Towards Development of an Anti-Vampire Bat Vaccine for Rabies Management: Inoculation of Vampire Bat Saliva Induces Immune-Mediated Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Abbreviations
2.2. Sheep
2.3. Vampire Bats
2.4. Extraction, Preservation, and Manipulation of Vampire Bat Saliva
2.5. Inoculation of Sheep with Vampire Bat Saliva
2.6. Exposure of Sheep to Vampire Bat Bites
2.7. Evaluation of the Resistance of Sheep against Vampire Bat Salivary Anticoagulants
2.8. Evaluation of the Interference Capacity of sheep against Vampire Bat Salivary Anticoagulants
2.9. Statistics
3. Results
3.1. Extraction of Saliva
3.2. Exposure of Sheep to Vampire Bat Feeding Bites
3.3. Resistance of Sheep against VSA
3.4. Interference Capacity of Ser against VSA.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenhall, A.M.; Joermann, G.; Schmidt, U. Desmodus rotundus. Mamm. Species 1983, 202, 1–6. [Google Scholar] [CrossRef]
- Koopman, K.F. Systematics and distribution. In Natural history of Vampire Bats; Greenhall, A.M., Schmidt, U., Eds.; CRC Press: Boca Raton, FL, USA, 1988; pp. 7–17. [Google Scholar]
- Delpietro, H.; Marchevsky, N.; Simonetti, E. Relative population densities and predation of the common vampire bat (Desmodus rotundus) in natural and cattle-raising areas in north-east Argentina. Prev. Veter. Med. 1992, 14, 13–20. [Google Scholar] [CrossRef]
- Johnson, N.; Aréchiga-Ceballos, N.; Aguilar-Setien, A. Vampire Bat Rabies: Ecology, Epidemiology and Control. Viruses 2014, 6, 1911–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streicker, D.G.; Allgeier, J.E. Foraging choices of vampire bats in diverse landscapes: Potential implications for land-use change and disease transmission. J. Appl. Ecol. 2016, 53, 1280–1288. [Google Scholar] [CrossRef] [Green Version]
- Delpietro, H.A.; Russo, R.G.; Carter, G.G.; Lord, R.D.; Delpietro, G.L. Reproductive seasonality, sex ratio and philopatry in Argentina’s common vampire bats. R. Soc. Open Sci. 2017, 4, 160959. [Google Scholar] [CrossRef] [Green Version]
- Paradiso, J.L.; Goodwin, G.G.; Greenhall, A.M. A Review of the Bats of Trinidad and Tobago: Descriptions, Rabies Infection, and Ecology. J. Mammal. 1961, 42, 559. [Google Scholar] [CrossRef]
- Greenhall, A.M. The biting and feeding habits of the Vampire bat, Desmodus rotundus. J. Zoöl. 1972, 168, 451–461. [Google Scholar] [CrossRef]
- Greenhall, A.M.; Schmidt, U.; Lopez-Forment, W. Field observations on the mode of attack of the vampire bat Desmodus ro-tundus in Mexico. An. Inst. Biol. Univ. Aut. México 1969, 40, 245–252. [Google Scholar]
- Wimsatt, W.A. Transient Behavior, Nocturnal Activity Patterns, and Feeding Efficiency of Vampire Bats (Desmodus rotundus) under Natural Conditions. J. Mammal. 1969, 50, 233–244. [Google Scholar] [CrossRef]
- Wimsatt, W.A.; Guerriere, A. Observations on the Feeding Capacities and Excretory Functions of Captive Vampire Bats. J. Mammal. 1962, 43, 17–27. [Google Scholar] [CrossRef]
- McFarland, W.N.; Wimsatt, W.A. Renal function and its relation to the ecology of the vampire bat, Desmodus rotundus. Comp. Biochem. Physiol. 1969, 28, 985–1006. [Google Scholar] [CrossRef]
