Beyond cholera: characterization of *zot*-encoding filamentous phages in the marine fish pathogen *Vibrio anguillarum*

Jesper Juel Mauritzen^a, Daniel Castillo^a, Demeng Tan^b, Sine Lo Svenningsen^b & Mathias Middelboe^{a#}

- a) Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsing ør, Denmark.
- b) Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK 2200, København N, Denmark

Supplemental Material

Figure S1. Evaluation of circularization of *zot***-containing prophages in** *Vibrio anguillarum* **strains.** Primers targeting *zot* and primers directed at the boundaries of the prophage regions were used in a PCR assay to evaluate the presence of circularized elements in overnight cultures of the *V. anguillarum* strains PF4-*zot*-prophage⁺, T265 and Ba35 (Supplementary Table S2). **A**) Shows the position of the primers on the linear and circularized version of the phage genome. **B**) The PCR products were separated on a 2 % agarose gel by electrophoresis. The two primers used for each PCR reaction are indicated below the gel. Linear DNA ladders are indicated in the outer lanes. The expected product size of qZot_F + qZot_R is 180 bp. The results demonstrate the presence of circularized prophage elements in strains T265 and Ba35 but not in PF4-*zot*-prophage⁺.

Figure S3. PCR amplification of *zot* **accumulated at 1.3-1.34 g ml⁻¹ in** *Vibrio anguillarum* **strain T265.** PCR amplification of *zot* in supernatants of *V. anguillarum* strain T265 separated on cesium chloride gradients suggested that the *zot* genes accumulated at a buoyant density of 1.3-1.34 g ml⁻¹. Positive control (+) and negative control (-) are non-filtered *V. anguillarum* strain T265 and MB, respectively.

Figure S4. Mosaic genome structures among conserved genes in filamentous vibriophages. Open reading frames (ORFs) were colored according to their predicted function and the intensity of the color represents the respective ORF's relatedness to one another based on a phylogenetic tree (e.g. the first ORF of VEJ was closely related to similar ORFs of VGJ, VSKK and ND1-fs1 and most distantly related to VCY). The different frames mark observations related to this study (e.g. replication ORFs of the PF4 prophage were related to Vf33, Vf12, VfO4K68 and VfO3K6). The sequences of corresponding ORFs were aligned and used to construct separate ORF-specific phylogenetic trees using the maximum likelihood algorithm (100 bootstrapping). The prophage CON_phi2 was set as an outgroup to root each tree.

Figure S5. Schematic overview of the PCR analysis of VAI ϕ genome insertions into *dif1*-like sites. Schematic overview of the primer locations on the targeted VAI ϕ genome and bacterial chromosomes. Each primer to the left and right of the '+' were combined with one another to test for PCR amplification (e.g. att1 was combined with C1_F, 5_F, P_5709F, etc.). Successful and lack of product formation, as determined by gel electrophoresis, are denoted with a + or -, respectively. The denoted *attB* sites were interpreted as VAI ϕ genome insertion sites and the *dif1*-like sites were not considered VAI ϕ genome insertion sites due to inconsistent or lack of PCR product formation as shown. Open arrows represent ORFs oriented in the transcription direction and the color indicate the putative functions of structure-and-assembly, replication, regulation and other/hypothetical for blue, orange, gray and white, respectively. * / indicates inconsistent results of ≥ 6 independent repetitions.

	XerC	central region	XerD	
<i>attP</i> CTXφ (+) dsDNA	AGTGCGTATTATG	TGGCGCGGCA	TTATGTTGAGG	
attP pVAI (-)	AGTGCGTATTATG	GTTGTGAA	TTATGTTGAGG	
dif1 (V. cholerae)	AGTGCGCATTATG	TATG	TTATGTTAAAT	
attB1-VAlφ (V. anguillarum)	AGTGCGCATTATG	- TAT A	TTATGTTAAAT	
attB2-VAIφ (V. anguillarum)	AGTGCGCATTATG	GTTGTGAA	TTATGTTGAGG	
attB3-VAIφ (V. anguillarum)	AGTGCGTATTATG	TATA	TTATGTTAAAT	
dif1-like site (V. anguillarum)	AGTGCGTATTATA	TATC	TTATGTTAAAT	

Figure S6. Alignment of phage and bacterial attachment sites with a *dif1*-like site. Alignment of CTX ϕ and pVAIs *attP* plus *V. cholerae dif1* [39], *V. anguillarum attB* sites and a *dif1*-like site where VAI ϕ genome insertion was not observed (Fig. 3). The *dif1*-like site contains two nucleotide changes at conserved positions in the central region. The extended lines indicate XerC and XerD binding sites and are separated by a central region. Vertical lines indicate alignment gaps and non-identical nucleotides are shaded.

