Database and Statistical Analyses of Transcription Factor Binding Sites in the Non-Coding Control Region of JC Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Sequence Data for JCV NCCRs
2.2. Data Cleaning and Extraction of JCV NCCR Sequences
2.3. Computer Simulation of TFBSs in NCCR Sequences
2.4. Statistical Analyses of TFBS Patterns
2.5. The Gene Ontology and Expression Profiles of Transcription Factors
3. Results
3.1. Creation of the TFBS Database for JCV NCCR Sequences
3.2. Overall View of TFBS Patterns in JCV NCCR
3.3. TFBSs Frequently Lost in the NCCR Sequences of Prototype JCV
3.4. TFBSs Likely to Multiply in the NCCR Sequences of Prototype JCVs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortese, I.; Reich, D.S.; Nath, A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat. Rev. Neurol. 2021, 17, 37–51. [Google Scholar] [CrossRef]
- Knowles, W.A.; Pipkin, P.; Andrews, N.; Vyse, A.; Minor, P.; Brown, D.W.; Miller, E. Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J. Med. Virol. 2003, 71, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Kean, J.M.; Rao, S.; Wang, M.; Garcea, R.L. Seroepidemiology of Human Polyomaviruses. PLoS Pathog. 2009, 5, e1000363. [Google Scholar] [CrossRef] [Green Version]
- Egli, A.; Infanti, L.; Dumoulin, A.; Buser, A.; Samaridis, J.; Stebler, C.; Gosert, R.; Hirsch, H.H. Prevalence of Polyomavirus BK and JC Infection and Replication in 400 Healthy Blood Donors. J. Infect. Dis. 2009, 199, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Kornek, B.; Huppke, P.; Reindl, M.; Rostasy, K.; Berger, T.; Hennes, E.M. Age-Dependent Seroprevalence of JCV Antibody in Children. Neuropediatrics 2015, 47, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Dörries, K. Molecular biology and pathogenesis of human polyomavirus infections. Dev. Boil. Stand. 1998, 94, 71–79. [Google Scholar]
- Zheng, H.-Y.; Kitamura, T.; Takasaka, T.; Chen, Q.; Yogo, Y. Unambiguous identification of JC polyomavirus strains transmitted from parents to children. Arch. Virol. 2003, 149, 261–273. [Google Scholar] [CrossRef]
- Ferenczy, M.W.; Marshall, L.J.; Nelson, C.; Atwood, W.J.; Nath, A.; Khalili, K.; Major, E.O. Molecular Biology, Epidemiology, and Pathogenesis of Progressive Multifocal Leukoencephalopathy, the JC Virus-Induced Demyelinating Disease of the Human Brain. Clin. Microbiol. Rev. 2012, 25, 471–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monaco, M.C.; Atwood, W.J.; Gravell, M.; Tornatore, C.S.; Major, E.O. JC virus infection of hematopoietic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: Implications for viral latency. J. Virol. 1996, 70, 7004–7012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzocchetti, A.; Wuthrich, C.; Tan, C.S.; Tompkins, T.; Bernal-Cano, F.; Bhargava, P.; Ropper, A.H.; Koralnik, I.J. Rearrangement of the JC virus regulatory region sequence in the bone marrow of a patient with rheumatoid arthritis and progressive multifocal leukoencephalopathy. J. NeuroVirol. 2008, 14, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.S.; Dezube, B.J.; Bhargava, P.; Autissier, P.; Wüthrich, C.; Miller, J.; Koralnik, I.J. Detection of JC Virus DNA and Proteins in the Bone Marrow of HIV-Positive and HIV-Negative Patients: Implications for Viral Latency and Neurotropic Transformation. J. Infect. Dis. 2009, 199, 881–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ault, G.S.; Stoner, G.L. Human polyomavirus JC promoter/enhancer rearrangement patterns from progressive multifocal leukoencephalopathy brain are unique derivatives of a single archetypal structure. J. Gen. Virol. 1993, 74, 1499–1507. [Google Scholar] [CrossRef]
