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Abstract: Understanding the dynamic relationship between viral pathogens and cellular host factors
is critical to furthering our knowledge of viral replication, disease mechanisms and development of
anti-viral therapeutics. CRISPR genome editing technology has enhanced this understanding, by
allowing identification of pro-viral and anti-viral cellular host factors for a wide range of viruses, most
recently the cause of the COVID-19 pandemic, SARS-CoV-2. This review will discuss how CRISPR
knockout and CRISPR activation genome-wide screening methods are a robust tool to investigate the
viral life cycle and how other class 2 CRISPR systems are being repurposed for diagnostics.

Keywords: CRISPR KO; CRISPRa; coronavirus; flavivirus; SARS-CoV-2; genome editing; viral life
cycle; host factors; pro-viral; anti-viral

1. Introduction

Viruses are dependent on the cellular environment for their life cycles and the dy-
namic relationship between a virus and its host is ever evolving in the hope to maximise
viral fitness and dissemination to the next host. This has been evident in the ongoing
Sudden Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic in which
the evolution of a virus can be observed in real time through molecular methods to track
viral evolution. At the time of writing, SARS-CoV-2 is responsible for approximately 177M
infections globally, with 3.8M deaths [1]. However, this is not the first time that viral
pathogens have challenged humanity with outbreaks of SARS-CoV (2002), MERS-CoV
(2012), Zika Virus (2015), Spanish Flu (1918) and the constant threat from HIV, Dengue
Virus and many more [2–6].

Due to the relatively small size of viral genomes, viruses rely heavily on the cellular
environment for their replication and dissemination. This can include co-opting host
proteins and machinery for genome replication, translation and silencing of host innate and
adaptive immune responses, all known as pro-viral host factors [7–9]. In contrast, the host
recognises viral infection through a complex array of proteins collectively termed pattern-
recognition receptors (PRRs), to orchestrate expression of anti-viral-effector molecules to
inhibit viral replication and elicit immune activation [10,11]. Thus, our knowledge of the
viral host relationship is crucial for our understanding of viral replication dynamics and
ultimately in vaccine and therapeutic design.

To identify host proteins that are co-opted by viruses throughout their life cycles,
several platforms have been used such as novel and established compound screening
and functional genomics via technologies such as small interfering RNAs (siRNA) and
short hairpin RNA (shRNA) that reduce gene expression and mediate the viral replication
capacity in response [12–15]. However, it was the adaptation of CRISPR-Cas technology to
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in vitro and in vivo models that allowed for an efficient method to induce complete knock-
out of gene expression. CRISPR also allows for simultaneous functional characterisation
of most genes within the genome, allowing researchers to generate vast amounts of data
within a few weeks.

Furthermore, CRISPR-based approaches have also been used to target viral genomes
directly with the aim of viral elimination. Examples include Hepatitis B Virus (HBV) and
Human Immunodeficiency Virus (HIV), and while somewhat successful in in vivo and
in vitro models, this novel strategy is still in the development phase [16–22]

Consequently, CRISPR is a highly used tool in virology to understand the molecular
interactions between viruses and their host. Hence, this review will focus on how the
various CRISPR systems have been used to identify novel interactions and how future
advancements could be used as therapeutics and diagnostic tools.

2. Origins of CRISPR Genome Editing Technology

CRISPR is a prokaryotic defence mechanism against invading bacteriophage [23],
and comprises two classes that can be further subdivided into types I–VI, dependent on
the number of CRISPR-associated (Cas) nuclease proteins utilised and their loci arrange-
ment [24,25]. Class 1, found in archaea and some bacterial species, is composed of types
I, III and IV. They are distinct from class 2 due to their complex use of multiple effector
Cas proteins, anywhere from 4 to 7 subunits, and are therefore not widely used in genome
editing [24,26].

Class 2 is composed of types II, V and VI, with type II harnessed from Streptococcus
pyogenes commonly associated with CRISPR genome editing [25]. Type II utilises the Cas9
endonuclease, where Cas9 is guided by a chimeric crRNA:tracrRNA, called a guide RNA
(gRNA) (Table 1). The first crRNA contains a 17–20 bp RNA sequence complementary to
the target that is upstream of a protospacer adjacent motif (PAM) sequence. PAM sequences
are required for Cas to discriminate self from non-self as they are only found in the invading
bacteriophage genome. For commonly utilised type II systems incorporating Cas9 from
Streptococcus pyogenes, the PAM sequence is 5′NGG. The trans-activating crRNA (tracrRNA)
has multiple roles in maturation of the crRNA from pre-crRNA in conjunction with RNase
III [27,28] and acts as a scaffold for Cas9 binding [28–30]. Binding of the gRNA to Cas9
induces conformational change in Cas9 activating endonuclease activity. Upon binding
of the gRNA to the target and identification of the PAM sequence, the HNH domain of
Cas9 cleaves the complementary bacteriophage DNA strand, while the RuvC cleaves the
non-complementary strand [28,31]. Cleavage produces a double-stranded break (dsb),
rendering the invading phage unable to replicate and induce bacterial cell death [23,32].

The significant advance in genome editing technology arose when CRISPR was
adapted to knockout gene expression in eukaryotic in vitro models [28]. The efficiency and
simplicity of CRISPR to induce dsb in the genome far surpassed traditional technologies
such as TALENS and ZFNs [33,34]. Subsequently, the rapid development of CRISPR tech-
nology now allows researchers to knockout a single gene within a genome in vitro and
in vivo, allowing advanced investigation into the role of a protein in molecular pathways
and organism physiology.

