Chemiluminescence Immunoassay Based Serological Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies in COVID-19 Convalescent Patients and Vaccinated Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sera
2.2. Proteins
2.3. Human Monoclonal Antibodies
2.4. ACE2-RBD Inhibition Assay
2.5. S1, RBD and N Specific IgG Antibody Detection
2.6. Microneutralization Test (MNT)
2.7. Statistical Analyses
3. Results
3.1. Establishment and Optimization of the Detection Method
3.2. Detection Result of Sera from COVID-19 Convalescent Patients, Vaccinated Donors and Healthy Donor
3.3. Correlation Analysis among ACE2-RBD Inhibition Assay, S1-IgG Assay, RBD-IgG Assay and N-IgG Assay
3.4. Correlation Analysis of Micro-Neutralization Test with ACE2-RBD Inhibition Assay, S1-IgG Assay, RBD-IgG Assay and N-IgG Assay
3.5. Consistency Analysis of Chemiluminescence Immunoassays and Microneutralization Test Results
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2021. Available online: https://covid19.who.int/ (accessed on 8 June 2021).
- Iwasaki, A.; Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 2020, 20, 339–341. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; He, W.-T.; Wang, L.; Lai, A.; Ji, X.; Zhai, X.; Li, G.; Suchard, M.A.; Tian, J.; Zhou, J.; et al. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends Mol. Med. 2020, 26, 483–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortorici, M.A.; Walls, A.C.; Lang, Y.; Wang, C.; Li, Z.; Koerhuis, D.; Boons, G.-J.; Bosch, B.-J.; Rey, F.; De Groot, R.J.; et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol. 2019, 26, 481–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Hillyer, C.; Du, L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends Immunol. 2020, 41, 355–359. [Google Scholar] [CrossRef]
- Vogelzang, E.H.; Loeff, F.C.; Derksen, N.I.L.; Kruithof, S.; Heer, P.O.-D.; Van Mierlo, G.; Linty, F.; Mok, J.Y.; Van Esch, W.; De Bruin, S.; et al. Development of a SARS-CoV-2 Total Antibody Assay and the Dynamics of Antibody Response over Time in Hospitalized and Nonhospitalized Patients with COVID-19. J. Immunol. 2020, 205, 3491–3499. [Google Scholar] [CrossRef]
- Post, N.; Eddy, D.; Huntley, C.; van Schalkwyk, M.C.I.; Shrotri, M.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; et al. Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE 2020, 15, e0244126. [Google Scholar] [CrossRef]
- Hueston, L.; Kok, J.; Guibone, A.; McDonald, D.; Hone, G.; Goodwin, J.; Carter, I.; Basile, K.; Sandaradura, I.; Maddocks, S.; et al. The Antibody Response to SARS-CoV-2 Infection. Open Forum Infect. Dis. 2020, 7, 387. [Google Scholar] [CrossRef] [PubMed]
- Choe, P.G.; Kang, C.K.; Suh, H.J.; Jung, J.; Kang, E.; Lee, S.Y.; Song, K.-H.; Bin Kim, H.; Kim, N.J.; Park, W.B.; et al. Antibody Responses to SARS-CoV-2 at 8 Weeks Postinfection in Asymptomatic Patients. Emerg. Infect. Dis. 2020, 26, 2484–2487. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, W.; Drabek, D.; Okba, N.M.A.; Van Haperen, R.; Osterhaus, A.D.M.E.; Van Kuppeveld, F.J.M.; Haagmans, B.L.; Grosveld, F.; Bosch, B.-J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 2020, 11, 2251. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, R.; Pan, Z.; Qian, C.; Yang, Y.; You, R.; Zhao, J.; Liu, P.; Gao, L.; Li, Z.; et al. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell. Mol. Immunol. 2020, 17, 647–649. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Xia, S.; Tian, X.; Kong, Y.; Wang, Z.; Gu, C.; Zhang, R.; Tu, C.; Xie, Y.; et al. Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe 2020, 27, 891–898.e5. [Google Scholar] [CrossRef]
- Pinto, D.; Park, Y.-J.; Beltramello, M.; Walls, A.; Tortorici, M.A.; Bianchi, S.; Jaconi, S.; Culap, K.; Zatta, F.; De Marco, A.; et al. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Prabakaran, P.; Zhu, Z.; Xiao, X.; Biragyn, A.; Dimitrov, A.S.; Broder, C.C.; Dimitrov, D.S. Potent Human Monoclonal Antibodies Against SARS CoV, Nipah and Hendra Viruses. Expert Opin. Biol. Ther. 2009, 9, 355–368. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19216624 (accessed on 21 May 2021). [CrossRef] [Green Version]
- Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; et al. A Potent Neutralizing Human Antibody Reveals the N-Terminal Domain of the Spike Protein of Sars-Cov-2 as a Site of Vulnerability. BioRxiv 2020. Available online: https://www.biorxiv.org/content/biorxiv/early/2020/05/08/2020.05.08.083964.full.pdf (accessed on 8 May 2020). [CrossRef]
- Piccoli, L.; Park, Y.-J.; Tortorici, M.A.; Czudnochowski, N.; Walls, A.C.; Beltramello, M.; Silacci-Fregni, C.; Pinto, D.; Rosen, L.E.; Bowen, J.E.; et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 2020, 183, 1024–1042.e21. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32991844 (accessed on 21 May 2021). [CrossRef] [PubMed]
- Bertoglio, F.; Meier, D.; Langreder, N.; Steinke, S.; Rand, U.; Simonelli, L.; Heine, P.A.; Ballmann, R.; Schneider, K.-T.; Roth, K.D.R.; et al. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat. Commun. 2021, 12, 1577. [Google Scholar] [CrossRef]
- Gerberding, J.L.; Haynes, B.F. Vaccine Innovations—Past and Future. N. Engl. J. Med. 2021, 384, 393–396. [Google Scholar] [CrossRef]
- World Health Organization. Draft Landscape and Tracker of COVID-19 Candidate Vaccines. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 21 May 2021).