- Disanto, P.E. Anatomy and histochemistry of the salivary glands of the vampire bat, desmodus rotundus murinus. J. Morphol. 1960, 106, 301–335. [Google Scholar] [CrossRef]
- Hawkey, C. Inhibitor of Platelet Aggregation Present in Saliva of the Vampire Bat Desmodus rotundus. Br. J. Haematol. 1967, 13, 1014–1020. [Google Scholar] [CrossRef]
- Gardell, S.J.; Duong, L.T.; Diehl, R.E.; York, J.D.; Hare, T.R.; Register, R.B.; Jacobs, J.W.; Dixon, R.A.; Friedman, P.A. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J. Biol. Chem. 1989, 264, 17947–17952. [Google Scholar] [CrossRef]
- Krätzschmar, J.; Haendler, B.; Langer, G.; Boidol, W.; Bringmann, P.; Alagon, A.; Donner, P.; Schleuning, W.D. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundus: Cloning and expression. Gene 1991, 105, 229–237. [Google Scholar] [CrossRef]
- Krätzschmar, J.; Haendler, B.; Bringmann, P.; Dinter, H.; Hess, H.; Donner, P.; Schleuning, W.D. High-level secretion of the four salivary plasminogen activators from the vampire bat Desmodus rotundus by stably transfected baby hamster kidney cells. Gene 1992, 116, 281. [Google Scholar] [CrossRef]
- Fernandez, A.Z.; Tablante, A.; Bartoli, F.; Beguin, S.; Hemker, H.; Apitz-Castro, R. Expression of biological activity of draculin, the anticoagulant factor from vampire bat saliva, is strictly dependent on the appropriate glycosylation of the native molecule. Biochim. Biophys. Acta (BBA) Gen. Subj. 1998, 1425, 291–299. [Google Scholar] [CrossRef]
- Fernandez, A.Z.; Tablante, A.; Beguín, S.; Hemker, H.; Apitz-Castro, R. Draculin, the anticoagulant factor in vampire bat saliva, is a tight-binding, noncompetitive inhibitor of activated factor X. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzym. 1999, 1434, 135–142. [Google Scholar] [CrossRef]
- Low, D.H.; Sunagar, K.; Undheim, E.A.; Ali, S.A.; Alagon, A.C.; Ruder, T. Dracula’s children: Molecular evolution of vampire bat venom. J. Proteomics. 2013, 89, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Ware, F.L.; Luck, M.R. Evolution of salivary secretions in haematophagous animals. Biosci. Horizons Int. J. Stud. Res. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, G.C.; Tigner, J.R. The route of the ingested blood in the common vampire bat (Desmodus rotundus). J. Mammal. 1970, 51, 814–817. [Google Scholar] [CrossRef]
- Rouk, C.S.; Glass, B.P. Comparative Gastric Histology of Five North and Central American Bats. J. Mammal. 1970, 51, 455–472. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M. Foraging of vampire bats Desmodus rotundus in Atlantic wet lowland Costa Rica. Rev. Biol. Trop. 1971, 18, 73–88. [Google Scholar]
- Breidenstein, C.P. Digestion and Assimilation of Bovine Blood by a Vampire Bat (Desmodus rotundus). J. Mammal. 1982, 63, 482–484. [Google Scholar] [CrossRef]
- Baer, G.M. The biology and control of vampire bats. In The Natural History of Rabies; Baer, G.M., Ed.; Academic Press: New York, NY, USA, 1975; Volume 2, pp. 1–387. [Google Scholar]
- World Health Organization. WHO Expert Consultation on Rabies: First Report; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- World Health Organization. WHO Expert Consultation on Rabies: Second Report; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Rupprecht, C.E.; Turmelle, A.; Kuzmin, I.V. A perspective on lyssavirus emergence nd perpetuation. Curr Opin Virol. 2015, 1, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Kuzmin, I.V. Why we can prevent, control and possibly treat, but will not eradicate rabies. Future Virol. 2015, 10, 517–535. [Google Scholar] [CrossRef]