- Yogo, Y.; Zhong, S.; Shibuya, A.; Kitamura, T.; Homma, Y. Transcriptional control region rearrangements associated with the evolution of JC polyomavirus. Virology 2008, 380, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeeck, J.; Van Assche, G.; Ryding, J.; Wollants, E.; Rans, K.; Vermeire, S.; Pourkarim, M.R.; Noman, M.; Dillner, J.; Van Ranst, M.; et al. JC viral loads in patients with Crohn’s disease treated with immunosuppression: Can we screen for elevated risk of progressive multifocal leukoencephalopathy? Gut 2008, 57, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, P.; Uhrmacher, J.; Pasculle, W.; Vats, A.; Shapiro, R.; Eghtsead, B.; Weck, K. A comparative study of BK and JC virus infections in organ transplant recipients. J. Med. Virol. 2005, 77, 238–243. [Google Scholar] [CrossRef]
- Agostini, H.T.; Ryschkewitsch, C.F.; Stoner, G.L. Genotype profile of human polyomavirus JC excreted in urine of immunocompetent individuals. J. Clin. Microbiol. 1996, 34, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atyabi, S.R.; Bouzari, M.; Kardi, M.T. John cunningham (JC) virus genotypes in kidney transplant recipients, rheumatoid arthritis patients and healthy individuals in Isfahan, Iran. J. Med. Virol. 2017, 89, 337–344. [Google Scholar] [CrossRef]
- Karalic, D.; Lazarevic, I.; Banko, A.; Cupic, M.; Jevtović, Đ.; Jovanovic, T. Analysis of variability of urinary excreted JC virus strains in patients infected with HIV and healthy donors. J. NeuroVirology 2018, 24, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, R.-B.; Thompson, H.C.; Mueller, J.F.; Cohen, J.A.; Dynan, W. Incidence of BK Virus and JC Virus Viruria in Human Immunodeficiency Virus-Infected and -Uninfected Subjects. J. Infect. Dis. 1993, 167, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Stoner, G.L.; Agostini, H.T.; Ryschkewitsch, C.F.; Komoly, S. JC virus excreted by multiple sclerosis patients and paired controls from Hungary. Mult. Scler. J. 1998, 4, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Sundsfjord, A.; Osei, A.; Rosenqvist, H.; Van Ghelue, M.; Silsand, Y.; Haga, H.; Rekvig, O.P.; Moens, U. BK and JC Viruses in Patients with Systemic Lupus Erythematosus: Prevalent and Persistent BK Viruria, Sequence Stability of the Viral Regulatory Regions, and Nondetectable Viremia. J. Infect. Dis. 1999, 180, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrante, M.M.P.; Mediati, M.; Caldarelli-Stefano, R.; Losciale, L.; Mancuso, R.; Cagni, A.E.; Maserati, R.; Ferrante, P. Increased frequency of JC virus type 2 and of dual infection with JC virus type 1 and 2 in Italian progressive multifocal leukoencephalopathy patients. J. NeuroVirol. 2001, 7, 35–42. [Google Scholar] [CrossRef]