Most recently, the class 2 system has expanded to include type V, which differs in
use of the endonuclease Cas12, (Table 1) [24,26]. While both Cas9 and Cas12 share a RuvC
domain, Cas12 lacks the HNH domain which is replaced with an uncharacterised Nuc
domain [35,36]. Additionally, type V can be further subdivided into groups A–E, with
extensive characterisation of groups A and B. The Group V-A endonuclease, previously
known as Cpf1, does not have a requirement for a tracrRNA, utilising only a crRNA that can
activate Cas12 conformational change. Maturation of the crRNA occurs upon binding with
Cas12, allowing Cas12 to cleave the pre-crRNA [37]. One similarity across all subtypes is the
requirement for a 5′ TTN PAM sequence, making Cas12 a potentially suitable alternative
for genome editing of T-rich genomic sequences [35–37]. Cas12 can also indiscriminately
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cleave single-stranded DNA upon recognition of a target sequence, complementary to the
guide RNA and as such is being repurposed for diagnostic use [38–40].

Research into type VI Cas13 systems is also rapidly expanding due to their unusual
ability to target and cleave RNA instead of DNA, due to the presence of 2 Higher Eukary-
otes and Prokaryotes Nucleotide (HEPN)—binding domains with ribonuclease activity
(Table 1) [25,41]. Cas13 enzymes utilise only a crRNA complementary to the target RNA,
which allows for RNA:RNA hybridisation. Advantageously, Cas13 does not have a re-
quirement for a PAM sequence, increasing the flexibility of crRNA target sites; however,
some species of Cas13 do prefer a protospacer flanking site, which incorporates either an
additional A, U or C (species dependent) at the 3′ end [42–44]. Cas13 also displays collateral
cleavage activity, where, upon recognition, Cas13 indiscriminately cleaves single-stranded
RNA transcripts, which is believed to part of a bacterial programmed cell death response
to infection [42,45,46]. However, this collateral activity is not present in mammalian cells
and so Cas13 is being repurposed as an alternative to siRNA- and shRNA-mediated gene
knockdown, RNA editing and in infectious disease diagnostic testing [44,47–51]. Addi-
tionally, inactivation of the HEPN domains leads to inhibition of RNA cleavage but allows
Cas13 to retain RNA binding activity and this “dead Cas13” is being optimised for use in
live-cell imaging of RNA transcript movement in in vitro model systems [52].

Collectively, the class 2 CRISPR systems are now embedded as a key component in
various lines of investigation, including genome editing for characterisation of a specific
gene of interest, development of repair mechanisms for genetic inheritable diseases, RNA
tracking and novel diagnostics. In addition to CRISPR targeting a specific nucleic acid
sequence, it is now possible to target all known genes of any species through the devel-
opment of CRISPR Cas9 screening libraries, that contain a pool of guide RNAs with the
intent to target all genes for either gene knockout or activation of gene expression. Briefly,
CRISPR activation (CRISPRa) is a modification of the more well-known CRISPR knockout
(CRISPRKO), where it uses Cas9 that has lost its endonuclease activity, but still retains its
sgRNA binding capacity. Further details on the CRISPRa system will discussed later in
this review.

Given the importance of host proteins in the viral life cycle, these genome-wide
CRISPR libraries are being utilised to understand this dynamic relationship, enabling the
identification of pro- and anti-viral host factors. This provides insight into the replication
strategies of pathogenic viruses, with the potential for future development of therapeutics.
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Table 1. Summary of commonly used class 2 CRISPR systems and their uses in virology research and diagnostics.

Nuclease Domains PAM Substrate Cleavage Collateral Cleavage? Use in Virus Research

Cas9 RuvC, HNH 5′-NGG-3′ dsDNA Blunt ends No

Utilised in numerous
genome-wide and target-specific
CRISPR screens to identify and

characterise the relationship
between cellular host factors and

viruses (refer to Table 2)
Used in studies aiming to

inactivate integrated viral DNA
that results in chronic infection

(e.g., HBV) [53]

Cas12 RuvC, Nuc 5′-TTTN-3′ dsDNA 5′ staggered overhang
of 5 bp

Yes—ssDNA
Not in mammalian or

plant culture

Forms the basis of the DETECTR
diagnostic method used for

detection of viral nucleic acids
(e.g., SARS-CoV-2) [40]
Potential alternative for

genome-wide screens due to
alternative PAM sequence

requirements, allowing potential
to target T’-rich gene

sequences [35]

Cas13 2× HEPN

Subspecies and
culture model

dependent.
Preference for 5′

“Protospacer Flanking
Sequence”

ssRNA Cleavage at uracil
Yes—ssRNA

Not in mammalian or
plant culture

Forms the basis of the SHERLOCK
diagnostic method for detection of

viral nucleic acids
(e.g., SARS-CoV-2) [51]

Shown in cell culture models to
cleave viral RNA and inhibit

replication [50]
Development of dCas13 as a
method to track viral RNA

movement in the cell throughout
viral replication [52]
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3. CRISPR Knockout Screening

Prior to the establishment of CRISPR genome editing technology as a staple molecular
technique, screening to identify host factors critical to viral replication and inhibition
included haploid genetic screens and RNA interference (RNAi).

Haploid genetic screens, as the name infers, use haploid cells (single allele for each
gene) with gene knockout mediated by lentiviruses/retrovirus or transposon-mediated
insertional mutagenesis. Haploid screens are advantageous as there is complete gene
inactivation, unlike in cells of diploid origin, where there is the risk that is the second
allele is not mutated and remains functional. However, haploid screens are limited to cell
type availability, which may not truly represent the viruses natural cell reservoir. In all,
haploid screens have been successful in identifying of a number of pro-viral factors, and
have enhanced our understanding of viral host dynamics [54–57].