Primer	Sequence	Purpose in this study
Zot_F	5'-GTTCCGTCTGGTGTTTTGGC-3'	Evaluate the presence of phage
Zot_R	3'-GCGCTCTCAATGTGTTAGCG-5'	Evaluate the presence of phage
qZot_F	5'-GTATGGCCCGTGTAGTACAAGT-3'	Estimation of <i>zot</i> quantity by qPCR and presence of (pro)phage
qZot_R	3'-TCAATCGTCCAGTGTCAGCA-5'	Estimation of <i>zot</i> quantity by qPCR and presence of (pro)phage
DnaJ_F	5'-GTGCGCTATCAAGTACAGGC-3'	Evaluate the presence of chromosomal DNA and qPCR
DnaJ_R	3'-TATGTCCCAAAGTAGGCCCG-5'	Evaluate the presence of chromosomal DNA and qPCR
1_R	3'-GCAAATAATGCGCACTCTGA-5'	Evaluate the presence of circularized prophage elements
2_R	3'-GCTTGCTCAAGCTGACAAAA-5'	Evaluate the presence of circularized prophage elements
3_F	5'-CAGCAATTGACCGGAGATTC-3'	Evaluate the presence of circularized prophage elements
4_F	5-'CAGGAACGAAAACCCAAGAA-3'	Evaluate the presence of circularized prophage elements
5_R	3'-GAACGCGCTGAAGTCAAACT-5'	Evaluate the presence of circularized phage elements and insertion of the VAI ϕ genome in host chromosome
6_F	5'-AACGAAAGGACTCGCTTGTG-3'	Evaluate the presence of circularized phage elements
7_F	5'-TCCTAGCATGTACGCAGCAA-3'	Evaluate the presence of circularized phage elements and sequenced to determine the

Table S1. List of primer sequences and their purpose in this study.

		insertion of the pVAI1 genome in host
		chromosome
C1_F	5'-CAGAGGCAAACCCTCAACAT-3'	PCR products sequenced to close the genome of pVAI2 and insertion of the VAI¢ genome in
C1 D		nost chromosome
CI_K	5-GCGGCCAACGATATCAAATA-5	PCK products sequenced to close the genome of
		pvA12 and determine the insertion of the
		pVAII genome in host chromosome
C2_F	5'-GAACGCATCAAGCGGTATTT-3'	PCR products sequenced to close the genome of pVAI2
C2_R	3'-CCGCTTATGCTGCTTACTTTG-5'	PCR products sequenced to close the genome of pVAI2
C3_F	5-'GAGGCCGTCTTATAGGCAAA-3'	PCR products sequenced to close the genome of pVAI2
C3_R	3'-AGCCTGATTTGCTTGAGTCC-5'	PCR products sequenced to close the genome of pVAI2
C4_F	5'-CGAACCTAGCGAATTGCTTT-3'	PCR products sequenced to close the genome of pVAI2
C4_R	3'-TTGCCCGACACTTACAAACA-5'	PCR products sequenced to close the genome of pVAI2
C5_F	5'-GAAGACCAAGGACGTGGAGA-3'	PCR products sequenced to close the genome of pVAI2
C5_R	3'-GTCAGACCTTGCGTCTGTCA-5'	PCR products sequenced to close the genome of pVAI2
att1	5'-GGCATTTTCAACCGTCAACT-3'	Evaluate the presence of VAI¢ genome
o## `]		Evaluate the presence of VAIA conome
all2	J-OUCCACOAATTCCTOAACTA-J	insertion
att3	3'-TCAGAGTGCGCATTATTTGC-5'	Evaluate the region adjacent to <i>dif1</i> of PF4- <i>zot</i> - prophage ⁻ chromosome I
att4	3'-AAATTGTAGGCGTTGGGACA-5'	Evaluate the presence of VAI¢ genome
		insertion and sequenced to determine the
		insertion of the pVAI1 genome in host
		chromosome
att5	5'-GACCAGAGCGGCCTAATGTA-3'	Evaluate the presence of VAI¢ genome insertion
att6	5'-AGCACAACGGGCTAGGATTA-3'	Evaluate the presence of VAI genome insertion
att7	TCCAACCAAACTCACCCAAT	Evaluate the presence of VAId genome
acti		insertion and sequenced to determine the
		insertion of the nVAI1 genome in host
		chromosome
att8	3'-ACCACGGCGAAGTAGTGAAC-5'	Evaluate the presence of $V\Delta I\phi$ genome
allo		insertion
att9	5'-ACTCCAACGCCAAATTGTTC-3'	Evaluate the presence of VAI genome insertion
att10	CAAGCTGATGCAATTGATGG	Evaluate the presence of VAI genome
		insertion