- Pagani, E.; Delbue, S.; Mancuso, R.; Borghi, E.; Tarantini, L.; Ferrante, P. Molecular Analysis of JC Virus Genotypes Circulating among the Italian Healthy Population. J. NeuroVirol. 2003, 9, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Delbue, S.; Mazziotti, R.; Valli, M.; Borghi, E.; Mancuso, R.; Calvo, M.G.; Ferrante, P. Presence, quantitation and characterization of JC virus in the urine of Italian immunocompetent subjects. J. Med. Virol. 2007, 79, 408–412. [Google Scholar] [CrossRef]
- Comar, M.; Delbue, S.; Lepore, L.; Martelossi, S.; Radillo, O.; Ronfani, L.; D’Agaro, P.; Ferrante, P. Latent viral infections in young patients with inflammatory diseases treated with biological agents: Prevalence of JC virus genotype 2. J. Med. Virol. 2013, 85, 716–722. [Google Scholar] [CrossRef]
- Melo, F.A.F.; Bezerra, A.C.F.; Santana, B.B.; Ishak, M.O.G.; Ishak, R.; Vallinoto, I.M.V.C.; Vallinoto, A.C.R. JC polyomavirus infection in candidates for kidney transplantation living in the Brazilian Amazon Region. Memórias Inst. Oswaldo Cruz 2013, 108, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Zanotta, N.; Delbue, S.; Rossi, T.; Pelos, G.; D’Agaro, P.; Monasta, L.; Ferrante, P.; Comar, M. Molecular epidemiology of JCV genotypes in patients and healthy subjects from Northern Italy. J. Med. Virol. 2013, 85, 1286–1292. [Google Scholar] [CrossRef]
- White, M.K.; Khalili, K. Pathogenesis of Progressive Multifocal Leukoencephalopathy—Revisited. J. Infect. Dis. 2011, 203, 578–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, E.O.; Yousry, T.A.; Clifford, D.B. Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: A decade of lessons learned. Lancet Neurol. 2018, 17, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Kleinschmidt-DeMasters, B.; Tyler, K. Progressive Multifocal Leukoencephalopathy Complicating Treatment with Natalizumab and Interferon Beta-1a for Multiple Sclerosis. N. Engl. J. Med. 2005, 353, 369–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer-Gould, A.; Atlas, S.W.; Green, A.J.; Bollen, A.W.; Pelletier, D. Progressive Multifocal Leukoencephalopathy in a Patient Treated with Natalizumab. N. Engl. J. Med. 2005, 353, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Assche, G.; Van Ranst, M.; Sciot, R.; Dubois, B.; Vermeire, S.; Noman, M.; Verbeeck, J.; Geboes, K.; Robberecht, W.; Rutgeerts, P. Progressive Multifocal Leukoencephalopathy after Natalizumab Therapy for Crohn’s Disease. N. Engl. J. Med. 2005, 353, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIlroy, D.; Halary, F.; Bressollette-Bodin, C. Intra-patient viral evolution in polyomavirus-related diseases. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppälä, H.; Virtanen, E.; Saarela, M.; Laine, P.; Paulín, L.; Mannonen, L.; Auvinen, P.; Auvinen, E. Single-Molecule Sequencing Revealing the Presence of Distinct JC Polyomavirus Populations in Patients with Progressive Multifocal Leukoencephalopathy. J. Infect. Dis. 2016, 215, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Ciardi, M.R.; Zingaropoli, M.A.; Iannetta, M.; Prezioso, C.; Perri, V.; Pasculli, P.; Lichtner, M.; D’Ettorre, G.; Altieri, M.; Conte, A.; et al. JCPyV NCCR analysis in PML patients with different risk factors: Exploring common rearrangements as essential changes for neuropathogenesis. Virol. J. 2020, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Prezioso, C.; Zingaropoli, M.A.; Iannetta, M.; Rodio, D.M.; Altieri, M.; Conte, A.; Vullo, V.; Ciardi, M.R.; Palamara, A.T.; Pietropaolo, V. Which is the best PML risk stratification strategy in natalizumab-treated patients affected by multiple sclerosis? Mult. Scler. Relat. Disord. 