Another method to identify and characterise the role of host factors in the viral
life cycle is short hairpin RNA (shRNA) or small interfering RNA (siRNA) screens to
inhibit endogenous gene expression [58,59] as they can be efficiently introduced into cells
and utilise the endogenous RNA degradation proteins Drosha and Dicer [60]. Numerous
shRNA/siRNA screens have been performed in the past and identified a number of cellular
proteins such as host kinases, cellular receptors, transcription factors and transporter
proteins that are critical to viral replication [14,15,61–64]. However, little overlap exists
between top hits of independent screens, primarily driven by varying siRNA sequences for
each gene, differential off-target effects and knockdown efficiencies [58]. As such, silencing
efficiency of several siRNAs targeting the same gene can vary significantly. Residual
activity due to incomplete gene knockdown also makes it difficult to ascertain the degree
of impact the host factor in question has on viral replication. Observation of high off-target
rates observed in RNAi screens may also be attributed to (i) incomplete binding of siRNA
onto the 3′UTR of mRNA which can facilitate miRNA-like inhibition, resulting in down-
regulation of non-target genes and (ii) during the delivery of siRNA into the cell, the innate
immune response can be activated by recognition of RNA in the endosome by Toll-Like
Receptors [65]. This can lead to different phenotypes observed due to the activation of
immune pathways and production of inflammatory cytokines [65,66].

However, most recently with the explosion of CRISPR technology, CRISPRKO screen-
ing is now the preferred method as it avoids differential off-target effects and associated
knockdown efficiency issues that are often encountered when using siRNAs. As CRISPRKO
can induce a complete sustained reduction in target gene expression, this has expanded the
potential to identify novel host factors that are critical for viral replication that may have
been otherwise gone undetected in siRNA screening platforms.

In general, genome-wide CRISPRKO screens to date rely on the cytopathic (CPE)
nature of viral infection to select for cells that survive following lentiviral transduction
of sgRNAs (Figure 1). Surviving cells are therefore not permissive to viral infection as a
result of CRISPR-mediated KO of a pro-viral host factor. Following expansion of surviving
cells, genomic DNA is subjected to PCR amplification of the integrated sgRNA sequences
and NGS used to determine the relative enrichment of specific guide sequences indicating
possible key cellular proteins involved in the viral life cycle. As such, several CRISPRKO
screens have been performed to identify key cell factors in significant pathogens of the
Flavivirdae family (Zika, Dengue, West Nile, Yellow Fever, and Hepatitis C), Influenza A,
Epstein–Barr Virus, Norovirus, Ebola Virus and Human Immunodeficiency Virus. These
screens have been reviewed previously and will not be discussed further; however, the key
findings are summarised previously in Table 2. We will therefore focus on recent CRISPRKO
screens that have yet to be reviewed and how this has impacted on our understanding
of the interaction between host factors and viruses. We will discuss SARS-CoV-2, the
coronavirus responsible for the COVID19 pandemic, with several putative host factors and
their inferred localisation of activity highlighted in Figure 2, and Zika Virus.
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Figure 1. Workflow of the genome-wide CRISPRKO screening process for the identification of novel
pro-viral host factors key for viral life cycles.
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Table 2. Summary of Human Genome-wide CRISPR Screens Identifying Critical Host Anti-Viral and Pro-Viral Factors.

Virus CRISPR Screen Cell Type Host Factor Class Top Candidates Reference

Influenza A
PR8 KO A549 Pro-viral WDR7, CCDC115, TMEM199, SLC35A1 [67]

Influenza A
H5N1 KO A549 Pro-Viral SLC35A1, GDF11, IRX3, C2CD4C,

TRIM23, PIGN, ACADSB, GRAMD2 [68]

Influenza A
PR8 Activator A549 Anti-Viral B4GALNT2 [69]

Zika Virus
PRVABC59 and MR766 KO iPSC differentiated into

NPC Pro-Viral WDR7, EMC1, EMC2, EMC4, ATP6V1A,
MMGT1, TM9SF2, EXT2 EMC [70]

Zika Virus
MR766 KO HeLa Pro-Viral AXL, EMC, MMGT1, SSR3, STT3A,

WDR7, RABGEF1 [71]

Zika Virus
MR766 KO GSC Pro-Viral SSR3, STT3A, MMGT1, SSR2, TMEM41B,

OXGR1, EMC, OST4 [72]

Zika Virus
MR766 Activator Huh7.5 Anti-Viral IFI6, ISG20, ZCCHC6, IFN-λ2, IRF1,

MAVS, TRIM25 [73]

Dengue Virus
16681 KO Huh7.5 Pro-Viral SSR1-3, ERAD Pathway (EMC), MMGT1,

AGT1, STT3B, RPN2, STT3A, OST4 [8]

Dengue Virus
Jamaican KO HAP1 Pro-Viral SLC35B2, PAPSS1, B4GALT7, EXT2,

STT3A, B3GAT3, DPM1, DPM3 [74]

Hepatitis C Virus
JFH-1 KO Huh7.5 Pro-Viral

CLDN1, OCLN, CD81, PPIA, RFK,
FLAD1, ELAVL1, SRRD,

ANKRD49, ZFB1
[8]

Human Immunodeficiency Virus KO THP-1 Pro-Viral IFNAR1, IRF9, STAT1, STAT2,
ZC3HAV1, TRIM25, N4BP1 [75,76]

Human Immunodeficiency Virus KO GXR Pro-Viral CD4, CCR5, ALCAM, SLC35B2, TPST2 [77]

Human Immunodeficiency Virus KO Jurkat T Cells Pro-Viral
(latency)

ZNF304, ARL16, ATF1,
CGREF1, USMG5 [76]

West Nile Virus
B596 KO 293T Pro-Viral SPCS1, SPCS3, EMC, OST complex

(STT3A), TRAP complex, SEL1L, HRD1 [7]
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Table 2. Cont.