- Da Rosa, E.S.; Kotait, I.; Barbosa, T.F.; Carrieri, M.L.; Brandão, P.E.; Pinheiro, A.S.; Begot, A.L.; Wada, M.Y.; De Oliveira, R.C.; Grisard, E.C.; et al. Bat-transmitted human rabies outbreaks, Brazilian Amazon. Emerg. Infect. Diseases 2006, 12, 1197–1202. [Google Scholar] [CrossRef]
- Delpietro, H.A.; Lord, R.; Russo, R.G.; Gury-Dhomen, F. Observations of sylvatic rabies in Northern Argentina during out-breaks of paralytic cattle rabies transmitted by vampire bats (Desmodus rotundus). J. Wildl. Dis. 2009, 45, 1169–1173. [Google Scholar] [CrossRef] [Green Version]
- Kverno, N.B.; Mitchell, G.C. Los murciélgos vampiros y la producción pecuaria en. Am. Lat. Rev. Mund. Zoot. 1976, 17, 1–7. [Google Scholar]
- Thompson, R.D.; Elias, D.J.; Mitchell, G.C. Effects of Vampire Bat Control on Bovine Milk Production. J. Wildl. Manag. 1977, 41, 736. [Google Scholar] [CrossRef]
- Greenhall, A.M. Feeding behavior. In Natural History of Vampire Bats; Greenhall, A.M., Schmidt, U., Eds.; CRC Press: Boca Raton, FL, USA, 1988; pp. 111–132. [Google Scholar]
- Crespo, J.; Vanella, J.; Blood, B.; De Carlo, J.M. Observaciones ecológicas del vampiro Desmodus rotundus rotundus (Geoffroy) en el norte de Córdoba. Rev. Mus. Arg. Cien. Nat. B Rivadavia 1961, 6, 131–160. [Google Scholar]
- Delpietro, H.A.; Russo, R.G.; Schwieters, H.H.G. Observaciones sobre el ataque del vampiro común (Desmodus rotundus) al ganado en el norte de Argentina. Rev. Med. Vet. 1999, 80, 460–464. [Google Scholar]
- Linhart, S.B.; Flores Crespo, R.; Mitchell, G.C. Control de murciélagos vampiros por medio de un anticoagulante. Bol. Oficina Sanit. Panam. 1972, 73, 100–109. [Google Scholar]
- Schmidt, U.; Schmidt, C.; Lopez-Forment, W.; Flores Crespo, R. Rückfunde beringter Vampirfledermaüse (Desmodus rotundus) in Mexico. Z. Säugetierkunde 1978, 43, 70–75. [Google Scholar]
- Flores Crespo, R.; Ibarra, V.F.; De Anda, D.L. Vampirinip II: Un producto utilizable en tres métodos para el combate del mur-ciélago hematófago. Téc. Pecu. Méx. 1976, 30, 67–75. [Google Scholar]
- Delpietro, H.A.; Nader, A.J. Rabies of herbivores transmitted by vampire bats in north-eastern Argentina. Rev. Sci. Tech. Off. Int. Epiz. 1989, 8, 189–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seetahal, J.F.R.; Vokaty, A.; Carrington, C.V.; Adesiyun, A.A.; Mahabir, R.; Hinds, A.Q.J.; Rupprecht, C.E. The History of Rabies in Trinidad: Epidemiology and Control Measures. Trop. Med. Infect. Dis. 2017, 2, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhall, A.M. Ecology and bionomics of vampire bats in Latin America. In Bats and Rabies; Greenhall, A.M., Artois, M., Fekadu, M., Eds.; Fondation Marcel Mérieux: Lyon, France, 1993; pp. 3–57. [Google Scholar]
- Walker, S.; Medellín, M.R.A.; Aguirre, L.A.; Mann, A.; Ochoa, J.R. Conservation progress in Latin America. Bat. Mag. 2001, 19, 1–7. Available online: https://www.batcon.org/article/conservation-progress-in-latin-america/ (accessed on 19 March 2021).
