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Abstract: Late assembly (L) domains are conserved sequences that are necessary for the late steps
of viral replication, acting like cellular adaptors to engage the ESCRT membrane fission machinery
that promote virion release. These short sequences, whose mutation or deletion produce the accu-
mulation of immature virions at the plasma membrane, were firstly identified within retroviral Gag
precursors, and in a further step, also in structural proteins of many other enveloped RNA viruses
including arenaviruses, filoviruses, rhabdoviruses, reoviruses, and paramyxoviruses. Three classes of
L domains have been identified thus far (PT/SAP, YPXnL/LXXLF, and PPxY), even if it has recently
been suggested that other motifs could act as L domains. Here, we summarize the current state of
knowledge of the different types of L domains and their cellular partners in the budding events of
RNA viruses, with a particular focus on retroviruses.

Keywords: viral assembly; budding; late assembly domains; retrovirus; RNA enveloped viruses;
retroviral gag precursor; structural viral proteins; ubiquitination; ESCRT machinery

1. Introduction

Viruses are ubiquitous obligate intracellular parasites multiplying only within living
cells by usurping the cellular machinery of their host to produce progeny virions. They are
composed of extremely diverse nucleoprotein entities, classified into DNA or RNA viruses
according to the type of nucleic acid constituting their genome. Even though DNA and RNA
viruses are likely to infect both prokaryotes and eukaryotes, the two different classes are not
found with the same abundance. Indeed, while the prokaryotic virosphere is dominated by
DNA viruses (especially with double-stranded DNA genome), eukaryotes are rather found
hosting a wide variety of RNA viruses (for a review, see [1,2]). A considerable number of
those RNA viruses are responsible for severe human diseases, and thus represent a serious
threat to global health. Since pathogenic RNA viruses are widely involved in zoonoses
and can quickly adapt to the new host, they are considered as major etiological agents of
emerging infectious diseases in humans (for a review, see [3]). Indeed the pandemic caused
by influenza A (H1N1) in 1918, which led to more than 50 million deaths worldwide,
was followed during this last century by many other epidemics and pandemics caused
by RNA viruses, that include human immunodeficiency virus (HIV-1), identified in 1983
as the causative agent of the acquired immunodeficiency syndrome (AIDS), which has
caused an estimated 34.7 million deaths according to UNIAIDS [4]; ebolaviruses, causing
systemic disease with high lethality rate; and also coronaviruses, associated with severe
respiratory illness, such as the severe acute respiratory syndrome (SARS) and Middle
East respiratory syndrome coronavirus (MERS). Most recently the SARS coronavirus 2
(SARS-CoV-2) emerged in 2019, having infected more than 178 million people by mid-June
2021 and continuing to spread around the world. In this context, the surveillance and the
biological study of RNA viruses are essential tools to control their spread and the diseases
they cause.
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Viral dissemination relies on an extracellular phase in the virus life cycle. Indeed,
the progeny virions formed in infected cells must be released and enter new target cells,
therefore overcoming the barriers formed by cellular membranes and cytoskeleton. To
this aim, viruses use three main strategies for egress: cell lysis, budding, and exocytosis.
Non-enveloped RNA viruses (also termed as “naked viruses”) are generally thought to
exit infected cells by lysis, thereby causing disruption of cellular membranes. However,
there are some exceptions to this rule, and it has been demonstrated that viruses such as
hepatitis A virus, poliovirus, rotavirus, and norovirus can exit cells non-lytically within
vesicles, thus enclosing themselves into host-derived membranes [5–7]. As this feature is
usually considered as the major difference between enveloped and non-enveloped viruses,
viruses using this strategy for cellular egress are sometimes defined as “quasi-enveloped”
(see Section 7). The budding process is commonly employed by enveloped RNA viruses
that derive their envelopes enriched by viral glycoproteins, directly from the host. Budding
of many RNA viruses, including retroviruses, orthomyxoviruses, filoviruses, alphaviruses,
and rhabdoviruses, occur at the plasma membrane (PM), and in this case, progeny virions
are directly released in the extracellular environment. For other enveloped RNA viruses,
including coronaviruses, flaviviruses, and bunyaviruses, budding occurs at intracellular
membranes into the lumen of organelles such as the endoplasmic reticulum (ER), the Golgi
apparatus, the ER–Golgi intermediate compartment (ERGIC), and the endosomes. In this
case, virus egress relies on the cellular secretory pathway, and the viral budding process
is mechanistically equivalent at the PM and at cellular organelles, since in both cases it
implies the deformation of the membrane during the viral particle envelopment process.
This event is then followed by membrane fission, thus allowing the release of viral particles
and the generation of two distinct cellular and viral membranes. Importantly, membrane
fission is achieved by hijacking the endosomal sorting complexes required for transport
(ESCRT) pathway (for a review, see [8] and Section 6). These cellular factors comprise three
subcomplexes (ESCRT-I, ESCRT-II, ESCRT-III), as well as the ESCRT-III-associated ALG-2-
interacting protein X (ALIX) and the ATPase vacuolar protein sorting-associated 4 (VSP4).
The early acting ESCRT complexes (ESCRT-I and ESCRT-II) assemble stably within the
cytoplasm and can associate with adaptor proteins such as the HRS/STAM complex
(also named ESCRT-0) to recruit and activate late-acting ESCRT-III and VSP4 factors at
specific membrane sites where the assembling virions and fission events occur (for reviews,
see [9–11]). Viral assembly and the recruitment of the ESCRT machinery must thus be
coordinated in space and time, and it is therefore not surprising that these steps are finely
orchestrated by viral structural proteins. Indeed, these multifunctional proteins were
found to recruit the ESCRT machinery at viral budding sites via conserved motifs, termed
late assembly domains (L domains) that act like cellular adaptor proteins (for a review,
see [12]). Historically L domains were first identified within Gag (group-specific antigen)
structural precursors of retroviruses (Figure 1) as HIV-1, Rous sarcoma virus (RSV) and
equine infectious anemia virus (EIAV), HIV-2, feline immunodeficiency virus (FIV), human
T cell leukemia virus type 1 (HTLV-1), murine leukemia virus (MLV), porcine endogenous
retrovirus (PERV), human endogenous retrovirus-K (HML-2), Mason–Pfizer monkey virus
(M-PMV), and prototypic foamy viruses (PFV) [13–25]. The different retroviral Gag proteins
are ubiquitinated, and importantly, ubiquitin was observed to be linked to the budding
machinery (see Section 6) [26–29].