Virus CRISPR Screen Cell Type Host Factor Class Top Candidates Reference

West Nile Virus
NY2000 KO 293T Pro-Viral

STT3A, SEC63, SEC61B, OSTC, SPCS1,
SPCS3, SERP1, EMC6, SEL1L, HSPA13,

OST4, EMC4
[9]

Ebola Virus
Mayinga KO Huh7.5 Pro-Viral GNPTAB, NPC1, SPNS1, SLC30A1,

VPS16, VPS33A and VPS18 [78]

Epstein–Barr Virus
B95.8 KO B Cell Lymphocytes Pro-Viral CD19, CD81, cFLIP, BATF, IRF4 and IRF2 [79]

Yellow Fever Virus
YFV-17D KO Huh7.5 Pro-Viral IFI6, BiP, IFN pathway (IFNAR, STAT2,

JAK1), HSPA5 [80]

Murine Norovirus
MNoVCW3

MNoV CR6
Activator HeLa Anti-Viral TRIM7, HOXC11, MX1, DDX60, PITX1 [81]

Murine Norovirus
MNoVCW3

MNoV CR6
KO HeLa Pro-Viral CD300LF, G3BP1, KMT2D, CD300LH [82]

Hepatitis A Virus
HM175/18f KO Huh7.5 Pro-Viral

SLC35A1, ZCCHC14, EIF4B, PTBP1,
PDAP1, SCAP, A1CF, FXR1, UFM1,
PAPD7, PAPD5, UGCG, ST3GAL5

[83]

SARS-CoV-2
HCoV-229E KO Huh7 Pro-Viral

SARS-CoV-2: TMEM41B, TMEM106B,
KRT19, AHCYL1, PTDSS1, OSBPL9,

GLUD1, DTD1, EXT1, ACE2
HCoV-229E: ANPEP, TMEM41B,

PIK3C3, NUFIP2

[84]

SARS-CoV-2 KO Calu-3 Pro-Viral AP1G1, ACE2, CHUK, TMPRSS2,
AP1B1, RIPK4, ROCK1, AP1M2 [85]

SARS-CoV-2 Activator Calu-3 Anti-Viral TEAD3, MUC21, MUC4, MUC1, CPNE3,
SPDEF, LY6E, JDP2, CCNE1, ZNF275 [85]
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Table 2. Cont.

Virus CRISPR Screen Cell Type Host Factor Class Top Candidates Reference

SARS-CoV-2 KO A549 Pro-Viral

ACE2, ACTR2, ARPC3, ARPC4, RAB7A,
CTSL, Retromer Complex, Commander
Complex, PIK3C3, SPEN, SLTM, DPM3,

ERMP1, PPID, CHST14

[86]

SARS-CoV-2
HCoV-229E
HCoV-OC43

KO Huh7.5 Pro-Viral

SARS-CoV-2: TMEM106B, VAC14, SCAP,
ACE2, EXT1, PCDH19, MBTPS2

HCoV-229E: ANPEP, TMEM41B, VPS11,
-16, -18, RAB7A, PIK3C3, GPR89A,

GPR89B
HCoV-OC43: B3GALT6, SLC35B2, EXT1,

EXT2, B3GAT3, B4GALT7, FAM20B

[87]

SARS-COV-2
HCoV-229E
HCoV-NL63
HCoV-OC43

KO Huh7.5 Pro-Viral

SARS-CoV-2: TMEM41B, DHX36,
EXTL3, EXT1, EXT2, ACE2, MBTPS2,
SCAP, TMEM106B, VAC14, SLC35B2

HCoV-229E: ANPEP, TMEM41B,
PIK3C3, VPS11, RAB7A

HCoV-NL63: CDX2, ACE2, NRIP1,
SMAD4, BMPR1A, EP300, KMT2B,

SETDB1, AVCR1, KDM6A
HCoV-OC43: B3GAT3, EXT1, EXT2,

SLC35B2, B4GALT7, RAB7A, TM9SF3,
XYLT2, SCAP, MBTPS1,

NDST1, TMEM41B

[88]
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Table 2. Cont.

Virus CRISPR Screen Cell Type Host Factor Class Top Candidates Reference

SARS-CoV-2
MERS-CoV

HKU5-SARS-CoV-1-S
KO Vero Pro-Viral

SARS-CoV-2: ACE2, CTSL, ARID1A,
KDM6A, SMARCC1, HMGB1,

SMARCA4
MERS-CoV: DPP4, AXIN1, TMEM41B,

MTF1, CTSL, ARID1A, KDM6A
HKU5-SARS-CoV-1-S: CTSL, ACE2,
SMARCA4, JMJD6, PHIP, KDM6A

[89]

SARS-CoV-2 KO A549 Pro-Viral
Commander complex, Retromer

Complex, ACE2, WDR81, ARPC4,
NPC1, CTSL

[90]

SARS-CoV-2 KO Calu-3 Pro-Viral AP1G1, ACE2, TMPRSS2, KMT2C,
ARID2, KDM6A [91]

SARS-CoV-2 Activator Calu-3 Anti-Viral LY6E, MUC21, TEAD3, PLAGL1, MUC4,
MUC1, JADE3 [91]

MERS-CoV KO Huh7 Pro-Viral DPP4, HNF1A, PTBP1, CLCN5,
PCTP, OR9K2 [92]

HCoV-229E KO Huh7 Pro-Viral VMP1, ANPEP, PHGDH, TMEM41B,
LAMB3, BCL21 [92]

HCoV-229E KO Huh7 Pro-Viral ANPEP, TMEM41B [93]
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Figure 2. Schematic of SARS-CoV-2 replication highlighting putative pro-viral (identified from CRISPRKO screens—red) and
anti-viral (identified from CRISPRa screens—green) host factors. Viral and host protein interactions and cellular localisation
are indicated based on known host factor localisation; however, this warrants further validation and characterisation.