2020, 41, 102008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisque, R.J.; Bream, G.L.; Cannella, M.T. Human polyomavirus JC virus genome. J. Virol. 1984, 51, 458–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.K.; Safak, M.; Khalili, K. Regulation of Gene Expression in Primate Polyomaviruses. J. Virol. 2009, 83, 10846–10856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yogo, Y.; Sugimoto, C. The Archetype Concept and Regulatory Region Rearrangement. In Human Polyomaviruses; Khalili, K., Stoner, G.L., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 2001; pp. 127–148. [Google Scholar]
- Gosert, R.; Kardas, P.; Major, E.O.; Hirsch, H.H. Rearranged JC Virus Noncoding Control Regions Found in Progressive Multifocal Leukoencephalopathy Patient Samples Increase Virus Early Gene Expression and Replication Rate. J. Virol. 2010, 84, 10448–10456. [Google Scholar] [CrossRef] [Green Version]
- L’Honneur, A.-S.; Leh, H.; Laurent-Tchenio, F.; Hazan, U.; Rozenberg, F.; Bury-Moné, S. Exploring the role of NCCR variation on JC polyomavirus expression from dual reporter minicircles. PLoS ONE 2018, 13, e0199171. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, K.; Kishida, S.; Tanaka, K.; Suganuma, A.; Sano, Y.; Sano, H.; Kanda, T.; Maeda, N.; Kira, J.-I.; Itoh, A.; et al. Sequential changes in the non-coding control region sequences of JC polyomaviruses from the cerebrospinal fluid of patients with progressive multifocal leukoencephalopathy. Arch. Virol. 2012, 158, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, K.; Tajima, S.; Lim, C.-K.; Saijo, M. High-resolution melting analysis for mutation scanning in the non-coding control region of JC polyomavirus from patients with progressive multifocal leukoencephalopathy. Arch. Virol. 2014, 159, 1687–1696. [Google Scholar] [CrossRef]
- Tan, C.S.; Ellis, L.C.; Wüthrich, C.; Ngo, L.; Broge, T.A.; Saint-Aubyn, J.; Miller, J.S.; Koralnik, I.J. JC Virus Latency in the Brain and Extraneural Organs of Patients with and without Progressive Multifocal Leukoencephalopathy. J. Virol. 2010, 84, 9200–9209. [Google Scholar] [CrossRef] [Green Version]
- Agostini, H.T.; Ryschkewitsch, C.F.; Singer, E.J.; Stoner, G.L. JC virus regulatory region rearrangements and genotypes in progressive multifocal leukoencephalopathy: Two independent aspects of virus variation. J. Gen. Virol. 1997, 78, 659–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, C.E.; Li, H.; Sur, G.; Carmillo, P.; Bushnell, S.; Tizard, R.; McAuliffe, M.; Tonkin, C.; Simon, K.; Goelz, S.; et al. Sequencing and Analysis of JC Virus DNA From Natalizumab-Treated PML Patients. J. Infect. Dis. 2011, 204, 237–244. [Google Scholar] [CrossRef]
- Roux, D.; Bouldouyre, M.-A.; Mercier-Delarue, S.; Seilhean, D.; Zagdanski, A.-M.; Delaugerre, C.; Simon, F.; Molina, J.-M.; LeGoff, J. JC Virus Variant Associated with Cerebellar Atrophy in a Patient with AIDS. J. Clin. Microbiol. 2011, 49, 2196–2199. [Google Scholar] [CrossRef] [Green Version]