In a further step, L domains were also found in structural proteins of many other
RNA enveloped viruses, including arenaviruses, filoviruses, rhabdoviruses, reoviruses,
and paramyxoviruses (Figure 2).
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Figure 1. Retroviral Gag organization domains. All retroviruses display matrix domain (MA, in violet), capsid (CA, in
green), and nucleocapsid (NC, in orange). Spacer peptides (SP) and peptide sequences containing L domains are indicated
within structural precursors of HIV-1, EIAV, FIV, HIV-2, RSV, MMTV, M-PMV, MLV, PERV, HTLV-I, HML-2, and PFV.

Of note, some enveloped RNA viruses such as influenza A [30,31] were found to not
rely on L domains, and thus cellular egress is regulated by ESCRT-independent budding
mechanisms, as extensively described in [32].

This review relates the history of L domains discovery and aims to provide a current
state of knowledge concerning the function of L domains and their cellular partners in-
volved in the budding events of RNA viruses, with a particular focus on retroviruses. Con-
sidering the importance of budding process in the viral life cycle, a better comprehension
of molecular mechanisms driving this step would constitute an asset to the development
of new antiviral drugs that could be effective against multiple viruses.
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Figure 2. L domains in the structural proteins of RNA viruses including filoviruses (EBOV and
MARV), rhabdoviruses (RABV and VSV), arenaviruses (LASV), paramyoviruses (PIV5), and picor-
navirus (HAV).

2. Identification of L Domains within HIV-1 p6 Domain of Pr55Gag Precursor

All retroviruses express structural Gag polyproteins that drive the assembly and the
release of virus-like particles (VLPs), even in the absence of other viral components (for
reviews, see [33,34]), and all retroviral Gag precursors contain the three structural domains
of matrix (MA), capsid (CA), and nucleocapsid (NC), each of them playing an essential
role in the retroviral particle assembly and in budding processes. Gag usually also carry
additional domains and spacer peptides such as, for example, the HIV-1 p6 domain, as
well as SP1 and SP2 linkers (for reviews, see [34–37]) (Figure 3).

Figure 3. Schematic representation of the domains in HIV-1 Pr55Gag precursor. The myristoyl moiety
is indicated at the N-terminus of the precursor. The MA domain drives the interaction between
the Pr55Gag and the PM through a bipartite signal consisting of a HBR domain and the covalently
attached myristic acid moiety. The CA domain of Pr55Gag mediates Pr55Gag oligomerization and
ensures formation of the core of the mature viral particles, and the NC domain, which contains two
zinc-finger motifs, corresponds to the primary binding motif to nucleic acids, and contributes to the
Pr55Gag multimerization. The p6 domain contributes to the specificity of Pr55Gag–gRNA interactions
and is essential for viral budding. Pr55Gag contains also two spacer peptides which are SP1 and SP2.

Amongst retroviral precursors, the role of the different domains of HIV-1 Gag (also
named Pr55Gag) in the encapsidation of gRNA into the viral particles was extensively
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characterized [34–39] (Figure 3). The HIV-1 assembly process occurs at the PM, where
about 2000 copies of Pr55Gag accumulate to produce immature particles. The targeting
of Pr55Gag polyproteins to lipid rafts at the PM [40] is driven by the MA domain at the
N-terminus of the precursor via a bipartite signal. The latter is composed by a myristic acid
moiety, and a highly basic region (HBR) located on the surface of MA domain, which forms
electrostatic interactions with negatively charged phosphatidylinositol-(4,5)-bisphosphate
(PIP2) that are specifically enriched at the inner leaflet of PM [41]. The myristic acid is
initially sequestered within the MA domain to prevent unspecific interactions with cellular
internal membranes. In a further step, the interactions between the HBR and PIP2 at PM,
in parallel with Pr55Gag-Pr55Gag interactions, lead to the exposure of the myristic acid
moiety [42–44], which is then inserted into the PM, thus allowing the anchoring of the
precursor by hydrophobic interactions. The CA domain mediates the oligomerization of
Pr55Gag and drives the immature particle assembly process. Then, the SP1 spacer, which
is located between CA and NC domains, contributes to Pr55Gag multimerization and acts
as a molecular switch to initiate the assembly of immature VLPs [45–48]. The NC domain
contains two zinc-finger motifs (ZFs) and interacts specifically with the dimeric viral RNA
genome (gRNA) to ensure its encapsidation within the virions [49–55], and the SP2 domain
that separates the NC and the C-terminus p6 domain plays a role in Pr55Gag processing,
even though the deletion of this domain has only a minor effect on viral infectivity, and did
not induce major alterations in mature core morphology [56]. Finally, the p6 domain seems
to mediate specific interactions occurring between Pr55Gag and gRNA [57] and regulates
the budding of viral particles at the PM by recruiting the cellular factors of the ESCRT
pathway. Indeed, mutations in this domain completely inhibited the budding of virions
from the PM of COS-7 cells [13]. In particular, truncated forms of Pr55Gag lacking the p6
domain were found to be able to assemble into VLP, even though, as shown by electron
microscopy, they are not released into extracellular medium and remain attached to the
cell membrane by a thin tether [13]. All together, these observations provided the first
evidence that retroviruses code for regions specifically required for virus release. Thereafter,
extensive mutagenesis analyses of the p6 domain showed that a PTAP motif is crucial for
the release of viral particles [58,59]. Subsequently, P(T/S)AP motifs (where the second
residue can be either a Ser or a Thr) were also identified within structural proteins of others
retroviruses, filoviruses, rhabdoviruses, and arenaviruses (for a list, see [8]), and at least
two other conserved motifs (PPxY and YPXnL) displaying similar functions in efficient
viral budding were identified within retroviral Gag proteins, as a number of studies have
demonstrated their interactions with components of the ESCRT machinery (for a review,
see [60]). All these short sequences were thus termed “L domains” to emphasize their
role in the late phases of the assembly process during the separation of virions from the
cell membrane.