The Coronaviruses

Coronaviruses impose a significant health and economic burden. Of the seven known
human coronaviruses (CoV), four are endemic (HCoV-229E, -OC43, -NL63 and -HKU1)
and one pandemic-CoV, SARS-CoV-2, currently in the human population. Two additional
human CoV respiratory pathogens, SARS-CoV and MERS-CoV, have also emerged in recent
times [94,95]. SARS-CoV was essentially controlled through public health measures while
MERS-CoV still circulates within camels [2]. In contrast to SARS-CoV and MERS, SARS-
CoV-2 has for many countries evaded public health measures and is now causing havoc
on a global scale. As such, there is now significant focus on understanding SARS-CoV-2
pathogenesis, replication kinetics and the dynamics of the virus–host relationship.

The coronaviruses have exceptionally large single-stranded RNA genomes of ap-
proximately 30 kB with a 5′-cap and 3′-poly-A tail. Following receptor-mediated viral
entry (i.e., ACE2 for SARS-CoV-2) the genome is release into the cytoplasm and directly
translated by host ribosomes. The 5′ two-thirds of the genome encodes two polyproteins,
pp1a and pp1ab with the latter generated by ribosomal frameshifting. The polyprotein is
cleaved into 16 non-structural proteins including the RNA-dependent RNA polymerase.
The 3′ third encodes four structural proteins (S, E, M and N) and a set of accessory proteins
that can interfere with host innate responses. A summary of the coronavirus life cycle
is outlined in Figure 2 and reviewed in [96]. At all points in the replication cycle, coron-
aviruses rely on cellular host factors and identification of these interactions represents sites
that can be potentially exploited for therapeutic gain. While there are differences between
the circulating common cold coronaviruses and SARS-CoV-2, many of the fundamental
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replication processes are similar and as such the common cold and animal coronaviruses
such as Mouse Hepatitis Virus (MHV) and Infectious Bronchitis Virus (IBV) have been
used as surrogates for the study of the more pathogenic human beta-coronaviruses such as
SARS and MERS that are restricted to PC3 laboratory conditions [97].

The cytopathic nature of the coronaviruses and specifically SARS-CoV-2 provides
a well-defined phenotypic endpoint for CRISPR screens and a number of independent
CRISPRko screens [84,86–90,93] have identified several novel host factors essential for
replication (Table 1). Not unexpected and common hits in all screens include the entry
receptor, ACE2 and Cathepsin L1 (CTSL1), a proteinase involved in cleavage of the S1
subunit of SARS-CoV-2 spike protein upon entry, enabling membrane fusion [84,86–90].
Screens performed in the lung carcinoma cell line A549, identified an enrichment of hits
associated with the Retromer and Commander complexes [86,90]. Both these large protein
complexes are involved in the recycling of transmembrane proteins and receptors from
endosomes by interaction with the trans-Golgi network to maintain cell surface expression
levels following endocytosis [98,99]. These complexes may provide a mechanism for
internalisation and/or uncoating of the genome from the virion or in later stages of the life
cycle such as trafficking to Golgi bodies for exocytosis; however, further investigation is
required to determine the role that these complexes play at various points in the SARS-coV-
2 life cycle.

Highlighting the intrinsic nature of cell type-specific pro-viral host factors, screens
performed in different cell types have uncovered enrichment of cell-specific host factors.
This is highlighted in screens performed using the hepatocellular carcinoma cell line
Huh-7, which expresses both ACE2 and TMPRSS2 receptors. Transmembrane protein 106B
(TMEM106B) is a lysosomal transmembrane protein associated with lysosome trafficking
and activity in motor neurons and dendritic cells and is the cause of frontotemporal
dementia in patients with large deletions [100,101]. CRISPR KO of TMEM106B in Huh-7
cells abrogates SARS-CoV-2 replication that was further confirmed in cell lines of lung
origin and primary bronchial epithelial cells [84,87]. Given the critical role of lysosomes
in SARS-CoV-2 infection, it is possible that TMEM106B is a mediator of viral membrane
fusion with the endosome membrane, to allow genome release into the cytosol.

Exostosin 1 and 2 (EXT1, EXT2), which together are the endoplasmic reticulum-
resident type II transmembrane glycosyltransferase proteins [84,87,88] have also been
identified as essential cellular proteins involved in SARS-CoV-2 replication. EXT1 and 2 are
responsible for extension of heparan sulfate chains, which are proteoglycans expressed on
the cell surface as part of the extracellular matrix [102,103]. Interestingly, heparan sulfate
has been shown to be essential for mediating interaction of SARS-CoV-2 Spike protein with
the ACE2 receptor. Heparan sulfate directly interacts with the positively charged S1 domain
of the Spike protein, inducing a conformational change to an “open” state, suggesting it
is a co-factor for entry [104,105]. Heparan sulfate also mediates entry of Herpes Simplex
Virus, Dengue Virus and Human Immunodeficiency Virus [106–108]. Additional screens
performed comparing SARS-CoV2 with other closely related Betacoronaviruses (HCoV-
OC43) and more distant Alphacoronaviruses (HCoV-NL63 and HCoV-229E), showed again
the importance of heparan sulfate in entry of betacoronaviruses as knockout of EXT1-3
inhibited replication of HCoV-OC43, but not NL63 and 229E [88]. Given that NL63 spike
protein mediates endocytosis via ACE2, and is associated with heparan sulfate binding, it is
possible that some alphacoronaviruses do not critically rely on heparan sulfate for cell binding
and endocytosis but may mediate this via another receptor [109,110]. This difference in
the host-viral protein networks of two related viruses may have gone unnoticed if not
for the power of CRISPR, showing that it is highly beneficial tool for studying virus–host
interactions and development of virus-specific anti-virals.