- Our World in Data Total Number of COVID-19 Vaccinations Administered. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 17 July 2021).
- Amanat, F.; White, K.M.; Miorin, L.; Strohmeier, S.; McMahon, M.; Meade, P.; Liu, W.; Albrecht, R.A.; Simon, V.; Martinez-Sobrido, L.; et al. An In Vitro Microneutralization Assay for SARS-CoV-2 Serology and Drug Screening. Curr. Protoc. Microbiol. 2020, 58, e108. [Google Scholar] [CrossRef]
- Tan, C.W.; Ni Chia, W.; Qin, X.; Liu, P.; Chen, M.I.-C.; Tiu, C.; Hu, Z.; Chen, V.C.-W.; Young, B.E.; Sia, W.R.; et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 2020, 38, 1073–1078. [Google Scholar] [CrossRef]
- Patel, A.; Campbell, A.K. Homogeneous immunoassay based on chemiluminescence energy transfer. Clin. Chem. 1983, 29, 1604–1608. [Google Scholar] [CrossRef]
- Ma, X.; Niezgoda, M.; Blanton, J.; Recuenco, S.; Rupprecht, C.E. Evaluation of a new serological technique for detecting rabies virus antibodies following vaccination. Vaccine 2012, 30, 5358–5362. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Kobayashi, M. Antibody Detection: Principles and Applications. Adv. Tech. Diagn. Microbiol. 2013, 53–73. [Google Scholar] [CrossRef]
- Cinquanta, L.; Fontana, D.E.; Bizzaro, N. Chemiluminescent immunoassay technology: What does it change in autoantibody detection? Autoimmun. Highlights 2017, 8, 9. [Google Scholar] [CrossRef]
- Hou, J.; Sun, W.; Huang, G.; Zhan, X.; Yang, M. Prokaryotic Soluble Expression and Serological Evaluation of SARS-CoV-2 N Protein. J. Lett. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, X.; Wang, M.; Sun, L.; Jiang, Y.; Li, C.; Wu, W.; Chen, Z.; Yin, Q.; Jiang, X.; et al. Antibody Cocktail Exhibits Broad Neutralization Against Sars-Cov-2 and Sars-Cov-2 Variants. BioRxiv 2021. Available online: https://www.biorxiv.org/content/biorxiv/early/2021/04/17/2021.04.16.440083.full.pdf (accessed on 17 April 2021). [CrossRef]
- Manenti, A.; Maggetti, M.; Casa, E.; Martinuzzi, D.; Torelli, A.; Trombetta, C.M.; Marchi, S.; Montomoli, E. Evaluation of SARS-CoV-2 neutralizing antibodies using a CPE-based colorimetric live virus micro-neutralization assay in human serum samples. J. Med. Virol. 2020, 92, 2096–2104. [Google Scholar] [CrossRef]
- Hachim, A.; Kavian, N.; Cohen, C.A.; Chin, A.W.H.; Chu, D.K.W.; Mok, C.K.P.; Tsang, O.T.Y.; Yeung, Y.C.; Perera, R.A.P.M.; Poon, L.L.M.; et al. Author Correction: ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nat. Immunol. 2020, 21, 1302. [Google Scholar] [CrossRef]
- Liu, Y.; Soh, W.T.; Tada, A.; Arakawa, A.; Matsuoka, S.; Nakayama, E.E.; Li, S.; Ono, C.; Torii, S.; Kishida, K.; et al. An Infectivity-Enhancing Site on the Sars-Cov-2 Spike Protein is Targeted by COVID-19 Patient Antibodies. BioRxiv 2020. Available online: https://www.biorxiv.org/content/biorxiv/early/2020/12/18/2020.12.18.423358.full.pdf (accessed on 18 December 2020). [CrossRef]
- Our World in Data. Vaccine Development: Vaccines Approved for Use and in Clinical Trials. Available online: https://ourworldindata.org/covid-vaccinations#source-information-country-by-country (accessed on 27 May 2021).