In the specific HIV-1 context, both PTAP and YPXnL motifs within the p6 domain
were observed to promote the viral egress by interacting with the ESCRT machinery, as
the PTAP domain was found to be bound by the ESCRT-I tumor suppressor gene 101
(TSG101) [61] and the YPXnL domain by the ESCRT-III associated ALIX protein [62]
(see Sections 6.1 and 6.2).

In Pr55Gag, in addition to p6, the NC domain was also found to play a role in viral
release as the latter participates in the recruitment of the ESCRT cellular proteins necessary
for PTAP- and YPX(n)L-mediated budding [63]. Indeed, the deletion of the NC domain
decreased in cells the amount of the complexes formed by Pr55Gag and TSG101 [64].
Similarly, mutation of NC resulted in the release of DNA-containing viruses, which was
the consequence of budding defects mainly associated with deficiency in the recruitment
of TSG101 [65]. Moreover, the interactions between NC and the ESCRT-III-associated factor
ALIX were found to be promoted by ZFs, as mutations of these motifs resulted in defective
production of viral particles [66]. Interestingly, TSG101 was found to substitute for the
distal ZnF2, since chimeric Gag-∆ZF2-TSG101 were found to rescue budding [67], thus
confirming the role of those motifs in the recruitment of ESCRT machinery.
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3. Identification of the PPxY L Domain within RSV p2b Domain of Pr76Gag

Mutagenesis analysis on the Gag polyprotein (Pr76Gag) of the avian alpha-retrovirus
RSV revealed that the p2b spacer peptide located between the MA and CA domains is
necessary for the release of viral particles [14] (Figure 1). In line with this idea, truncation of
the p2b peptide caused severe release defects, showing a phenotype analogous to what was
observed for HIV-1 p6 mutants in which viral budding was arrested at the last stage [13].
The function of p2b in virus release was then attributed to a Pro-rich L domain that is
located between the MA and the CA domains. This L domain was later finely mapped to
the highly conserved amino acid sequence PPPPYV, and defects caused by its deletion can
be rescued by its replacement at several other positions in RSV Gag [68]. Moreover, this
RSV L domain was observed to specifically interact with the E3 ubiquitin protein ligases
NEDD4-like family ([69], and see Section 6.3). In a further step, these PPxY L domains
(where x could be any residue, even if it is often a Pro) were also found in several other
viruses [8], except for Gag proteins of lentiviruses including HIV-1 [14]. Interestingly, by
using RSV Gag chimeras, researchers showed that the L domain activity carried by p2b
could be functionally replaced with the C-terminal HIV-1 p6 sequence, and these domains
could function independently of their position in the precursor since they can be located
either internally or at the C-terminus [15]. Thus, these findings suggested for the first time
that, despite their differences, L domains share the same function as they both ensure the
release of viral particles.

4. Identification of the YPXnL L Domain within the EIAV p9 Domain of Pr55Gag

Similarly to the HIV-1 p6 domain, the p9 domain located at the C-terminus of the
EIAV Gag protein (named EIAV Pr55Gag) (Figure 1) was found to rescue the RSV viral
particle release defect induced by p2b deletion, thus suggesting the presence of a L domain
in p9 [15]. Interestingly, unlike other lentiviruses, the EIAV p9 domain does not contain
a P(T/S)AP L motif, and moreover, no sequence homology between EIAV p9 and its
functional homologues RSV p2b and HIV-1 p6 was identified. Thereafter, mutagenesis
analysis revealed that substitutions of each residue Y23, P24, or L26 with A within p9
abolished viral release, while other mutations within the same domain did not display any
effect on this step. This analysis demonstrated that the p9 L domain activity is supported
by a YPXL motif [16], which was then identified in several other viruses [8] in the more
generic YPXnL form (where Xn can vary in amino acid sequence and length). Remarkably,
budding assay of EIAV/HIV-1 and EIAV/RSV chimeric Gag polyprotein demonstrated
that p6 and p2b, respectively, can replace the EIAV p9 domain. These data, combined with
similar observations on the substitution of the p2b domain of RSV precursor by p6 and p9
domains [15], confirmed the notion these L domains are mostly interchangeable.

