Development and Characterization of a cDNA-Launch Recombinant Simian Hemorrhagic Fever Virus Expressing Enhanced Green Fluorescent Protein: ORF 2b’ Is Not Required for In Vitro Virus Replication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Viruses
2.3. Plasmid Construction
2.4. Rescue of Recombinant SHFVs
2.5. SHFV Growth Kinetics Comparison
2.6. rSHFV-eGFP Genetic Stability Determination
2.7. SHFV Titration
2.8. CD163 Antibody Inhibition Assay
3. Results
3.1. Rescue and Growth Characterization of Recombinant SHFVs
3.2. Identification of New SHFV-Permissive Cell Lines
3.3. Restriction of SHFV Likely Occurs at Multiple Steps in the Cellular Host
3.4. The eGFP Expression Cassette in rSHFV-eGFP Is Unstable
3.5. The Minor Structural Protein E’ Is Dispensable for Infectious SHFV Particle Production
3.6. Replacement of SHFV ORFs Encoding Minor Proteins E, GP2, GP3, and GP4 of SHFV with EAV Orthologs Does Not Expand SHFV Cell Tropism
3.7. CD163 Is a Crucial SHFV Cell Entry Factor
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Шевцoва, З.В.; Куксoва, М.И.; Джикидзе, Э.К.; Крылoва, Р.И.; Данькo, Л.В. Экспериментальнoе изучение гемoррагическoй лихoрадки oбезьян. In Biology and Pathology of Monkeys, Studies of Human Diseases in Experiments on Monkeys. Materials of Symposium in Sukhumi, 17–22 October 1966; Lapin, B.A., Ed.; Academy of Medical Sciences of the U.S.S.R., Institute of Experimental Pathology and Therapy: Tbilisi, Georgian Soviet Socialist Republic, USSR, 1966; pp. 146–150. [Google Scholar]
- Шевцoва, З.В. Изучение этиoлoгии гемoррагическoй лихoрадки oбезьян. Вoпр. Вирусoл. 1967, 12, 47–51. [Google Scholar]
- Palmer, A.E.; Allen, A.M.; Tauraso, N.M.; Shelokov, A. Simian hemorrhagic fever. I. Clinical and epizootiologic aspects of an outbreak among quarantined monkeys. Am. J. Trop. Med. Hyg. 1968, 17, 404–412. [Google Scholar] [CrossRef]
- Lauck, M.; Alkhovsky, S.V.; Bào, Y.; Bailey, A.L.; Shevtsova, Z.V.; Shchetinin, A.M.; Vishnevskaya, T.V.; Lackemeyer, M.G.; Postnikova, E.; Mazur, S.; et al. Historical outbreaks of simian hemorrhagic fever in captive macaques were caused by distinct arteriviruses. J. Virol. 2015, 89, 8082–8087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauraso, N.M.; Shelokov, A.; Palmer, A.E.; Allen, A.M. Simian hemorrhagic fever. III. Isolation and characterization of a viral agent. Am. J. Trop. Med. Hyg. 1968, 17, 422–431. [Google Scholar] [CrossRef]
- Renquist, D. Outbreak of simian hemorrhagic fever. J. Med. Primatol. 1990, 19, 77–79. [Google Scholar] [CrossRef]
- Zack, P.M. Simian hemorrhagic fever. In Nonhuman Primates; Jones, I.T.C., Mohr, U., Hunt, R.D., Eds.; Springer: Berlin, Germany, 1993; pp. 118–131. [Google Scholar]
- Vetten, H.J.; Haenni, A.-L. Taxon-specific suffixes for vernacular names. Arch. Virol. 2006, 151, 1249–1250. [Google Scholar] [CrossRef]
- Lauck, M.; Hyeroba, D.; Tumukunde, A.; Weny, G.; Lank, S.M.; Chapman, C.A.; O’Connor, D.H.; Friedrich, T.C.; Goldberg, T.L. Novel, divergent simian hemorrhagic fever viruses in a wild Ugandan red colobus monkey discovered using direct pyrosequencing. PLoS ONE 2011, 6, e19056. [Google Scholar] [CrossRef]