- Mayen, F. Haematophagous Bats in Brazil, Their Role in Rabies Transmission, Impact on Public Health, Livestock Industry and Alternatives to an Indiscriminate Reduction of Bat Population. J. Veter Med. Ser. B 2003, 50, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Asprilla-Aguilar, A.A.; Mantilla-Meluk, H.; Jiménez Ortega, A.M. Analysis of the non-hematophagous bat species captured within the plan of eradication of Desmodus rotundus (E. Geoffroy, 1810) in the Colombian Biogeographic Chocó. Rev. Inst. Univ. Tecnol. Chocó Invest. Biod. Des. 2007, 26, 42–48. [Google Scholar]
- Oprea, M.; Aguliar, L.M.S.; Wilson, D.E. Anoura caudifer (Chiroptera: Phyllostomidae). Mamm. Species 2009, 844, 1–8. [Google Scholar] [CrossRef]
- Aguiar, L.M.S.; Brito, D.; Machado, R.B. Do Current Vampire Bat (Desmodus rotundus) Population Control Practices Pose a Threat to Dekeyser’s Nectar Bat’s (Lonchophylla dekeyseri) Long-Term Persistence in the Cerrado? Acta Chiropterologica 2010, 12, 275–282. [Google Scholar] [CrossRef]
- Rocha, F.; Dias, R.A. The common vampire bat Desmodus rotundus (Chiroptera: Phyllostomidae) and the transmission of the rabies virus to livestock: A contact network approach and recommendations for surveillance and control. Prev. Veter. Med. 2020, 174, 104809. [Google Scholar] [CrossRef]
- Delpietro, H.A.; Russo, R.G. Acquired resistance to saliva anticoagulants by prey previously fed upon by vampire bats (Des-modus rotundus): Evidence for immune response. J. Mammal. 2009, 90, 1132–1138. [Google Scholar] [CrossRef] [Green Version]
- Arellano, C.S.; Sureau, P.; Greenhall, A.M. Preferencia de la predación del vampiro en relación a la edad y la raza del ganado y la época del año. Téc. Pec. Méx. 1971, 17, 23–29. [Google Scholar]
- Dalquest, W.W. Natural History of the Vampire Bats of Eastern Mexico. Am. Midl. Nat. 1955, 53, 79. [Google Scholar] [CrossRef] [Green Version]
- Acosta y Lara, E.F. Quirópteros del Uruguay. Com. Zool. Mus. Hist. Nat. Montev. 1950, 3, 1–71. [Google Scholar]
- Gannon, W.L.; Sikes, R.S. Guidelines of the American Society of Mammalogists for the Use of Wild Mammals in Research. J. Mammal. 2007, 88, 809–823. [Google Scholar] [CrossRef]
- Delpietro, H.; Konolsaisen, F.; Marchevsky, N.; Russo, G. Domestic cat predation on vampire bats (Desmodus rotundus) while foraging on goats, pigs, cows and human beings. Appl. Anim. Behav. Sci. 1994, 39, 141–150. [Google Scholar] [CrossRef]
- Willadsen, P.; Bird, P.; Cobon, G.S.; Hungerford, J. Commercialization of a recombinant vaccine against Boophilus microplus. Parasitology 1995, 110, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Willadsen, P. Anti-tick vaccines. Parasitology 2004, 129, 367–387. [Google Scholar] [CrossRef]
- Trimnell, A.R.; Hails, R.S.; Nuttall, P.A. Dual action ectoparasite vaccine targeting ‘exposed’ and ‘concealed’ antigens. Vaccine 2002, 20, 3560–3568. [Google Scholar] [CrossRef]
- Nuttall, P.A.; Trimnell, A.R.; Kazimirova, M.; Labuda, M. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol. 2006, 28, 155–163. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, J.; Contreras, M. Tick vaccines: Current status and future directions. Expert Rev. Vaccines 2015, 14, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Rego, R.O.M.; Trentelman, J.J.A.; Anguita, J.; Nijhof, A.M.; Sprong, H.; Klempa, B.; Ehajdusek, O.; Tomás-Cortázar, J.; Azagi, T.; Strnad, M.; et al. Counterattacking the tick bite: Towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasites Vectors 2019, 12, 229. [Google Scholar] [CrossRef]