- Delbue, S.; Elia, F.; Carloni, C.; Tavazzi, E.; Marchioni, E.; Carluccio, S.; Signorini, L.; Novati, S.; Maserati, R.; Ferrante, P. JC virus load in cerebrospinal fluid and transcriptional control region rearrangements may predict the clinical course of progressive multifocal leukoencephalopathy. J. Cell. Physiol. 2012, 227, 3511–3517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciappi, S.; Azzi, A.; De Santis, R.; Leoncini, F.; Sterrantino, G.; Mazzotta, F.; Mecocci, L. Archetypal and rearranged sequences of human polyomavirus JC transcription control region in peripheral blood leukocytes and in cerebrospinal fluid. J. Gen. Virol. 1999, 80, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Iida, T.; Kitamura, T.; Guo, J.; Taguchi, F.; Aso, Y.; Nagashima, K.; Yogo, Y. Origin of JC polyomavirus variants associated with progressive multifocal leukoencephalopathy. Proc. Natl. Acad. Sci. USA 1993, 90, 5062–5065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, C.; Ito, D.; Tanaka, K.; Matsuda, H.; Saito, H.; Sakai, H.; Fujihara, K.; Itoyama, Y.; Yamada, T.; Kira, J.; et al. Amplification of JC virus regulatory DNA sequences from cerebrospinal fluid: Diagnostic value for progressive multifocal leukoencephalopathy. Arch. Virol. 1998, 143, 249–262. [Google Scholar] [CrossRef]
- Yasuda, Y.; Yabe, H.; Inoue, H.; Shimizu, T.; Yabe, M.; Yogo, Y.; Kato, S. Comparison of PCR-amplified JC virus control region sequences from multiple brain regions in PML. Neurology 2003, 61, 1617–1619. [Google Scholar] [CrossRef] [PubMed]
- Wharton, K.A.; Quigley, C.; Themeles, M.; Dunstan, R.W.; Doyle, K.; Cahir-McFarland, E.; Wei, J.; Buko, A.; Reid, C.E.; Sun, C.; et al. JC Polyomavirus Abundance and Distribution in Progressive Multifocal Leukoencephalopathy (PML) Brain Tissue Implicates Myelin Sheath in Intracerebral Dissemination of Infection. PLoS ONE 2016, 11, e0155897. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Sekizuka, T.; Fukumoto, H.; Nakamichi, K.; Suzuki, T.; Sato, Y.; Hasegawa, H.; Kuroda, M.; Katano, H. Deep-Sequence Identification and Role in Virus Replication of a JC Virus Quasispecies in Patients with Progressive Multifocal Leukoencephalopathy. J. Virol. 2017, 91, 01335-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loy, T.; Thys, K.; Ryschkewitsch, C.; Lagatie, O.; Monaco, M.C.; Major, E.O.; Tritsmans, L.; Stuyver, L.J. JC Virus Quasispecies Analysis Reveals a Complex Viral Population Underlying Progressive Multifocal Leukoencephalopathy and Supports Viral Dissemination via the Hematogenous Route. J. Virol. 2015, 89, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Tikhanovich, I.; Nasheuer, H.P.; Folk, W.R. Stimulation of BK Virus DNA Replication by NFI Family Transcription Factors. J. Virol. 2011, 86, 3264–3275. [Google Scholar] [CrossRef] [Green Version]
- Chattaraj, S.; Bhattacharjee, S. Molecular Analysis of JC Polyomavirus Genotypes Circulating among Tribal Populations of North-Eastern West Bengal, India. Pol. J. Microbiol. 2014, 63, 191–201. [Google Scholar] [CrossRef]
- Bethge, T.; Ajuh, E.; Hirsch, H.H. Imperfect Symmetry of Sp1 and Core Promoter Sequences Regulates Early and Late Virus Gene Expression of the Bidirectional BK Polyomavirus Noncoding Control Region. J. Virol. 2016, 90, 10083–10101. [Google Scholar] [CrossRef] [Green Version]