5. Functional Exchangeability and Multiplicity of L Domains

The functional exchangeability of L domains has indeed been widely demonstrated
in several viral contexts [15,16,70–74]. In addition to HIV-1, EIAV, and RSV, similar ex-
periments have also been carried out with gamma-retrovirus. The MLV Gag polyprotein
(Pr65Gag) (Figure 1) indeed contains a PPPY L motif in its p12 domain, located between the
MA and CA domains, similarly to RSV. Interestingly, in a PPPY-defective MLV Pr65Gag pro-
tein, the insertion of the p12 domain containing the PPPY motif and its flanking sequences
at different positions within the precursor can partially or completely restore the release of
viral particles. Moreover, in these same PPYP-deficient Pr65Gag, insertion of the RSV PPYP
L domain or the HIV-1 PTAP domain within the MA domain of MLV Pr65Gag was found
to rescue the assembly defects [70]. In addition, L domains were found to be functionally
exchangeable also with viruses outside the Retroviridae family. The first description of L
domains and their function in other viral families was reported in Rhabdovirus [71], where
a PPxY conserved motif with analogous properties to those observed for the L domain
in RSV p2b, was identified in matrix (M) of Rabbies virus and of vesicular stomatitis
virus (VSV) [75] (Figure 2). Notably, the N-terminal part of the VSV M protein, which
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includes the PPxY motif, was found to replace the MA-p2b region of RSV Pr76Gag, and
since mutations in this motif severely impaired the budding of the M-Gag chimera, this
PPxY domain was assigned as the VSV L domain [71]. Similarly, the L domain of Ebola
virus (EBOV), which consists in an overlapping of P(T/S)AP and PPxY motifs within the
viral VP40 protein (Figure 2), can restore the budding of a minimal assembly system in
which HIV-1 Gag lacks the natural NC-p1 and p6 domains [76].

Overall, the regulation of viral release mediated by L domains is highly conserved
among different groups of viruses, and new motifs acting as L domains were recently
identified using the ability of the L domains to be mostly functionally interchangeable.
That was, for example, the case of the FPIV motif identified within the M protein of
several paramyxoviruses (such as the parainfluenza Virus 5 (PIV5), the mumps virus (MV),
and the Newcastle disease virus (NDV)), which was observed to be necessary for viral
budding [72,77,78]. Interestingly, when fused to the C-terminal end of HIV-1 Gag proteins
lacking the PTAP L domain, the PIV5 FPIV motif was able to partially rescue the budding
defect induced by the lack of PTAP [72]. However, mutagenesis experiments suggested
a more general sequence O-P-x-V, where the Pro residue was found to be particularly
critical for function as its substitution led to poor budding [72]. More recently, a PLPPV
motif within the p8 domain of the mouse mammary tumor virus (MMTV) Gag protein
(Pr77Gag) has been described as a fourth type of retroviral L domain, which can restore
the budding defect of EIAV induced by the deletion of the YPXnL domain within the
precursor [73]. However, whether this motif is effectively a new type of retroviral L domain
is yet to be confirmed, and its precise role in viral budding remains to be fully characterized.
Finally, the LXXL motif, which is highly conserved in p2 domain of FIV Pr50Gag precursor
(Figure 1), is known to participate to ALIX-mediated release and to interact with clathrin
adaptor proteins for budding [18,79,80].