Variation in enrichment of host factors can arise in response to different cell lines used.
As example, Calu-3 and A549 cells, both of which are of lung epithelial origin, revealed
ACE2 as the top hit; however, the AP-1 complex subunit gamma-1 (AP1G1), a clatherin-
adaptor protein expressed as part of the trans-golgi network, is significantly enriched in
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Calu-3s but not A549 cells. While AP1G1 is potentially mediating the role of either virus
endocytosis or egress in Calu-3s, it is possible that this is not the case in A549s, which may
use other host factors for these processes [91].

CRISPR can also be used to identify pan-viral host factors, such as TMEM41B, another
transmembrane protein that is associated with autophagy, wherein by TMEM41B knockout
reduces the mobilisation of lipids from lipid droplets to mitochondria and autophago-
some formation [88,92,93,111–113]. TMEM41B was also identified as a host factor for the
flaviviruses ZIKV, YFV, DENV and WNV, a family of +ssRNA viruses that also induce mem-
brane rearrangements to form replication complexes much like coronaviruses. In flaviviruses,
it was found that TMEM41B localises with NS4A and NS4B at replication complexes,
mediating ER rearrangement [114]. The importance of TMEM41B was established in coro-
naviruses, where knockout of TMEM41B in 3 independent screens significantly inhibited
the replication of SARS-CoV2, OC43, NL63 and 229E [88], MERS-CoV and 229E [92] and
229E alone [93], but was rescued upon re-complementation [88,93]. SARS-CoV2 infection
showed TMEM41B localisation to cytosolic sites, likely ER membranes [88]. Further studies
with HCoV-229E show that TMEM41B does not co-localise with any non-structural proteins
at sites of replication complex formation but does alter the availability of free cholesterols in
the cytoplasm by sequestering lipids into enlarged lipid droplets and preventing replication
complex formation [93]. However, this observation is still to be confirmed for SARS-CoV-2
and other related coronaviruses.

Strikingly, only CRISPRko screens that use Calu-3 cells show enrichment of sgRNAs
for the SARS-CoV-2 spike priming cellular serine protease, TMPRSS2, that is critical for
SARS-CoV and SARS-CoV-2 entry [115–119]. TMPRSS2 mediates the cleavage of S1/S2
and S2 prime sites of both SARS, resulting in the production of several smaller fragments,
priming the S protein for interaction with ACE2 and membrane fusion [116]. TMPRSS2 has
also been shown to be critical for mediating hemagglutinin cleavage of Influenza [120], in
addition to a role in mediating downstream gene expression in cells of prostate carcinoma
origin [121,122]; however, its specific function in healthy tissue remains poorly charac-
terised. It is possible that TMPRSS2 may mediate a role in cell survival, with CRISPRKO
inducing cell death that may explain why the sgRNAs where not highly represented in
surviving cells of differing origin. This is a limitation of CRISPRKO screens, in that knock-
out of host survival factors cannot be identified in a screen that utilises cell survival in the
face of cytopathic virus replication as a phenotypic screening endpoint. Consequently, cell
factors that are key for cell viability and important for SARS-CoV-2 life cycle may not be
identified. Alternatively, a yet unidentified cell serine protease may allow SARS-CoV-2
spike protein modification and cell entry that is expressed significantly in other cells lines,
that may not be present in Calu-3s. This redundancy may explain why TMPRSS2 is critical
for these cells and not others.

An interesting observation from all CRISPRKO screens discussed above is the extreme
diversity of hits across the various cell lines used. This could be attributed to a host of
reasons including different experimental protocols, different CRISPRKO platforms and
as mentioned above, different cell types. Additionally, continuous culture of viruses in
specific cell lines will drive adaptation for the use of cell-dependent host factors. Con-
sequently, physiological cell types preferably of primary origin and low passage virus
will be key to identifying physiologically relevant pro-viral host factors that may inform
anti-viral therapeutics.

CRISPRKO also highlights an ability to distinguish pro-viral host factors across dif-
fering virus families, exemplified by the lack of similarity between the hits identified for
flaviviruses and coronaviruses. This is especially so, given that both viral families are +ssRNA
genomes, replicate in the cytosol, form ER membrane replication complexes and egress
via the trans-golgi network [123]. Thus, CRISPRKO shows that it is powerful enough to
delineate these critical differences in the replication of similar, but distinct viruses and
allows development of a deeper understanding of the complex nature of the viral life cycle
and the consequential disease pathologies.
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4. CRISPR Activation Screening

The ability to manipulate CRISPR componentry has most recently resulted in genera-
tion of gene activation (CRISPRa) systems that enhance targeted gene expression to a static
upper limit, indicative of maximal endogenous expression. CRISPRa uses a modified Cas9
protein in which mutations are introduced into the critical RuvC (D10A) and HNH (H840A)
domains rendering the endonuclease activity “dead” and is hence termed “dCas9” (Table 3).
As such, dCas9 is unable to cleave DNA but still retains the capacity to interact with sgRNA
and bind to targeted DNA sites. In contrast to CRISPRko where sgRNA target exon coding
regions, sgRNA in CRISPRa are complementary to the proximal promoter, ~100–500 bp
upstream of a transcriptional start site (TSS). Transcription activators (contain a DNA
binding domain and an activation domain) fused to dCas9 are required for recruitment of
canonical transcription factors that regulate transcriptional processes such as unwinding of
DNA from the chromatin or formation of the scaffolding required for RNA polymerase
recruitment. RNA pol can then transcribe the gene of interest, driving mRNA transcription
and functional protein expression. This provides the benefit of increased gene expression
from the endogenous promoter, allowing investigation of gene function of all transcript
variants in contrast to traditional cDNA overexpression strategies.

Table 3. Summary of commercially available CRISPRa systems utilised dCas9 that are already widely used for genome-
wide screening.