- Ajuh, E.T.; Wu, Z.; Kraus, E.; Weissbach, F.H.; Bethge, T.; Gosert, R.; Fischer, N.; Hirsch, H.H. Novel Human Polyomavirus Noncoding Control Regions Differ in Bidirectional Gene Expression according to Host Cell, Large T-Antigen Expression, and Clinically Occurring Rearrangements. J. Virol. 2018, 92, e02231-e17. [Google Scholar] [CrossRef] [Green Version]
- Reoma, L.B.; Trindade, C.J.; Monaco, M.C.; Solis, J.; Montojo, M.G.; Vu, P.; Johnson, K.; Beck, E.; Nair, G.; Khan, O.I.; et al. Fatal encephalopathy with wild-type JC virus and ruxolitinib therapy. Ann. Neurol. 2019, 86, 878–884. [Google Scholar] [CrossRef]
- Ferenczy, M.W.; Johnson, K.R.; Marshall, L.J.; Monaco, M.C.; Major, E.O. Differentiation of Human Fetal Multipotential Neural Progenitor Cells to Astrocytes Reveals Susceptibility Factors for JC Virus. J. Virol. 2013, 87, 6221–6231. [Google Scholar] [CrossRef] [Green Version]
- Cartharius, K.; Frech, K.; Grote, K.; Klocke, B.; Haltmeier, M.; Klingenhoff, A.; Frisch, M.; Bayerlein, M.; Werner, T. MatInspector and beyond: Promoter analysis based on transcription factor binding sites. Bioinformatics 2005, 21, 2933–2942. [Google Scholar] [CrossRef] [Green Version]
- Quandt, K.; Frech, K.; Karas, H.; Wingender, E.; Werner, T. Matlnd and Matlnspector: New fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995, 23, 4878–4884. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wu, C.; Jin, X.; Tsueng, G.; Afrasiabi, C.; Su, A.I. BioGPS: Building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res. 2016, 44, D313–D316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, A.I.; Wiltshire, T.; Batalov, S.; Lapp, H.; Ching, K.A.; Block, D.; Zhang, J.; Soden, R.; Hayakawa, M.; Kreiman, G.; et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 2004, 101, 6062–6067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagiwara, N. Sox6, jack of all trades: A versatile regulatory protein in vertebrate development. Dev. Dyn. 2011, 240, 1311–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, H.; Ryschkewitsch, C.; Stoner, G. Rearrangements of archetypal regulatory regions in JC virus genomes from urine. Res. Virol. 1998, 149, 163–170. [Google Scholar] [CrossRef]
- Ravichandran, V.; Major, E.O. DNA-binding transcription factor NF-1A negatively regulates JC virus multiplication. J. Gen. Virol. 2008, 89, 1396–1401. [Google Scholar] [CrossRef]
- Marshall, L.J.; Moore, L.D.; Mirsky, M.M.; Major, E.O. JC virus promoter/enhancers contain TATA box-associated Spi-B-binding sites that support early viral gene expression in primary astrocytes. J. Gen. Virol. 2012, 93, 651–661. [Google Scholar] [CrossRef]
- Marshall, L.J.; Ferenczy, M.W.; Daley, E.; Jensen, P.N.; Ryschkewitsch, C.F.; Major, E.O. Lymphocyte Gene Expression and JC Virus Noncoding Control Region Sequences Are Linked with the Risk of Progressive Multifocal Leukoencephalopathy. J. Virol. 2014, 88, 5177–5183. [Google Scholar] [CrossRef] [Green Version]
- Long, K.L.P.; Breton, J.M.; Barraza, M.K.; Perloff, O.S.; Kaufer, D. Hormonal Regulation of Oligodendrogenesis I: Effects Across the Lifespan. Biomolecules 2021, 11, 283. [Google Scholar] [CrossRef] [PubMed]
Urine of Healthy Individuals (n = 49) | CSF of PML Patients (n = 91) | |||||
---|---|---|---|---|---|---|