- Scher, G.; Schnell, M.J. Rhabdoviruses as vectors for vaccines and therapeutics. Curr. Opin. Virol. 2020, 44, 169–182. [Google Scholar] [CrossRef] [PubMed]
Date | Group | Task |
---|---|---|
10 July | A | Blood sampling for resistance testing against VSA |
11 July | B | Blood sampling for resistance testing against VSA |
12 July | A | Blood sampling for extraction of sera |
13 July | A | Tests of the neutralizing capacity of sera against VSA |
15 July | B | Start of exposure sessions to vampire bat bites |
17 July | A | First injection of vampire bat saliva–incomplete Freund’s adjuvant |
20 August | A | Second injection of vampire bat saliva–incomplete Freund’s adjuvant |
21 October | A | Third injection of vampire bat saliva–incomplete Freund’s adjuvant |
12 November | B | Completion of exposure sessions to vampire bat bites |
2 December | A | Blood sampling for resistance testing against VSA |
3 December | B | Blood sampling for resistance testing against VSA |
5 December | A | Blood sampling for extraction of sera |
6 December | A | Tests of the neutralizing capacity of sera against VSA |
Clotting Time (min) of mix 1, Statistical Data | Group A of 12 Sheep Injected with Vampire Saliva-Incomplete Freund’s Adjuvant | Group B of 11 Sheep Exposed to Vampire Bat Bites | ||
---|---|---|---|---|
before Shots | after Shots | before Bites | after Bites | |
Minimum | 32 | 13 | 34 | 22 |
Maximum | 47 | 30 | 47 | 36 |
Median | 36 | 22 | 37 | 29 |
Mean | 37.7 | 21 | 38.6 | 28.3 |
Skewness/kurtosis | 1/−0.1 | 0.5/−0.2 | 1/0–0.4 | 0.2/0.4 |
Conf. int. of mean | 34.6–40.7 | 17.9–24 | 35.6–41.6 | 25.6–30.9 |
Standard deviation | 4.8 | 4.8 | 4.4 | 4 |
Sum | 452 | 252 | 425 | 311 |
Comparison by paired t-test | t = 8.1, p = 0.000006 | t = 5.3, p = 0.00004 |
Clotting Time (min), Statistical Data | Before Inoculation | After Inoculation |
---|---|---|
Minimum | 19 | 9 |
Maximum | 29 | 15 |
Median | 22.5 | 11 |
Mean | 22.8 | 11.3 |
Skewness/kurtosis | 0.9/0.4 | 0.6/−0.7 |
Conf. int. of mean | 21/24.7 | 10/12.5 |
Standard deviation | 2.9 | 2.0 |
Sum | 274 | 135 |
Comparison by paired t-test: t = 19.9, p << 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delpietro, H.A.; Russo, R.G.; Rupprecht, C.E.; Delpietro, G.L. Towards Development of an Anti-Vampire Bat Vaccine for Rabies Management: Inoculation of Vampire Bat Saliva Induces Immune-Mediated Resistance. Viruses 2021, 13, 515. https://doi.org/10.3390/v13030515
Delpietro HA, Russo RG, Rupprecht CE, Delpietro GL. Towards Development of an Anti-Vampire Bat Vaccine for Rabies Management: Inoculation of Vampire Bat Saliva Induces Immune-Mediated Resistance. Viruses. 2021; 13(3):515. https://doi.org/10.3390/v13030515
Chicago/Turabian StyleDelpietro, Horacio A., Roberto G. Russo, Charles E. Rupprecht, and Gabriela L. Delpietro. 2021. "Towards Development of an Anti-Vampire Bat Vaccine for Rabies Management: Inoculation of Vampire Bat Saliva Induces Immune-Mediated Resistance" Viruses 13, no. 3: 515. https://doi.org/10.3390/v13030515
APA StyleDelpietro, H. A., Russo, R. G., Rupprecht, C. E., & Delpietro, G. L. (2021). Towards Development of an Anti-Vampire Bat Vaccine for Rabies Management: Inoculation of Vampire Bat Saliva Induces Immune-Mediated Resistance. Viruses, 13(3), 515. https://doi.org/10.3390/v13030515