System Components

CRISPR
VPR

dCas9 is fused with the transcriptional
activators VP64 (HSV), p65 (cellular) and Rta

(EBV) [124]

CRISPRaSAM

The sgRNA incorporates MS2 RNA aptamers
in the stem–loop

Helper complex, composed of MS2 coat
protein, p65 (cellular) and Heat Shock Factor 1

(HSF1-cellular)
dCas9 is fused with VP64 (HSV). Helper

complex binds to the MS2 RNA aptamers [125]

CRISPRaSunTag

dCas9 is fused with a GCN4 repeating
polypeptide, “SunTag”

ScFv, fused with VP64 (HSV) and GFP, are
raised against GCN4, allow recruitment of
additional transcriptional activators to the

promoter [126]

Commercially, several CRISPRa systems are available (refer to Table 3), each utilising
a unique combination of transcriptional activators to enable gene activation.

4.1. CRISPR-VPR

The CRISPR VP64-p65-Rta system was one of the first modified CRISPRa systems in
which dCas9 was fused at its C-terminus with the transcriptional activator VP64, a tetramer
of the Herpes Simplex Virus (HSV) VP16 protein that starts early gene transcription by
recruitment of host transcriptional machinery. Additionally, a subunit of NF-κβ, p65, and
Replication and Transcription Activator (RTA) of gamma herpesviruses, are fused at the
C-terminus to VP64. The presence of three transcriptional activators is enough to drive
recruitment of transcriptional machinery at the directed sgRNA binding site and induce
gene transcription greater than dCas9-VP64 alone [124].
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4.2. CRISPR-Synergistic Activation Mediator (SAM)

CRISPR-SAM also uses dCas9-VP64; however, the gamma herpesviruses RTA is not
involved and p65 is not fused directly to VP64, rather it is found as part of a transcriptional
helper complex including Heat Shock Factor 1 (HSF1) and the Bacteriophage MS2 coat
protein that acts a linker to recruit the complex to dCas9. A modified sgRNA stem–
loop structure incorporates 2× MS2 RNA aptamers that can be recognised by the MS2
coat protein complex linked to VP64 and HSF1. This allows the sgRNA in association
with dCas9-VP64 to recruit the helper complex to the target promoter to enable gene
transcription [125].

4.3. CRISPR-SunTag

In contrast to CRISPR-SAM outlined above, the CRISPR-SunTag system uses a dCas9-
VP64 fusion, in which the yeast master transcriptional regulator, GCN4, in the form of a
repeating polypeptide is fused to the C-terminus of dCas9. This peptide, named SunTag, is
the target of small-chain-variable fragment (ScFv) antibodies raised against GCN4, that is
fused to VP64 and GFP, with GFP enabling FACS selection of transcriptionally activated
cells. Depending on the iteration of the SunTag system used this allows recruitment of be-
tween 10 and 24 VP64 proteins to the target promoter, enabling gene transcription [127,128].

Researchers have been quick to appreciate the value of the CRISPRa screens as a tool
to identify novel anti-viral host restriction factors with published reports of activation
screens being performed for Influenza A (H1N1 PR8) and Murine Norovirus (CW3 and
CR6) and most recently for SARS-CoV-2 and ZIKV. The outcomes of these screes for IAV
and MNoV have been reviewed elsewhere and are summarised in Table 1, and hence, in
this review, we focus on the most recent ZIKV and SARS-CoV-2 screens.

4.4. Zika Virus

ZIKV has a positive-sense, single-stranded RNA genome and is a member of the
Flaviviridae family. ZIKV is best known for its association with the 2015–2016 outbreak
of South America, coinciding with the Rio Olympic Games [3,129,130].While not associ-
ated with a high mortality, ZIKV infection of pregnant women resulted in an increase
in the number of children born with neurological disorders such as microcephaly, re-
vealing ZIKV as the first flavivirus with the ability to vertically transmit from mother to
child [130–132]. To identify critical anti-viral host restriction factors that could be further
explored to understand ZIKV infection and pathogenesis, CRISPRa screening using the
powerful genome-wide CRISPR SAM system was employed. Designed by Feng Zhang of
Massachusetts Institute of Technology, the lentiSAMv2 library containing approximately
3 sgRNA per gene (to a total of ~113.00 sgRNA) was used to activate gene expression prior
to cells being infected with ZIKV with surviving cells deemed to express a host restriction
factor. sgRNAs for Interferon-Inducible Protein 6 (IFI6) and Interferon Lambda 2 (IFN-λ2)
were highly enriched and further identified as potent inhibitors of ZIKV infection in Huh7
cells [73]. IFI6 has been associated with regulation of mitochondrial reactive oxygen species
(mtROS) levels and cancer metastasis [133], DNA replication stress in melanoma [134] and
inhibition of apoptosis at the mitochondria by regulation of caspase, Bcl-2 and Bax expres-
sion during DENV infection [135] although its role as a viral restriction factor was unclear.
The use of IFI6 overexpression in Huh7 cells and subsequent infection with ZIKV revealed
no impact on polyprotein translation, but a significant reduction in dsRNA abundance,
a marker of replication complex formation. This suggests that IFI6 inhibits replication
through a defect in replication complex formation at the ER [73]. Interestingly, a role for
IFI6 as a host anti-viral factor was confirmed using a genome-wide CRISPRKO screen to
identify interferon induced host restriction factors that impact flavivirus replication [80].
While several canonical ISGs and members of innate immune activation pathways were
identified, IFI6 was highly enriched in multiple screens. Further analysis using ectopic and
endogenous IFI6 expression revealed that IFI6 was predominantly localised to the ER in
contrast to its previously reported localisation to the mitochondria [136–138]. IFI6 was not
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directly anti-viral; however, through its interaction with the ER-resident heat shock protein
70 chaperone BiP (for stabilisation), it facilitated inhibition of ER membrane invaginations
and formation of the viral replication complex. These independent studies highlight the
capacity of different CRISPR screening strategies to identify similar and unique host factors
involved in viral replication and/or restriction.