- Wahl-Jensen, V.; Johnson, J.C.; Lauck, M.; Weinfurter, J.T.; Moncla, L.H.; Weiler, A.M.; Charlier, O.; Rojas, O.; Byrum, R.; Ragland, D.R.; et al. Divergent simian arteriviruses cause simian hemorrhagic fever of differing severities in macaques. mBio 2016, 7, e02009-15. [Google Scholar] [CrossRef] [Green Version]
- Lauck, M.; Sibley, S.D.; Hyeroba, D.; Tumukunde, A.; Weny, G.; Chapman, C.A.; Ting, N.; Switzer, W.M.; Kuhn, J.H.; Friedrich, T.C.; et al. Exceptional simian hemorrhagic fever virus diversity in a wild African primate community. J. Virol. 2012, 87, 688–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, A.L.; Lauck, M.; Sibley, S.D.; Pecotte, J.; Rice, K.; Weny, G.; Tumukunde, A.; Hyeroba, D.; Greene, J.; Correll, M.; et al. Two novel simian arteriviruses in captive and wild baboons (Papio spp.). J. Virol. 2014, 88, 13231–13239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, A.L.; Lauck, M.; Weiler, A.; Sibley, S.D.; Dinis, J.M.; Bergman, Z.; Nelson, C.W.; Correll, M.; Gleicher, M.; Hyeroba, D.; et al. High genetic diversity and adaptive potential of two simian hemorrhagic fever viruses in a wild primate population. PLoS ONE 2014, 9, e90714. [Google Scholar] [CrossRef] [Green Version]
- Bailey, A.L.; Lauck, M.; Ghai, R.R.; Nelson, C.W.; Heimbruch, K.; Hughes, A.L.; Goldberg, T.L.; Kuhn, J.H.; Jasinska, A.J.; Freimer, N.B.; et al. Arteriviruses, pegiviruses, and lentiviruses are common among wild African monkeys. J. Virol. 2016, 90, 6724–6737. [Google Scholar] [CrossRef] [Green Version]
- Bailey, A.L.; Lauck, M.; Sibley, S.D.; Friedrich, T.C.; Kuhn, J.H.; Freimer, N.B.; Jasinska, A.J.; Phillips-Conroy, J.E.; Jolly, C.J.; Marx, P.A.; et al. Zoonotic potential of simian arteriviruses. J. Virol. 2015, 90, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Lauck, M.; Palacios, G.; Wiley, M.R.; Lǐ, Y.; Fāng, Y.; Lackemeyer, M.G.; Caì, Y.; Bailey, A.L.; Postnikova, E.; Radoshitzky, S.R.; et al. Genome sequences of simian hemorrhagic fever virus variant NIH LVR42-0/M6941 isolates (Arteriviridae: Arterivirus). Genome Announc. 2014, 2, e00978-14. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.M.; Palmer, A.E.; Tauraso, N.M.; Shelokov, A. Simian hemorrhagic fever. II. Studies in pathology. Am. J. Trop. Med. Hyg. 1968, 17, 413–421. [Google Scholar] [CrossRef]
- Johnson, R.F.; Dodd, L.E.; Yellayi, S.; Gu, W.; Cann, J.A.; Jett, C.; Bernbaum, J.G.; Ragland, D.R.; St. Claire, M.; Byrum, R.; et al. Simian hemorrhagic fever virus infection of rhesus macaques as a model of viral hemorrhagic fever: Clinical characterization and risk factors for severe disease. Virology 2011, 421, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Cornish, J.P.; Moore, I.N.; Perry, D.L.; Lara, A.; Minai, M.; Promeneur, D.; Hagen, K.R.; Virtaneva, K.; Paneru, M.; Buechler, C.R.; et al. Clinical characterization of host response to simian