Matrix Name | DNA Strand a | JCV Isolates with Matrix b | Possession Rate (%) c | JCV Isolates with Matrix | Possession Rate (%) | P-Value d |
V$MIF1.01 | FWD | 47 | 95.9 | 19 | 20.9 | <0.001 |
V$IRF1.01 | FWD | 47 | 95.9 | 20 | 22.0 | <0.001 |
V$HOXC10.01 | FWD | 48 | 98.0 | 27 | 29.7 | <0.001 |
V$PLAGL1.01 | FWD | 48 | 98.0 | 30 | 33.0 | <0.001 |
V$PDX1.01 | FWD | 48 | 98.0 | 33 | 36.3 | <0.001 |
V$CRX.01 | FWD | 48 | 98.0 | 34 | 37.4 | <0.001 |
V$NKX61.01 | FWD | 48 | 98.0 | 34 | 37.4 | <0.001 |
V$BRN5.03 | FWD | 48 | 98.0 | 36 | 39.6 | <0.001 |
V$ZBTB3.01 | FWD | 47 | 95.9 | 59 | 64.8 | <0.001 |
V$FOXJ3.01 | FWD | 48 | 98.0 | 62 | 68.1 | <0.001 |
V$SPI1.02 | FWD | 49 | 100 | 80 | 87.9 | 0.008 |
V$IRF7.01 | FWD | 49 | 100 | 81 | 89.0 | 0.015 |
V$MZF1.02 | FWD | 49 | 100 | 81 | 89.0 | 0.015 |
V$CMYB.02 | REV | 47 | 95.9 | 23 | 25.3 | <0.001 |
V$ROAZ.01 | REV | 48 | 98.0 | 28 | 30.8 | <0.001 |
V$PLAGL1.01 | REV | 48 | 98.0 | 30 | 33.0 | <0.001 |
V$ZNF232.01 | REV | 48 | 98.0 | 32 | 35.2 | <0.001 |
V$ZBTB3.01 | REV | 47 | 95.9 | 32 | 35.2 | <0.001 |
V$HOXC9.01 | REV | 48 | 98.0 | 33 | 36.3 | <0.001 |
V$MEIS1.03 | REV | 48 | 98.0 | 33 | 36.3 | <0.001 |
V$SMARCA3.02 | REV | 48 | 98.0 | 55 | 60.4 | <0.001 |
V$PRDM4.01 | REV | 49 | 100 | 80 | 87.9 | 0.008 |
Transcription Factor a | |||||
---|---|---|---|---|---|
Matrix Name | DNA Strand b | HGNC ID | Symbol | Full Name | Gene Expression (>3 × Median) c |
V$MIF1.01 d | FWD | 4921/9982 | HIVEP2/ RFX1 | HIVEP zinc finger 2/ regulatory factor X1 | Brain (cerebrum), Blood (T cells)/ NA (Ubiquitous) |
V$IRF1.01 | FWD | 6116 | IRF1 | Interferon regulatory factor 1 | Blood (Leukocytes), Bone marrow (CD34+ cells), Colon, Heart, Lung, Lymph node, Placenta, Small intestine, Thymus |
V$HOXC10.01 | FWD | 5122 | HOXC10 | Homeobox C10 | Kidney |
V$PLAGL1.01 | FWD REV | 9046 | PLAGL1 | PLAG1-like zinc finger 1 | Adrenal gland, Bone marrow (CD34+ cells), Colon, Pituitary gland, Placenta, Prostate, Retina, Small intestine, Smooth muscle, Uterus |
V$PDX1.01 | FWD | 6107 | PDX1 | Pancreatic and duodenal homeobox 1 | NA (Ubiquitous) |
V$CRX.01 | FWD | 2383 | CRX | Cone-rod homeobox | Pineal gland, Retina |
V$NKX61.01 | FWD | 7839 | NKX6-1 | NK6 homeobox 1 | NA (Ubiquitous) |
V$BRN5.03 | FWD | 9224 | POU6F1 | POU class 6 homeobox 1 | NA (Ubiquitous) |
V$ZBTB3.01 | FWD REV | 22918 | ZBTB3 | Zinc finger and BTB domain containing 3 | NA (Ubiquitous) |
V$FOXJ3.01 | FWD | 29178 | FOXJ3 | Forkhead box J3 | NA (Ubiquitous) |
V$SPI1.02 | FWD | 11241 | SPI1 | Spi-1 proto-oncogene | Blood (Monocytes), Lung |
V$IRF7.01 | FWD | 6122 | IRF7 | Interferon regulatory factor 7 | Blood (Leukocytes), Bone marrow (CD34+ cells), Heart, Lung, Lymph node, Thymus, Tonsil |
V$MZF1.02 | FWD | 13108 | MZF1 | Myeloid zinc finger 1 | Blood (leukocytes), Blood vessel (endothelial cells), Bone marrow (CD34+ cells), Pineal gland, Prostate, Thyroid gland |
V$CMYB.02 | REV | 7545 | MYB | MYB proto-oncogene, transcription factor | Blood vessel (endothelial cells), Bone marrow (CD34+ cells), Thymus |
V$ROAZ.01 | REV | 16762 | ZNF423 | Zinc finger protein 423 | Brain (whole), Pineal gland, Retina, Small intestine, Uterus |
V$ZNF232.01 | REV | 13026 | ZNF232 | Zinc finger protein 232 | NA (Ubiquitous) |
V$HOXC9.01 | REV | 5130 | HOXC9 | Homeobox C9 | NA (Ubiquitous) |