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
Spearman Correlation Analysis | Microneutralization Test | ACE2-RBD Inhibiting Assay | Specific IgG Detection | ||||
---|---|---|---|---|---|---|---|
IC50 Titer | Antibody Concentration | Inhibition | S1-IgG Concentration | RBD-IgG Concentration | N-IgG Concentration | ||
Microneutralization Test | IC50 Titer | 0.8785 | 0.8792 | 0.8395 | 0.8391 | 0.4276 | |
ACE2-RBD Inhibiting Assay | Antibody Concentration | 0.8785 | 0.9992 | 0.8699 | 0.8934 | 0.4159 | |
Inhibition | 0.8792 | 0.9992 | 0.8697 | 0.8927 | 0.4152 | ||
Specific IgG Detection | S1-IgG Concentration | 0.8395 | 0.8699 | 0.8697 | 0.9549 | 0.3643 | |
RBD-IgG Concentration | 0.8391 | 0.8934 | 0.8927 | 0.9549 | 0.3750 | ||
N-IgG Concentration | 0.4276 | 0.4159 | 0.4152 | 0.3643 | 0.3750 |
Spearman Correlation Analysis | Microneutralization Test | ACE2-RBD Inhibiting Assay | Specific IgG Detection | ||||
---|---|---|---|---|---|---|---|
IC50 Titer | Antibody Concentration | Inhibition | S1-IgG Concentration | RBD-IgG Concentration | N-IgG Concentration | ||
Microneutralization Test | IC50 Titer | 0.7790 | 0.7792 | 0.7408 | 0.7322 | 0.4863 | |
ACE2-RBD Inhibiting Assay | Antibody Concentration | 0.779 | 1.0000 | 0.9411 | 0.9414 | 0.4674 | |
Inhibition | 0.7792 | 1.0000 | 0.9412 | 0.9413 | 0.4674 | ||
Specific IgG Detection | S1-IgG Concentration | 0.7408 | 0.9411 | 0.9412 | 0.9833 | 0.4952 | |
RBD-IgG Concentration | 0.7322 | 0.9414 | 0.9413 | 0.9833 | 0.4776 | ||
N-IgG Concentration | 0.4863 | 0.4674 | 0.4674 | 0.4952 | 0.4776 |
ACE2-RBD Inhibiting Conc. | Inhibition | S1-IgG Conc. | RBD-IgG Conc. | N-IgG Conc. | |
---|---|---|---|---|---|
Specificity | 95.75% | 95.75% | 96.08% | 97.06% | 95.10% |
Sensitivity | 99.49% | 99.49% | 99.49% | 99.49% | 100.00% |
Positive coincidence rate | 99.49% | 99.49% | 99.49% | 99.49% | 100.00% |
Negative coincidence rate | 95.75% | 95.75% | 96.08% | 97.06% | 95.10% |
Total coincidence rate | 97.22% | 97.22% | 97.42% | 98.02% | 97.02% |
P(observed) | 0.9722 | 0.9722 | 0.9742 | 0.9802 | 0.9702 |
P(chance) | 0.5215 | 0.5215 | 0.5215 | 0.5215 | 0.5215 |
Kappa Value | 0.9419 | 0.9419 | 0.9461 | 0.9585 | 0.9378 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Q.; Zhang, Y.; Lian, L.; Qu, Y.; Wu, W.; Chen, Z.; Pei, R.; Chen, T.; Sun, L.; Li, C.; et al. Chemiluminescence Immunoassay Based Serological Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies in COVID-19 Convalescent Patients and Vaccinated Population. Viruses 2021, 13, 1508. https://doi.org/10.3390/v13081508
Yin Q, Zhang Y, Lian L, Qu Y, Wu W, Chen Z, Pei R, Chen T, Sun L, Li C, et al. Chemiluminescence Immunoassay Based Serological Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies in COVID-19 Convalescent Patients and Vaccinated Population. Viruses. 2021; 13(8):1508. https://doi.org/10.3390/v13081508
Chicago/Turabian StyleYin, Qiangling, Yecheng Zhang, Lijun Lian, Yuanyuan Qu, Wei Wu, Zhen Chen, Rongjuan Pei, Tingyou Chen, Lina Sun, Chuan Li, and et al. 2021. "Chemiluminescence Immunoassay Based Serological Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies in COVID-19 Convalescent Patients and Vaccinated Population" Viruses 13, no. 8: 1508. https://doi.org/10.3390/v13081508
APA StyleYin, Q., Zhang, Y., Lian, L., Qu, Y., Wu, W., Chen, Z., Pei, R., Chen, T., Sun, L., Li, C., Li, A., Li, J., Li, D., Wang, S., Guan, W., & Liang, M. (2021). Chemiluminescence Immunoassay Based Serological Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies in COVID-19 Convalescent Patients and Vaccinated Population. Viruses, 13(8), 1508. https://doi.org/10.3390/v13081508