hemorrhagic fever virus infection in permissive and refractory hosts: A model for determining mechanisms of VHF pathogenesis. Viruses 2019, 11, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatter, H.A.; Donaldson, E.F.; Huynh, J.; Rawlings, S.; Manoharan, M.; Legasse, A.; Planer, S.; Dickerson, M.F.; Lewis, A.D.; Colgin, L.M.; et al. A simian hemorrhagic fever virus isolate from persistently infected baboons efficiently induces hemorrhagic fever disease in Japanese macaques. Virology 2015, 474, 186–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatter, H.A.; Brinton, M.A. Differential responses of disease-resistant and disease-susceptible primate macrophages and myeloid dendritic cells to simian hemorrhagic fever virus infection. J. Virol. 2013, 88, 2095–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yú, S.Q.; Caì, Y.; Lyons, C.; Johnson, R.F.; Postnikova, E.; Mazur, S.; Johnson, J.C.; Radoshitzky, S.R.; Bailey, A.L.; Lauck, M.; et al. Specific Detection of two divergent simian arteriviruses using RNAscope in situ hybridization. PLoS ONE 2016, 11, e0151313. [Google Scholar] [CrossRef]
- Di, H.; Madden, J.C., Jr.; Morantz, E.K.; Tang, H.-Y.; Graham, R.L.; Baric, R.S.; Brinton, M.A. Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus. Proc. Natl. Acad. Sci. USA 2017, 114, E8895–E8904. [Google Scholar] [CrossRef] [Green Version]
- Snijder, E.J.; Kikkert, M.; Fang, Y. Arterivirus molecular biology and pathogenesis. J. Gen. Virol. 2013, 94, 2141–2163. [Google Scholar] [CrossRef] [PubMed]
- Snijder, E.J.; Meulenberg, J.J. The molecular biology of arteriviruses. J. Gen. Virol. 1998, 79, 961–979. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Lauck, M.; Bailey, A.L.; Shchetinin, A.M.; Vishnevskaya, T.V.; Bào, Y.; Ng, T.F.F.; Lebreton, M.; Schneider, B.S.; Gillis, A.; et al. Reorganization and expansion of the nidoviral family Arteriviridae. Arch. Virol. 2016, 161, 755–768. [Google Scholar] [CrossRef]
- Vatter, H.A.; Di, H.; Donaldson, E.F.; Baric, R.S.; Brinton, M.A. Each of the eight simian hemorrhagic fever virus minor structural proteins is functionally important. Virology 2014, 462–463, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caì, Y.; Postnikova, E.N.; Bernbaum, J.G.; Yú, S.; Mazur, S.; Deiuliis, N.M.; Radoshitzky, S.R.; Lackemeyer, M.G.; McCluskey, A.; Robinson, P.J.; et al. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway. J. Virol. 2014, 89, 844–856. [Google Scholar] [CrossRef] [Green Version]
- Delputte, P.L.; Vanderheijden, N.; Nauwynck, H.J.; Pensaert, M.B. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J. Virol. 2002, 76, 4312–4320. [Google Scholar] [CrossRef] [Green Version]
- Snijder, E.J.; Dobbe, J.C.; Spaan, W.J. Heterodimerization of the two major envelope proteins is essential for arterivirus infectivity. J. Virol. 2003, 77, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doan, D.N.; Dokland, T. Structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus. Structure 2003, 11, 1445–1451. [Google Scholar] [CrossRef] [Green Version]