att12	5'-AACGCATAAGCGATGTGGTT-3'	Evaluate the presence of VAI¢ genome insertion and sequenced to determine the insertion of the pVAI1 genome in host chromosome
att13	5'-GAGCTGGCTTTACTCGGATG-3'	Evaluate the presence of VAI¢ genome insertion
att14	3'-TTATGAGCGCAAATGAGTGC-5'	Evaluate the presence of VAI¢ genome insertion
att15	3'-GGCGAATTATCGACCGTTTA-5'	Evaluate the presence of VAI¢ genome insertion and sequenced to determine the insertion of the pVAI1 genome in host chromosome
att17	5'-GCTCAGCACTGGGAAAAATC-3'	Evaluate the presence of VAI¢ genome insertion
att18	3'-GCGGCAGAAATCAAGAAAAG-5'	Evaluate the presence of VAI¢ genome insertion
att19	3'-CGGATTTAGGCCGTATCAAA-5'	Evaluate the presence of VAI¢ genome insertion and sequenced to determine the insertion of the pVAI1 genome in host chromosome
att20	3-'GCGGCAGAACTCAAGAAAAG-5'	Evaluate the presence of VAI genome insertion
att21	5-'TCTCTGTGCTTGAGCGAGAA-3'	Evaluate the presence of VAI¢ genome insertion
att22	5'-TTCCAACCGGTGCTAAGTTC-3'	Evaluate the presence of VAI¢ genome insertion and sequenced to determine the insertion of the pVAI1 genome in host chromosome
P_265R	3'- ACGGGCCATACAACAAGAG-5'	Evaluate the presence of VAI¢ genome insertion
P_417R	3'-GCAATAAAGCGGATTCTTCG-5'	Evaluate the presence of VAI¢ genome insertion and Sanger sequenced
P_5709F	5'-AAGCCCCATTGATGTGGTAA-3'	Evaluate the presence of VAI¢ genome insertion and sequenced to determine the insertion of the pVAI1 genome in host chromosome
P_5859F	5'- CACGCGCTCTCTTATCCCTA-3'	Evaluate the presence of VAI¢ genome insertion

Table S2. List of phages and prophage host sequences and their respective accession no. used in this study

Phage or prophage	Bacteria host	Source of host isolation	Genome size (bp)	Accession no.; genomic position of prophage	Reference
VEJø	Vibrio cholerae	Cholera patient, Madras, India 1993	6842	FJ904927	[65]
VGJø Vibrio cholerae		Cholera patient, Calcutta, India 1993	7542	AY242528	[61]
VSK	Vibrio cholerae	Endemic areas, India and Bangladesh	6882	AF453500	[66]
VSKK	Vibrio cholerae	Endemic area, Bangladesh	6834	AF452449	[67]
ND1-fs1	Vibrio cholerae	Environmental water sample, Vietnam 2010	6856	AB572858	[68]
VFJø	Vibrio cholerae	Fuiian. China 1997	8555	KC357596	[69]
fs1	Vibrio cholerae	Diarrhea patient, Bangladesh	6340	D89074	[70]
fs2	Vibrio cholerae	India	8651	AB002632	[71]
Vf33	Vibrio parahaemolyticus	Patient, Fukuoka, Japan	7965	AB012573	[48]
Vf12	Vibrio parahaemolyticus	Patient, Fukuoka, Japan	7965	AB012574	[48]
VfO3K6 / f237	Vibrio parahaemolyticus	Diarrhea patient, Japan	8784	AB043678	[28]
VfO4K68	Vibrio parahaemolyticus	Diarrhea patient, Japan	6891	AB043679	[72]
pVAI1	Vibro anguillarum	Diseased sockeye salmon, USA	6117	MN200778	This study
pVAI2	Vibro anguillarum	Diseased atlantic salmon, UK	6117	MN200777	This study
VCYø	Vibrio cholerae	Oyster Pond, Woods Hole, MA, USA	7103	JN848801	[30]
СТХф	Vibrio cholerae	El Tor biotype isolate, Bangladesh and India	6969	KF664579 and HO224500*	[13]
KSF-1¢	Vibrio cholerae	Surface water, Dhaka, Bangladesh	7107	AY714348	[50]

				CP010080/CP01 0081: 3.130.438	[26]
				to 3 139 397 on	
				chromosome I	
				and 1,012,669 to	
PF4 <i>zot</i> -encoding		Diseased atlantic		1,021,628 on	
prophage	Vibrio anguillarum	salmon, Chile 2005	8960	chromosome II	
				NC_009802.2;	[73]
Prophage	Campylobacter			1,581,886 to	
CON_phi2	concisus	Human faeces	~12000	~1,593,000	

*Accession no. KF664579 was primarily used, however, the ORFs encoding *ctxA* and *ctxB* were selected from HQ224500 and used for Figure 2A.