4.5. SARS-CoV-2

The ability of SARS-CoV-2 to readily replicate in culture and cause a cytopathic
effect suggests that like CRISPRKO, CRISPRa has the potential to identify novel anti-
viral host restriction factors and studies are now emerging. Using SARS-CoV-2 infected
lung epithelial cells (Calu-3) [85], coupled with a CRISPRa (Calabrese library) screen
identified enrichment of a number of sgRNAs corresponding to cell survival with the
greatest enrichment being for Transcriptional Enhancer Factor TEF-5 (TEAD3). TEAD3 is
activated downstream of the of the Hippo signalling complex, responsible for activating
cell proliferation and regulation of organ size [139,140]. While it is not immediately
apparent as to the role of TEAD3 anti-SARS-CoV-2 restriction, it is possible that it may
interact with one of the many SARS-CoV-2 proteins or that it results in transcriptional gene
expression changes that are currently uncharacterised. Interestingly, the closely related
SARS-CoV induces cell cycle arrest and inhibition of apoptosis via the Nucleocapsid, NSP2,
NSP3 and NSP15 proteins promoting an environment that is considered optimal for viral
replication [141,142]. It is not inconceivable that expression of TEAD3 could promote
an environment of cell proliferation, that negatively impacts SARS-CoV replication and
enhanced cell survival.

CRISPRa genome-wide screens have also revealed enrichment for sgRNAs represent-
ing the known anti-viral Mucin family members, MUC1, -4, -13 and -21 [85,91]. Mucins are
a family of O-glycosylated glycoproteins that are either membrane bound or secreted to
form mucosa membranes. In the case of MUC1, -4, -13 and -21, all are membrane tethered
and can exert anti-Influenza activity by steric hinderance of IAV hemagglutinin binding
to sialic acid receptors and thus inhibition of entry. Infection of Calu-3 cells expressing
ectopic MUC4 with a vesicular stomatitis virus (VSV) pseudovirus, expressing SARS-CoV-2
spike protein, revealed a significant reduction in cell entry. However, treatment of Calu-3
cells with the bacterial protease StcE, specific for mucins, reversed this phenotype while
individual CRISPRa activation of MUC1, -4 and -21 was also anti-viral for the coronaviruses
MERS-CoV and HCoV-229E. However, the importance of mucins in a physiological setting
is unclear given that SARS-CoV-2 infection increases MUC1, -4, -13 and -21 in human and
mouse lung tissue as determined by RNA Seq. This would suggest that like IAV, mucins
inhibit entry of the virus, in this case preventing spike-mediated endocytosis. Whether
this be by steric hinderance by blocking access to the ACE2 receptor or to other essential
co-receptors that mediate spike conformational change (e.g., Heparan sulphate) remains to
be investigated.

5. CRISPR as the Future of Diagnostic Screening

Current diagnostic methods, such as qPCR, have been proven to be highly effective in
detecting target pathogens in patient samples; however, the current COVID-19 pandemic
has highlighted several issues regarding turnaround time, reagent availability, cost, and
access to equipment. As such, there has been a significant effort to develop novel SARS-
CoV-2 diagnostics by exploiting the promiscuous cleaving capacity of type V (Cas12) and
type VI (Cas13) CRISPR systems. CRISPR as a diagnostic tool has been shown to have
significant advantages in that they are rapid, minimise reagents, more cost effective, time-
efficient, and are easily field-deployable (i.e., to developing nations) with two platforms,
DETECTR and SHERLOCK now in the development phase.

SHERLOCK (Specific High Sensitivity Enzymatic Report unlocking), as shown in
Figure 3, utilises Cas13 and crRNAs that specifically target ssRNA and are therefore highly
amenable to probing for RNA viral genomes in clinical samples [39,43,49]. Production and
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amplification of viral genomes are achieved through cDNA synthesis using Recombinase
Polymerase Amplification (RPA) [143–145] that is coupled to a T7 polymerase reaction
for RNA production. Within this reaction, a ssRNA-quenched probe is present. If the
genome of the target pathogen is recognised by the crRNA, the ssRNA probe is cleaved
non-specifically by the activated Cas13. This will produce a quantifiable signal that indicates
the presence of the target. The DETECTR (DNA Endonuclease—Targeted CRISPR Trans
Reporter) platform is in principle, like SHERLOCK as also shown in Figure 3; however, it
is uses Cas12 which is activated upon recognition of a target DNA. Diagnostics to identify
DNA viral genomes can be directly used, but for RNA viruses’ incorporation of a RPA step
is required for cDNA generation. Activation of Cas12 by recognition of viral DNA results
in the quantifiable cleavage of a ssDNA-quenched probe.
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SHERLOCK and DETECTR have successfully been validated to detect SARS-CoV-
2 [40,51,146,147] Ebola Virus [148], Lymphocytic Choriomeningitis Virus (LCMV), Influenza
A Virus (IAV) and Vesicular Stomatitis Virus (VSV) [50]. Development of readout method-
ologies varies, spanning from fluorescence-based assays, that can also be implemented in
multiplex high-throughput screening platforms [48], or as inexpensive, field-deployable
lateral flow strip assays. Although not yet approved for diagnostics, CRISPR has the
potential to revitalise health care for monitoring and detection of infectious viral diseases.

6. Conclusions

The adaptation of CRISPR has revolutionized gene editing, allowing advances in
screening and diagnostic. This has vastly increased our understanding of the dynamic
virus–host relationship and will continue to provide insight into similarities and differences
in replications strategies, mechanisms of disease and immune evasion. In the future, this
could allow for development of anti-viral therapeutics. Further developments in CRISPR
technology targeting DNA and RNA will minimise off-target effects and allow for easy
RNA editing to provide novel insights into viral replication and the effects on their host.
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