- Brinton, M.A.; Di, H.; Vatter, H.A. Simian hemorrhagic fever virus: Recent advances. Virus Res. 2015, 202, 112–119. [Google Scholar] [CrossRef]
- Thaa, B.; Kabatek, A.; Zevenhoven-Dobbe, J.C.; Snijder, E.J.; Herrmann, A.; Veit, M. Myristoylation of the arterivirus E protein: The fatty acid modification is not essential for membrane association but contributes significantly to virus infectivity. J. Gen. Virol. 2009, 90, 2704–2712. [Google Scholar] [CrossRef]
- Huynh, J.; Li, S.; Yount, B.; Smith, A.; Sturges, L.; Olsen, J.C.; Nagel, J.; Johnson, J.B.; Agnihothram, S.; Gates, J.E.; et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol. 2012, 86, 12816–12825. [Google Scholar] [CrossRef] [Green Version]
- Biesold, S.E.; Ritz, D.; Gloza-Rausch, F.; Wollny, R.; Drexler, J.F.; Corman, V.M.; Kalko, E.K.; Oppong, S.; Drosten, C.; Müller, M.A. Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum. PLoS ONE 2011, 6, e28131. [Google Scholar] [CrossRef]
- Hoffmann, M.; Müller, M.A.; Drexler, J.F.; Glende, J.; Erdt, M.; Gützkow, T.; Losemann, C.; Binger, T.; Deng, H.; Schwegmann-Weßels, C.; et al. Differential sensitivity of bat cells to infection by enveloped RNA viruses: Coronaviruses, paramyxoviruses, filoviruses, and influenza Viruses. PLoS ONE 2013, 8, e72942. [Google Scholar] [CrossRef] [Green Version]
- Jordan, I.; Horn, D.; Oehmke, S.; Leendertz, F.H.; Sandig, V. Cell lines from the Egyptian fruit bat are permissive for modified vaccinia Ankara. Virus Res. 2009, 145, 54–62. [Google Scholar] [CrossRef]
- Kühl, A.; Hoffmann, M.; Müller, M.A.; Munster, V.J.; Gnirß, K.; Kiene, M.; Tsegaye, T.S.; Behrens, G.; Herrler, G.; Feldmann, H.; et al. Comparative analysis of Ebola virus glycoprotein interactions with human and bat cells. J. Infect. Dis. 2011, 204 (Suppl. 3), S840–S849. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, J.N. Spotlight on molecular profiling: “integromic” analysis of the NCI-60 cancer cell lines. Mol. Cancer Ther. 2006, 5, 2601–2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caì, Y.; Yú, S.; Jangra, R.K.; Postnikova, E.N.; Wada, J.; Tesh, R.B.; Whelan, S.P.J.; Lauck, M.; Wiley, M.R.; Finch, C.L.; et al. Human, nonhuman primate, and bat cells are broadly susceptible to tibrovirus particle cell entry. Front. Microbiol. 2019, 10, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, A.A.F.; Chirnside, E.D.; Horzinek, M.C.; Rottier, P.J.M. Structural proteins of equine arteritis virus. J. Virol. 1992, 66, 6294–6303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Rowland, R.R.R.; Roof, M.; Lunney, J.K.; Christopher-Hennings, J.; Nelson, E.A. A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus: Expression of green fluorescent protein in the Nsp2 region. J. Virol. 2006, 80, 11447–11455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.W.; Fang, Y.; Meng, X.J. Identification and characterization of a porcine monocytic cell line supporting porcine reproductive and respiratory syndrome virus (PRRSV) replication and progeny virion production by using an improved DNA-launched PRRSV reverse genetics system. Virus Res. 2009, 145, 1–8. [Google Scholar] [CrossRef]