While some viruses such as EIAV rely on one single L domain to ensure their budding,
retroviruses such as FIV display two L domains (PSAP and LXXL) within their retroviral
precursor. This is indeed a common feature amongst viruses that frequently use a com-
bination of multiple L domains to promote virions egress. For instance, the MLV Gag
polyprotein contains three putative late domains (PSAP, LYPAL, and PPPY) located in the
MA domain and in p12 (Figure 1) [20]. Similarly, the HIV-1 p6 domain of Pr55Gag contains
also a YPXnL motif, which is located downstream to the PTAP domain [62,81]. However, if
the PTAP motif is conserved in all subtypes, the HIV-1 subtype C (HIV-1C) naturally lacks
the YPXnL L domain [82]. Interestingly, in HIV-1C-infected patients in therapy failure, a
tetra-peptide PYXE (where X is either Arg, Lys, or Gln) was found to replace YPXnL [83].
In this context, this sequence was found to fulfill the role of YPXnL in viral budding in
order to increase the replication fitness, as well as to decrease the sensitivity to certain
antiretroviral drugs such as the protease inhibitor lopinavir [84,85]. Moreover, viruses
such as M-PMV, HTLV-I, EBOV, marburg virus (MARV), and Lassa fever virus (LASV)
contain both PPxY and P(T/S)AP L domains (Figure 2) [86–91], while others such as RSV
contain both YPXnL and PPxY L domains [92]. In the VP40 (or M) protein of EBOV, both
domains are required for efficient budding. Interestingly, when these same domains were
transplanted in MLV, the two motifs overall contributed to viral budding, while in the
HIV-1 context, the PPxY-type L domains were mostly inactive, and L-domain activity
was entirely due to PTAP. These context-dependent effects of L-domain function may
reflect requirements for distinct host-driven functions during the viral assembly [76,88,93].
Moreover, multiple late domains typically exhibit a hierarchy of importance, considering
that mutations in one of the L domains display a more deleterious effect on budding
than the other. For instance, in HTLV-1, the viral precursor Pr53Gag carries both PPPY
and PTAP L domains (Figure 1), and if PPPY motif cannot be substituted with PTAP or
YPXnL domains without affecting viral budding, the replacement of the PTAP domain
with either the PPPY or YPXnL motifs has no influence on the release of viral particles [88].
Nevertheless, mutations of either PPPY or PTAP L domains with APPY or PTRP motifs,
respectively, impaired viral budding, demonstrating that these L domains do not display
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redundancy and both play an active role in virus release [88]. Indeed, electron microscopy
analysis revealed that mutations in the PPPY L domain of HTLV-1 or of M-PMV cause early
budding defects with consequent viral particle accumulation underneath the PM without
membrane curvature induction [86,94], while the mutation of P(T/S)AP blocks the release
of viruses at a later step [86,95]. Similarly, three different motifs, namely, P(T/S)AP, PPxY,
and YPX(n)L, were proposed to play a role in the release of human exogenous retrovirus-K
(HML-2). However, further analysis clarified that viral release was predominantly found to
be mediated by PTAP motif, as well as by two auxiliary YPX(n)L motifs in the p15 domain
of the Gag precursor (Figure 1) [22]. The notion of a hierarchy in L domains function was
also supported by the case of the porcine endogenous retrovirus (PERV). Indeed even
though its Gag protein contains the two L domains PPPY and P(F/S)AP (Figure 1), the
dominant L domain involved in PERV release was found to be PPPY [21]. Taken together,
these finding indicate that L domains exhibit distinct functions for viral egress. Of note
is the case of the PFV, for which three potential L-domain motifs (PSAP, PPPI, and YEIL)
were proposed, considering the homology of these sequences with other viral L domains
(Figure 1) [25]. Mutation of the PSAP domain suggested that this domain corresponds to a
conventional L domain, and two hybrid analyses revealed that the interaction between PFV
Gag and TSG101 is indeed mediated by this sequence. In contrast, the inactivation of PPPI
suggested an unconventional mechanism to facilitate PFV egress [25], and mutant viral
particles displayed reduced infectivity. Similarly, mutation of the conserved YEIL motif
revealed no classical L domain function but resulted in a reduced rate of Gag processing
by the viral protease, as well as in the release of noninfectious VLPs [96]. Finally, viruses
possessing multiple L domains can also change the L-domain usage to replicate in various
cells as M-PMV. Indeed, it was found that the PPxY constitutes a major L-domain in several
cell lines, while the PSAP sequence was shown to function as a L-domain in HeLa cells,
and it is thought to be dispensable for viral production in 293T and COS-7 cells [23].

6. Interplay between L Domains and ESCRT Machinery

Historically, the first in vitro and in vivo evidence that L domains within retroviral
Gag interact with host factors involved in the ubiquination machinery were provided by
Leis and Carter and Leis labs [61,69,97], thus indicating an important link between this
cellular pathway and retroviral budding. Indeed, the NEDD4-like family of E3 ubiquitin
protein ligases was found to specifically interact with the RSV PPPPYV L domains [69,97],
while the HIV-1 PTAPP L domain binds the homologue of ubiquitin-conjugating (E2)
enzyme TSG101 [61]. Viral particle release was then found to be ensured by the specific
interaction between L domains and the ESCRT machinery, which is known to remodel
membrane. ESCRT proteins have been originally characterized in yeast for their role
in multivesicular bodies (MVBs) biogenesis (for a review, see [98]) and are functionally
conserved throughout several archaeal species and eukaryotes [99]. In metazoans, it is
now well established that ESCRT proteins, beyond their role in the biogenesis of MVBs
and in cytokinetic abscission [100,101], are also involved in many remodeling processes,
including vesicle and virus budding from PM, endolysosomal membrane and PM repair,
neuronal pruning, nuclear envelope maintenance, and autophagy (for a review, see [9]). In
humans, the core of the ESCRT machinery is composed of the stalk-shaped hetero-tetramer
ESCRT-I (TSG101, VPS28, VPS37A-D, and MVB12/UBAP1), the Y-shaped hetero-tetramer
ESCRT-II (two copies of EAP20, one copy of EAP30 and EAP45), the ESCRT-III complex
formed by IST1 and the charged multivesicular body proteins (CHMP) 1 to 7 (CHMP1A/B,
CHMP2A/B, CHMP3, CHMP4A-C, CHMP5, CHMP6, and CHMP7), the ESCRT-associated
protein ALIX, and the AAA ATPase VPS4 (for a detailed list of the homolog components
of the ESCRT machinery in yeast, see [10]). The recruitment of the ESCRT factors to their
proper sites of action at membranes is enabled by targeting adapter proteins including the
HRS/STAM complex (also named ESCRT-0), the centrosomal protein 55 (CEP55), LEM
domain 2 protein (LEMD2), and arrestin domain-containing protein 1 (ARRDC1) (for
a review, see [9]). Remarkably, P(T/S)AP motifs are used by several of these adapter
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proteins, including the HRS subunit of ESCRT-0 [102] and ARRDC1 [103], to recruit the
ESCRT machinery via the ubiquitin E2 variant (UEV) domain of TSG101. Similarly, the
P(T/S)AP L domain in HIV-1 and EBOV recruits the ESCRT-I factor TSG101 at viral as-
sembly sites by direct binding to its UEV domain [61,104–107]. Moreover, the expression
of an N-terminal fragment of TSG101 containing UEV was found to inhibit HIV-1 and
FIV release, and in this sense, the FIV PSAP motif behaves similarly to the PTAP motif
of HIV-1 [108]. Interestingly, a PTAP motif duplication reported in some HIV-1-infected
patients [109–111] was associated with an enhanced interaction with TSG101 [112], as
well as with an increased retroviral replication fitness and a decreased susceptibility for
protease inhibitors [84,112,113]. Other L domains such as the HIV-1 YPXnL recruits the
ESCRT-III-associated factor ALIX by direct binding to its V domain [62,79,114,115], while
the HTLV-1 PPxY motif binds to the WW domain of members of the HECT E3 ubiquitin
ligases NEDD4 family (see Section 6.3) [69,116] (Figure 4). Moreover, if the ESCRT-I and
ESCRT-II complexes constitute early acting factors that coordinate ESCRT-III recruitment
and membrane curvature, the ESCRT-III polymerization and depolymerization are thought
to be the main driving force for membrane remodeling and fission [117–122], although
the exact mechanism by which these components mediate this process is still unclear. In
cytoplasm, ESCRT-III proteins exist in a monomeric closed autoinhibited state [123–125]
that is overcome by binding with the upstream ESCRT components [126–128]. This leads
to the membrane binding and to interaction with the VPS4 ATPase that plays a key role
in ESCRT-III-mediated membrane scission by remodeling and disassembling ESCRT-III
filaments [117,119,129–131]. Therefore, VPS4, together with the ESCRT-III complex, corre-
sponds to late acting factors [9] that are usurped by viruses for viral egress.