ORF	Strand	Size (aa)	Homologous protein	Homolog identity (%)	E-value	Signal or TM*	Predicted function**
ORF1	+	361	RstA (Vibriophage CTX)	75	0	-	Replication initiation
ORF2	+	112	RstB (Vibriophage CTX)	44	6,00E-30	-	Required for integration and replication
ORF3	+	76	Hypothetical (Vibriophage VCY)	73	9,00E-39	TM (?) ***	Structural and assembly protein
ORF4	+	72	Hypothetical (Vibriophage VCY)	45	3,00E-13	S, TM	Major coat protein
ORF5	+	32	ORFIV (Vibriophage KSF-1)	53	3,00E-07	ТМ	Unknown
ORF6	+	437	Minor capsid (Vibriophage VCY)	27	3,00E-29	S, TM	Receptor-binding protein
ORF7	+	114	ORFVIII (Vibriophage KSF-1)	56	5,00E-43	ТМ	Structural protein
ORF8	+	454	Zot-like (Vibriophage VCY)	64	0	ТМ	Assembly protein
ORF9	-	61	Hypothetical (Vibrio anguillarum)	93	2,00E-23	-	Unknown
ORF10	-	68	Hypothetical (Vibrio cholerae)	74	4,00E-09	-	Unknown
ORF11	-	64	RstR (Vibriophage CTX)	95	3,00E-40	-	Transcriptional regulator

Table S3. Annotation of pVAIs' ORFs

ORFs were predicted using ORF finder and homology search was performed using the Blastp algorithm against the the *Inovirus* (taxid:10861) and *Inoviridae* (taxid:10860) databases (June,

2020). If no significant hits were retrieved, the ORFs were searched against the non-redundant database.

*Presence of signal peptide indicated with 'S' and a transmembrane domain designated with 'TM' as predicted by SignalP, TMHMM and Phobius.

**Predicted function was based on gene synteny and size, homology search, membrane topology, presence of signal peptide and subcellular localization.

*** Transmembrane domain was only predicted by Phobius in the C-terminus and not by TMHMM.

Table S4. ORF8 of pVAIs searched against the *Inovirus* (taxid: 10861) and *Inoviridae* (taxid:10860) databases.

Homologous protein	Coverage (%)	E-value	Homolog identity (%)	Accession no. of homolog
Zot-like protein (<i>Vibrio</i> phage VCY)	100	0	64	YP_004934230.1
KSF1)	100	0	67	YP_087078.1
VALG-phi6)	95	2,00E-106	38	QGT53739.1
Vpf461 (Vibrio phage VfO3K6)	95	3,00E-106	39	NP_059537.1
Zot (<i>Pseudomonas</i> phage pf8)	66	2,00E-22	27	QGZ15337.1
hypothetical protein Pf1p07 (<i>Pseudomonas</i> virus Pf1)	63	1,00E-21	28	NP_039606.1
Zot (Vibrio virus CTX)	71	2,00E-21	26	AWD92950.1
Zot (Vibrio virus CTX)	71	3,00E-21	25	AAL09680.1
Zot (Vibrio phage pre-CTX)	73	4,00E-21	25	AKF12299.1
Zot (Vibrio phage pre-CTX)	73	4,00E-21	26	ALF99877.1
Zot (Vibrio virus CTX)	73	4,00E-21	26	ACV73683.1
Zot (Vibrio virus CTX)	71	4,00E-21	25	AAL09684.1
Zot (Vibrio virus CTX)	73	5,00E-21	26	YP_004286239.1
Zot (Vibrio virus CTX)	71	6,00E-21	25	ADE80688.1
Zot (Vibrio phage pre-CTX)	72	6,00E-21	27	ALM30804.1

Zot (Vibrio virus CTX)	71	6,00E-21	25	AAL09690.1
Zot (Vibrio virus CTX)	71	8,00E-21	25	AHY24960.1
PA0726 (Pseudomonas virus Pf1)	65	1,00E-20	27	AAQ94688.1

Table S5. Annotation of ORF9 before and after integration in Vibrio anguillarum genomes

ORF9 before and after integration	Size (aa)	Homologous protein	Homolog identity (%)	E-value	TM*
ORF9 ^{pVAI}	61	Hypothetical (Vibrio quintilis)	68	1,00E-13	-
ORF9 ^{integrated} in <i>attB1</i>	118	Hypothetical (Vibrio quintilis)	76	1,00E-12	ТМ
ORF9 ^{integrated} in <i>attB2</i>	95	Hypothetical (Vibrio quintilis)	72	4,00E-13	-
ORF9 ^{integrated} in attB3	184	Hypothetical (Vibrio quintilis)	72	2,00E-11	TM (?) **

ORFs were predicted using ORF finder and homology search was performed using the Blastp algorithm against the non-redundant database (June, 2020).

*Presence of a transmembrane domain designated with 'TM' as predicted by TMHMM and Phobius.

**Transmembrane domain was only predicted by Phobius in the C-terminus and not by TMHMM.