- Duan, X.; Nauwynck, H.J.; Pensaert, M.B. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch. Virol. 1997, 142, 2483–2497. [Google Scholar] [CrossRef]
- Duan, X.; Nauwynck, H.J.; Pensaert, M.B. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Vet. Microbiol. 1997, 56, 9–19. [Google Scholar] [CrossRef]
- Delputte, P.L.; Van Breedam, W.; Barbé, F.; Van Reeth, K.; Nauwynck, H.J. IFN-α treatment enhances porcine arterivirus infection of monocytes via upregulation of the porcine arterivirus receptor sialoadhesin. J. Interf. Cytokine Res. 2007, 27, 757–766. [Google Scholar] [CrossRef]
- Wensvoort, G.; Terpstra, C.; Pol, J.M.A.; ter Laak, E.A.; Bloemraad, M.; de Kluyver, E.P.; Kragten, C.; van Buiten, L.; den Besten, A.; Wagenaar, F.; et al. Mystery swine disease in the Netherlands: The isolation of Lelystad virus. Vet. Q. 1991, 13, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Timoney, P.J.; MacLachlan, N.J.; Mccollum, W.H.; Balasuriya, U.B.R. Persistent equine arteritis virus infection in HeLa cells. J. Virol. 2008, 82, 8456–8464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, D.; Wei, Z.; Zevenhoven-Dobbe, J.C.; Liu, R.; Tong, G.; Snijder, E.J.; Yuan, S. Arterivirus minor envelope proteins are a major determinant of viral tropism in cell culture. J. Virol. 2012, 86, 3701–3712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Yoo, D. PRRS virus receptors and their role for pathogenesis. Vet. Microbiol. 2015, 177, 229–241. [Google Scholar] [CrossRef]
- Li, Y.; Firth, A.E.; Brierley, I.; Cai, Y.; Napthine, S.; Wang, T.; Yan, X.; Kuhn, J.H.; Fang, Y. Programmed −2/−1 ribosomal frameshifting in simarteriviruses: An evolutionarily conserved mechanism. J. Virol. 2019, 93, e00370-19. [Google Scholar] [CrossRef] [Green Version]
- Di, H.; Morantz, E.K.; Sadhwani, H.; Madden, J.C., Jr.; Brinton, M.A. Insertion position as well as the inserted TRS and gene sequences differentially affect the retention of foreign gene expression by simian hemorrhagic fever virus (SHFV). Virology 2018, 525, 150–160. [Google Scholar] [CrossRef]
Nucleotide Position in Genome | SHFV Variant NIH LVR42-0/M6941 (GenBank #AF180391) | SHFV Variant NIH LVR42-0/M6941 Isolate KS_06_17_11 (GenBank #KM373784) | Amino-Acid Residue Change | Affected Protein |
---|---|---|---|---|
511 | C | T | P101L | Nsp1α |
849 | G | T | V214F | Nsp1β |
1658 | G | A | R483R (silent) | Nsp1γ |
2503 | G | C | G765A | Nsp2 |
3726 | C | ~ | 10 amino-acid frameshift | Nsp2 |
3757 | ~ | A | Nsp2 | |
3785 | A | G | E1192E (silent) | Nsp2 |
4277 | T | G | L1356L (silent) | Nsp3 |
4895 | A | G | E1562E (silent) | Nsp4 |
5575 | G | T | G1789V | Nsp5 |
5695 | G | A | R1829H | Nsp5 |
5704 | A | T | K1832I | Nsp6 |
5707 | C | G | P1833R | Nsp6 |
5727 | A | T | I1840F | Nsp6 |
6088 | G | C | G1960A | Nsp7 |
8276 | T | G | S2879A | Nsp9 |
8340 | G | T | W2900L | Nsp9 |