Figure 4. The recruitment of the ESCRT cellular factors by L domains in HIV Pr55Gag ensures viral particles release. The
cellular factor angiomotin (AMOT) promotes the recruitment of the ubiquitin ligase NEDD4L at HIV-1 budding sites. The
ESCRT machinery is then recruited by NEDD4 family, and this interaction seems to be related to the ubiquitination of viral
structural proteins. The P(T/S)AP L domain of Pr55Gag recruits the ESCRT-I factor TSG101 at viral assembly sites by direct
binding to its ubiquitin E2 variant (UEV) domain, and the YPXnL motif recruits the ESCRT-III-associated factor ALIX by
binding to its V domain. The ESCRT-III proteins drive the interaction with the VPS4 ATPase. This late-acting factor leads to
membrane remodeling and its fission, and it drives the disassembling of the ESCRT-III filaments. The process ends with the
release of the newly formed viral particle.
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6.1. L Domain Interaction with the ESCRT-I

The role of ESCRT-I in viral egress was exhaustively characterized in the case of HIV-1,
and the interaction between two ESCRT-I factors such as the C-terminal domain of TSG101
and the N-terminal domain of VPS28 [132] is thought to be essential to ensure HIV-1
budding. Indeed, fusion of TSG101 mutated in its VPS28 binding domain to an HIV-1 Gag
protein deleted of the p6 domain (also named Gag∆p6) [133], as well as the same TSG101
mutants expressed in cells depleted of endogenous TSG101 [134], failed to rescue viral
budding. Conversely, fusion of TSG101, VPS37B, or VPS37C to the C-terminus of Gag∆p6
efficiently rescued VLP budding, despite L domain truncation [106,134,135]. In addition,
knockdown experiments of TSG101 using siRNAs led to a defective HIV-1 budding, which
can be rescued by TSG101 trans-complementation [104], while the overexpression of the
UEV domain of TSG101 inhibited HIV-1 release [105]. The ESCRT-I UBAP1 factor was also
found to promote HIV-1 budding when fused to the C-terminus of a Gag protein lacking L
domains, although its depletion by siRNAs did not impact on virus release [136]. Similarly,
depletion or overexpression of the ESCRT-I MVB12 had no direct effect on virus egress,
even if the infectivity and virion morphogenesis resulted to be defective [137]. Furthermore,
depletion of ESCRT-II had little effect on HIV-1 release but blocked the ASV (avian sarcoma
virus) budding, and conversely, depletion of ESCRT-I had little effect on ASV release
but blocked HIV-1 budding, suggesting that ASV and HIV-1 Gag proteins use different
combinations of ESCRT proteins to promote budding [74]. Similarly, RSV and HIV-1
Gag particle release is achieved through independent ESCRT-mediated pathways [138],
even though they are linked through TSG101–NEDD4 interaction. However, while the
importance of ESCRT-I factors in HIV-1 budding is well established, the role of ESCRT-II
factors is yet to be clarified [74,139–142], and further investigations will then be necessary
to fully understand their function in HIV-1 cycle. In the context of HIV-2, TSG101 and
Gag precursor (Pr57Gag) were also found to interact in vitro and ex vivo via the PTAPP
motif in the p6 domain of the precursor (Figure 1) and via the N-terminal Ubc-conjugation
homology domain of TSG101. Moreover, the overexpression of TSG101 resulted in an
increased level of ubiquitination of Pr57Gag, thus indicating the involvement of the cell
ubiquitination machinery during the late stages of the viral life cycle [17]. A PSAP L-
domain binding TSG101 was also identified in the p2 domain of the FIV Pr50Gag precursor
(Figure 1). Interestingly, the Bro1 domain of human ALIX was found to rescue FIV mutants
lacking TSG101-interacting motif. However, in contrast to HIV-1, mutations of ZFs in
NC domain did not impair FIV rescue, suggesting conserved and divergent mechanisms
employed by lentiviruses to achieve viral budding [19].

