050509
APA StyleCarballo, A., Williams, T., Murillo, R., & Caballero, P. (2020). Iflavirus Covert Infection Increases Susceptibility to Nucleopolyhedrovirus Disease in Spodoptera exigua. Viruses, 12(5), 509. https://doi.org/10.3390/v12050509