V$MEIS1.03 | REV | 7000 | MEIS1 | Meis homeobox 1 | Adrenal gland, Bone marrow (CD34+ cells), Brain (cerebellum), Colon, Ovary, Salivary gland, Small intestine, Smooth muscle, Trachea, Uterus |
V$SMARCA3.02 | REV | 11099 | HLTF | Helicase like transcription factor | Blood (T cells and NK cells), Blood vessel (endothelial cells), Bone marrow (CD34+ cells), Pineal gland, Pituitary gland, Thyroid gland |
V$PRDM4.01 | REV | 9348 | PRDM4 | PR/SET domain 4 | Blood (B cells), Bone marrow (CD34+ cells), Pineal gland |
Poisson Mean (95% CI) a | ||||||
---|---|---|---|---|---|---|
Matrix Name | DNA Strand b | Urine of Healthy Individuals (n = 49) | CSF of PML Patients (n = 91) | P-Value c | ||
V$HIC1.01 | FWD | 1.04 | [0.75, 1.33] | 1.89 | [1.59, 2.18] | <0.001 |
V$NF1.03 | FWD | 1.06 | [0.77, 1.35] | 1.93 | [1.63, 2.23] | <0.001 |
V$NFY.03 | FWD | 2.00 | [1.60, 2.40] | 3.19 | [2.81, 3.56] | <0.001 |
V$SOX6.01 | FWD | 1.02 | [0.73, 1.31] | 1.66 | [1.39, 1.94] | 0.001 |
V$LEF1.01 | FWD | 1.02 | [0.73, 1.31] | 1.63 | [1.36, 1.90] | 0.002 |
V$PAX9.02 | REV | 1.04 | [0.75, 1.34] | 1.89 | [1.59, 2.18] | <0.001 |
V$PAX6.01 | REV | 1.04 | [0.75, 1.34] | 1.88 | [1.58, 2.17] | <0.001 |
Transcription Factor a | |||||
---|---|---|---|---|---|
Matrix Name | DNA Strand b | HGNC ID | Symbol | Full Name | Gene Expression (>3 × Median) c |
V$HIC1.01 | FWD | 4909 | HIC1 | HIC ZBTB transcriptional repressor 1 | NA (Ubiquitous) |
V$NF1.03 | FWD | 7784 | NFIA | Nuclear factor I A | NA (Ubiquitous) |
V$NF1.03 | FWD | 7785 | NFIB | Nuclear factor I B | Brain (cerebrum, cerebellum, olfactory bulb), Colon, Ovary, Pancreatic islet, Prostate, Retina, Salivary gland, Skin, Small intestine, Smooth muscle, Tongue, Trachea, Uterus |
V$NF1.03 | FWD | 7786 | NFIC | Nuclear factor I C | Skeletal muscle |
V$NF1.03 | FWD | 7788 | NFIX | Nuclear factor I X | NA (Ubiquitous) |
V$NFY.03 | FWD | 7804 | NFYA | Nuclear transcription factor Y subunit alpha | NA (Ubiquitous) |
V$SOX6.01 | FWD | 16421 | SOX6 | SRY-box transcription factor 6 | NA d |
V$LEF1.01 | FWD | 6551 | LEF1 | Lymphoid enhancer binding factor 1 | Blood (T cells), Thymus |
V$PAX9.02 | REV | 8623 | PAX9 | Paired box 9 | NA (Ubiquitous) |
V$PAX6.01 | REV | 8620 | PAX6 | Paired box 6 | Brain (cerebrum, cerebellum), Pancreatic islet, Pineal gland, Retina, Skeletal muscle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamichi, K.; Shimokawa, T. Database and Statistical Analyses of Transcription Factor Binding Sites in the Non-Coding Control Region of JC Virus. Viruses 2021, 13, 2314. https://doi.org/10.3390/v13112314
Nakamichi K, Shimokawa T. Database and Statistical Analyses of Transcription Factor Binding Sites in the Non-Coding Control Region of JC Virus. Viruses. 2021; 13(11):2314. https://doi.org/10.3390/v13112314
Chicago/Turabian StyleNakamichi, Kazuo, and Toshio Shimokawa. 2021. "Database and Statistical Analyses of Transcription Factor Binding Sites in the Non-Coding Control Region of JC Virus" Viruses 13, no. 11: 2314. https://doi.org/10.3390/v13112314
APA StyleNakamichi, K., & Shimokawa, T. (2021). Database and Statistical Analyses of Transcription Factor Binding Sites in the Non-Coding Control Region of JC Virus. Viruses, 13(11), 2314. https://doi.org/10.3390/v13112314