6.2. L Domain Interaction with ALIX

The role of ESCRT-III-associated ALIX protein in YPXnL-mediated viral budding
was first determined in the EIAV context, where yeast two hybrid and GST pull down
assays showed that the p9 domain of EIAV directly interacts with ALIX, and that this
interaction would depend on the YPDL sequence, as substitutions in this motif inhibited
the interaction between p9 and ALIX [62,143]. Moreover, the overexpression of truncated
ALIX in its Bro1 domain, or the depletion of endogenous ALIX using siRNA knockdown,
inhibited p9-mediated EIAV budding. Similar effects were observed for HIV-1 constructs,
where p6 domain was replaced by the EIAV p9 domain [143]. However, even though it
has been well established that ALIX plays a crucial role in EIAV budding, its function in
HIV-1 egress has been formerly considered as secondary. Indeed, the second L domain
of HIV-1 (i.e., YPXnL) in p6 was found to provide an alternative pathway for viral egress
by interacting with the V-domain of ALIX [62], which in turn leads to the recruitment
of ESCRT-III at budding sites via a direct interaction between its Bro1 domain and the
C-terminal domain of CHMP4 [114,144]. However, early findings suggested that this
interaction plays a minor role in HIV-1 release in comparison to PTAP–TSG101 interaction.
Moreover, in contrast to EIAV budding mediated by the p9 domain, depletion of ALIX
with siRNA only slightly affected p6-mediated release of HIV-1 from P4/R5 cells, and
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the overexpression of ALIX truncated in its Bro1 domain did not drastically inhibit HIV-1
p6-mediated budding from P4/R5 or 293T cells [143]. In addition, deletion or mutations
of the YPXnL L domain within p6 did not completely impaired HIV-1 budding from
COS or HeLa cells [13,58,59,115]. On the other hand, overexpression of the V domain of
ALIX considerably inhibited the release of HIV-1 and EIAV virions form HeLa or COS-1
cells [79,115,145], suggesting that HIV-1 release displays cell type dependence [59,146].
This notion was also supported by the fact that although the TSG101-P(T/S)AP interaction
has been shown to play a more important role than the ALIX-YPXnL interaction in HIV-1
budding from various epithelial cell lines, YPXnL mutations were found to play a major
role in Jurkat T cells [146], and similarly, in HAP1 cells, the YPXnL–ALIX interaction was
found to mainly regulate HIV-1 particle production [141].

Moreover, the overexpression of ALIX was shown to rescue the budding of HIV-1
PTAP mutants, and this would depend on the interactions occurring between its Bro1
domain and CHMP4B [114,147]. Moreover, substitutions in the YPXnL motif that abrogates
ALIX interaction with Pr55Gag are thought to impair the recruitment of the ESCRT-III
machinery, presumably due to catastrophic disassembly of the ESCRT components [148].
Altogether, these findings show the implication of ALIX in the final stages of ESCRT-
mediated budding in the HIV-1 context, supporting the idea that ALIX is recruited to the
membrane neck at the end of viral particle assembly [149] and mainly acts as a scaffold for
ESCRT-III polymerization during viral budding (for a review, see [150]).

As mentioned above, the HIV-1 subtype C (HIV-1C) naturally lacks the YPXnL L
domain, and in this case, the overexpression of the V domain of ALIX did not affect viral
particle release [82]. In this context, the PYXE domain that replaces the YPXnL motif in pa-
tients in therapy failure [83] was found to interact with ALIX, thus behaving as a L domain
to enhance viral budding [84,85]. Similarly, precursors of some simian immunodeficiency
virus (SIV) (such as the SIV rhesus macaque and the SIV African green monkeys) lack
YPXnL motif, although they can bind ALIX. Indeed, crystal structures revealed that in this
case anchoring Tyr and nearby hydrophobic residues lead to the interaction between the
precursors and the V domain of ALIX, thus revealing how lentiviruses employ diverse
sequences to bind ALIX to efficiently promote virus budding [151].

Finally, the suppression of ALIX and TSG101 mediated by RNA interference (RNAi)
was also enabled to clarify the contribution of these factors in the production of a DNA
virus, the herpes simplex virus type 1 (HSV-1). Indeed, these findings suggested the
presence of alternative mechanisms to recruit the ESCRT-III proteins that provide the
scission of the membrane and thus the release viral particles [152].

6.3. L Domain Interaction with E3 Ubiquitin Ligase NEDD4 Family and the
Ubiquitination Machinery

The overexpression of the HECT ubiquitin E3 ligase NEDD4L was observed to stim-
ulate the release of HIV-1 constructs lacking TSG101- and ALIX-binding L domains, in-
creasing infectious titers over 20-fold [153]. Moreover, efficient M-PMV budding was
found to be related to the recruitment of NEDD4-like proteins by a PPXY L domain [153],
thus indicating an alternative pathway to recruit the ESCRT machinery at viral budding
sites [69,116]. The recruitment of the ESCRT machinery by E3 ubiquitin ligases NEDD4
family is linked to the ubiquitination [61,69,154–157]. Indeed all retroviral Gag polypro-
teins, except Gag from spumaviruses [158], are ubiquitinated (for a review, see [159]), and
ESCRT-0, ESCRT-I, and ESCRT-II recognize and interact with ubiquitylated cargos (for a
review, see [160]). Moreover, NEDD4 interacts with the RSV PPxY L domain via its WW
domain [69,161], and overexpression of WW domain impaired RSV budding [69], similarly
to the mutations occurring in the HECT catalytic site [97]. Likewise, the PPxY motif of
HTLV-1 Pr53Gag precursor interacts with the WW domains of several members of NEDD4
family (including NEDD4, WWP1, and ITCH) (for a review, see [161]). The recruitment
of NEDD4 by the PPxY L domain was found to promote Pr53Gag ubiquitination, and at
this level, TSG101 is then recruited by the second PTAP L domain, thereby ensuring viral
budding [95]. Similarly, MLV release is promoted by the interaction occurring between
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WWP1 ubiquitin ligase and the viral PPxY L domain [116]. Furthermore, the depletion of
free cellular ubiquitin by proteasome inhibitors resulted in an inhibited RSV egress, and
importantly this phenotype was rescued by ubiquitin overexpression or by ubiquitin fusion
to RSV [26]. Interestingly, in the EIAV context, the fusion of ubiquitin to the C-terminus of
EIAV Pr55Gag precursor lacking the YPxnL L domain led to overcoming of the release de-
fects [154], thus demonstrating that ubiquitin can functionally counterbalance the absence
of retroviral L domains. All these findings confirm that ubiquitination is a part of retroviral
budding machinery.