10359 | T | C | L3373S | Nsp11 |
Open Reading Frame (ORF) | Primer Name | Primer Sequence (5′→3′) |
---|---|---|
ORF 2a | 5′SHFV-2a 16906 | TCT ATA TAA TGA CAC ATC ACT ACA GCC TTC CAC |
3′ SHFV-2a-16906 | AGT GAT GTG TCA TTA TAT AGA ACC CAT TAA GAA | |
ORF 2b | 5′SHFV-2b-17266 | TAC AAC GTT TAG TGA GAA CCC AGT TCT TTC ACC CTC GAC |
3′SHFV-2b 17598 | GTT TTG GTC AAT GAC AAC GTT | |
ORF 3 | 5′SHFV-ORF3-Acll-17266 | GCT GAG TAC ACC TAC AAC GTT |
3′SHFV-ORF3-Acll-17598 | GAC AAC GTT TCA TCA GTA CAG GCA AGC TAG GAC TGA | |
ORF 4 | 5′SHFV-ORF4-17970 | TTG ATT TGA CTT CCC TAA CCA AAT CGC ACT TCT |
3′SHFV-ORF4-17970 | TGG TTA GGG AAG TCA AAT CAA GCA AGT TTG ATC | |
ORF 2a’ | 5′SHFV-2a’-15321 | TAA ATC CTA CTG TAG GTA CTC CTT AAA CCA GTC GAC TCT TTT GAT TTC TTT |
3′SHFV-2a’-15321 | GAG TAC CTA CAG TAG GAT TTA ACC TGG ACA GAA ACT CAT AAT TAG GTA GTT AAG GAG CGG | |
ORF 2b’ | 5′SHFV-2b’-15436 | GAG ATC TAA TTT CCC ATT GCG AAA CAA AAA TTG CGC CGT |
3′SHFV-2b’-15436 | CGC AAT GGG AAA TTA GAT CTC TGA AAA CAG TAT GAA TGT | |
ORF 3′ | 5′SHFV-3′-15868 | TCA TGC TTC TAG TTT TGC CAC GTT TAT TGC ACC |
3′SHFV-3′ 15868 | GTG GCA AAA CTA GAA GCA TGA TAG ACC TGC AAG | |
ORF 4′ | 5′ SHFV-4′-16283 | TGA GAC AAT GAT GTG TGT TAA CGG CAC TGT AGT |
3′SHFV-4′-16283 | TTA ACA CAC ATC ATT GTC TCA TTC CAT GAT TGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Yu, S.; Fang, Y.; Bollinger, L.; Li, Y.; Lauck, M.; Postnikova, E.N.; Mazur, S.; Johnson, R.F.; Finch, C.L.; et al. Development and Characterization of a cDNA-Launch Recombinant Simian Hemorrhagic Fever Virus Expressing Enhanced Green Fluorescent Protein: ORF 2b’ Is Not Required for In Vitro Virus Replication. Viruses 2021, 13, 632. https://doi.org/10.3390/v13040632
Cai Y, Yu S, Fang Y, Bollinger L, Li Y, Lauck M, Postnikova EN, Mazur S, Johnson RF, Finch CL, et al. Development and Characterization of a cDNA-Launch Recombinant Simian Hemorrhagic Fever Virus Expressing Enhanced Green Fluorescent Protein: ORF 2b’ Is Not Required for In Vitro Virus Replication. Viruses. 2021; 13(4):632. https://doi.org/10.3390/v13040632
Chicago/Turabian StyleCai, Yingyun, Shuiqing Yu, Ying Fang, Laura Bollinger, Yanhua Li, Michael Lauck, Elena N. Postnikova, Steven Mazur, Reed F. Johnson, Courtney L. Finch, and et al. 2021. "Development and Characterization of a cDNA-Launch Recombinant Simian Hemorrhagic Fever Virus Expressing Enhanced Green Fluorescent Protein: ORF 2b’ Is Not Required for In Vitro Virus Replication" Viruses 13, no. 4: 632. https://doi.org/10.3390/v13040632
APA StyleCai, Y., Yu, S., Fang, Y., Bollinger, L., Li, Y., Lauck, M., Postnikova, E. N., Mazur, S., Johnson, R. F., Finch, C. L., Radoshitzky, S. R., Palacios, G., Friedrich, T. C., Goldberg, T. L., O’Connor, D. H., Jahrling, P. B., & Kuhn, J. H. (2021). Development and Characterization of a cDNA-Launch Recombinant Simian Hemorrhagic Fever Virus Expressing Enhanced Green Fluorescent Protein: ORF 2b’ Is Not Required for In Vitro Virus Replication. Viruses, 13(4), 632. https://doi.org/10.3390/v13040632