The interaction between PPxY and the WW domain in HECT E3 ubiquitin ligases
also regulates the budding of several viruses outside the Retroviridae, as for instance
rhabdoviruses and filoviruses [162]. These viruses possess a PPxY L domain in their matrix
protein (M or VP40, respectively) that functionally interacts with the WW domains of E3
ubiquitin ligases [161,163–166]. It was shown that VP40 protein of EBOV interacts with
WWP1, and its ubiquitination enhances viral budding. Moreover, WWP1 depletion by
siRNA was observed to induce the inhibition of VLP budding [167]. Interestingly, although
HIV-1 Pr55Gag does not contain a PPxY L domain, the overexpression of catalytically active
NEDD4-2 (NEDD4L) E3 ubiquitin ligase can rescue the budding of an HIV-1 construct
where both PTAP and YPXnL L motifs were deleted [153,168]. Furthermore, the recruitment
of NEDD4L at HIV-1 budding sites was found to be promoted by the cellular factor
angiomotin (AMOT) [169] (Figure 4). Finally, other cellular proteins were found to provide
an alternative access to ESCRT-III recruitment and act as adaptors, such as, for example,
the arrestin-related trafficking (ART) proteins [170].

7. Quasi-Enveloped RNA Viruses and the ESCRT Pathway

It was recently shown that several non-enveloped viruses such as hepatitis A virus
(HAV), poliovirus, rotavirus, and norovirus [5–7] can be referred to as quasi-enveloped
viruses since they enclose themselves in vesicles derived from host membranes and exit
cells non-lytically (for a review, see [171]). Interestingly, several studies have indicated
that the formation of quasi-enveloped HAV virions (eHAV) also depends on the ESCRT
components ALIX, VPS4, CHMP2, and IST1 [5,172–174]. Notably, one of the HAV capsid
major structural proteins VP2 encodes two YPXnL motifs that interact with ALIX [5,172].
Mutational analysis revealed that single substitution of Leu for Ala within either YPXnL
motifs resulted in reduction of eHAV release, and that dual substitutions of Leu for Ala
in both motifs impaired eHAV budding, but not the assembly of infectious intracellular
particles [172]. In those double mutants, the failure in eHAV releasing correlates with
the loss of interaction between the capsid and ALIX [172], and similar budding defects
were observed when ALIX was depleted by RNAi [5]. Interestingly, eHAV capsid contains
a pX domain on its surface carrying several ubiquitination sites that could promote the
ESCRT recruitment [171], and pX was found to interact with the V domain of ALIX, thus
participating to eHAV biogenesis, although no defined ALIX-binding motif has been
identified within pX thus far [174]. Altogether, these findings suggest that HAV recruits
ALIX to bud into membranous vesicles, thus facilitating viral protection from neutralizing
antibodies [5] and viral spreading as it was demonstrated for rotaviruses, noroviruses, and
enteroviruses [6,7].

8. Conclusions

Enveloped RNA viruses derive their envelope from the host as they bud through
cellular membranes, and viral budding requires the deformation of the cellular membrane
followed by a fission event allowing the generation of distinct cellular and viral membranes.
Many viruses therefore hijack the cellular ESCRT machinery to remodel the membranes
at viral budding sites, thereby enabling the release of infectious enveloped viral particles.
To recruit the ESCRT factors, enveloped viruses use conserved viral assembly L domains
encoded by their multifunctional structural proteins. Three types of L domains have been
characterized thus far: P(T/S)AP, YPXnL, and PPxY, and two other types, FPIV and PLPPV,
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have been reported in the M protein of paramyxoviruses [72,77,78] and in the MMTV
Pr77Gag precursor [73], respectively, even though the cellular partners of these two last
motifs remain to be identified. In addition, it was shown that quasi-enveloped viruses, such
as HAV, that can exit cells non-lytically within vesicles, encode two YPXnL motifs in their
structural protein VP2 that interact with ALIX, and use the ESCRT pathway to promote
their budding [5,172–174]. As the mechanisms for ESCRT recruitment through the action of
L domains and consequent budding are well conserved processes between different RNA
virus families, a better comprehension will be determinant for the development of new
broad-spectrum antiviral drugs directed against viral release. For example, it was observed
that compounds that block the PPxY–NEDD4 interaction also efficiently inhibited the
egress of MARV [175,176]. Similarly, recent studies have shown that prazole compounds
can inhibit the release of some enveloped viruses, including HIV-1, EBOV, Mayaro virus
(MAYV), and HSV by covalently binding the UEV domain of TSG101, which results in the
disruption of TSG101–ubiquitin interaction [177–179]. Such a class of inhibitors interfering
with the budding machinery could thus resultingly be extremely useful for impairing the
production of newly emerging RNA viruses for which no therapeutics are available.
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