SHARED: An International Collaboration to Unravel Hepatitis C Resistance
1. Is Resistance Surveillance Needed in the Era of DAAs?
2. What Is SHARED?
3. What Types of Data Are Collected?
4. Key Findings and Presentations
- Selection of RAS was common following DAA treatment failure. About 80–90% of patients who received an NS5AI- or PI-containing regimen harbored drug-resistant HCV following treatment failure. Resistant HCV variants often had two or more mutations conferring a high level of drug resistance in vitro [22];
- A number of “unusual” GT subtypes were identified in patients who failed NS5AI-containing regimens; these included 1I/g, 2c/i/j/q/, 3b/g/h/k, 4b/f/g/k/n/ns/o/q/r/t/v, and 6e/h/p/q/r/xe. Specifically, GT3b/h and 4r virologic failures were largely over-represented among non-GT3a and non-GT4a/d. Each “unusual” GT subtype harbored multiple NS5A RAS that can contribute to high-level of drug resistance, leading to virologic failure [23,24];
- The majority of the GT3a treatment failure patients had either single or dual RAS containing A30K or Y93H. The frequency of co-selecting Y93H with A30K/R/S/T depended on the treatment received. Failure from GLE–PIB and SOF–velpatasvir –voxilaprevir often resulted in a higher frequency of dual RAS than the first-generation DAAs [25];
- About 13% of the GT1b patients diagnosed using the commercial genotyping assays turned out to be GT3 based on the HCV sequences. The misdiagnosed patients were often treated with inappropriate regimens, resulting in virologic failure and RAS selection [26]. HCV sequencing is the method of choice for determining GT subtypes, drug resistance characterization and viral transmission;
- A web-based application, HCV ReCall, which automatically processed and interpreted Sanger HCV sequence data was developed and made freely available to the public. This application generated a summary report containing HCV genotypes, RAS relative to the prototype references, relative peak heights of the RAS mixtures, quality scores for sequencing primers, and alerts for potential contamination among samples. This open-source program is available at https://hcvshared.hcvdb.ubc.ca (accessed on 21 July 2021) [27].
5. Strength and Limitations of the SHARED Dataset
6. How to Join SHARED?
7. SHARED Collaborators
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Feld, J.J.; Jacobson, I.M.; Hézode, C.; Asselah, T.; Ruane, P.J.; Gruener, N.; Abergel, A.; Mangia, A.; Lai, C.-L.; Chan, H.L.Y. Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N. Engl. J. Med. 2015, 373, 2599–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forns, X.; Lee, S.S.; Valdes, J.; Lens, S.; Ghalib, R.; Aguilar, H.; Felizarta, F.; Hassanein, T.; Hinrichsen, H.; Rincon, D.; et al. Glecaprevir plus pibrentasvir for chronic hepatitis C virus genotype 1, 2, 4, 5, or 6 infection in adults with compensated cirrhosis (EXPEDITION-1): A single-arm, open-label, multicentre phase 3 trial. Lancet Infect. Dis. 2017, 17, 1062–1068. [Google Scholar] [CrossRef]
- World Health Organization. Towards the elimination of hepatitis B and C by 2030. In The Draft WHO Global Hepatitis Strategy; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Chen, Z.W.; Li, H.; Ren, H.; Hu, P. Global prevalence of pre-existing HCV variants resistant to direct-acting antiviral agents (DAAs): Mining the GenBank HCV genome data. Sci. Rep. 2016, 6, 20310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwo, P.; Gitlin, N.; Nahass, R.; Bernstein, D.; Rojter, S.; Schiff, E.; Davis, M.; Ruane, P.J.; Younes, Z.; Kalmeijer, R. A phase 3, randomised, open-label study to evaluate the efficacy and safety of 8 and 12 weeks of simeprevir (SMV) plus sofosbuvir (SOF) in treatment-naive and-experienced patients with chronic HCV genotype 1 infection without cirrhosis: OPTIMIST-1. J. Hepatol. 2015, 62, S270. [Google Scholar] [CrossRef]
- Sarrazin, C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J. Hepatol. 2016, 64, 486–504. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, C. Treatment failure with DAA therapy: Importance of resistance. J. Hepatol. 2021, 74, 1472–1482. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Interim Guidance for Country Validation of Viral Hepatitis Elimination. June, 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Popping, S.; Verwijs, R.; Cuypers, L.; Claassen, M.A.; van den Berk, G.E.; De Weggheleire, A.; Arends, J.E.; Boerekamps, A.; Molenkamp, R.; Koopmans, M.P.; et al. Transmission of NS5A-Inhibitor Resistance-Associated Substitutions Among Men Who Have Sex With Men Recently Infected with Hepatitis C Virus Genotype 1a. Clin. Infect. Dis. 2020, 71, e215–e217. [Google Scholar] [CrossRef] [PubMed]
- Foster, G.R.; Afdhal, N.; Roberts, S.K.; Bräu, N.; Gane, E.J.; Pianko, S.; Lawitz, E.; Thompson, A.; Shiffman, M.L.; Cooper, C.; et al. Sofosbuvir and Velpatasvir for HCV Genotype 2 and 3 Infection. N. Engl. J. Med. 2015, 373, 2608–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, V.; Angus, P.; Bronowicki, J.P.; Dore, G.J.; Hezode, C.; Pianko, S.; Pol, S.; Stuart, K.; Tse, E.; McPhee, F. Daclatasvir, sofosbuvir, and ribavirin for hepatitis C virus genotype 3 and advanced liver disease: A randomized phase III study (ALLY-3+). Hepatology 2016, 63, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
- Poordad, F.; Lawitz, E.; Gutierrez, J.; Evans, B.; Howe, A.; Feng, H.-P.; Li, J.; Hwang, P.; Robertson, M.; Wahl, J. O006: C-swift: Grazoprevir/elbasvir+ sofosbuvir in cirrhotic and noncirrhotic, treatment-naive patients with hepatitis C virus genotype 1 infection, for durations of 4, 6 or 8 weeks and genotype 3 infection for durations of 8 or 12 weeks. J. Hepatol. 2015, 62, S192–S193. [Google Scholar] [CrossRef]
- Blach, S.; Zeuzem, S.; Manns, M.; Altraif, I.; Duberg, A.S.; Muljono, D.H.; Waked, I.; Alavian, S.M.; Lee, M.-H.; Negro, F.; et al. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Shafer, R.W. Rationale and uses of a public HIV drug-resistance database. J. Infect. Dis. 2006, 194, S51–S58. [Google Scholar] [CrossRef] [Green Version]
- Childs, K.; Davis, C.; Cannon, M.; Montague, S.; Filipe, A.; Tong, L.; Simmonds, P.; Smith, D.; Thomson, E.C.; Dusheiko, G. Suboptimal SVR rates in African patients with atypical Genotype 1 subtypes: Implications for global elimination of Hepatitis, C. J. Hepatol. 2019, 71, 1099–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Mbituyumuremyi, A.; Kabahizi, J.; Ntaganda, F.; Muvunyi, C.M.; Shumbusho, F.; Musabeyezu, E.; Mukabatsinda, C.; Ntirenganya, C.; Van Nuil, J.I. Treatment of chronic hepatitis C virus infection in Rwanda with ledipasvir–sofosbuvir (SHARED): A single-arm trial. Lancet Gastroenterol. Hepatol. 2019, 4, 119–126. [Google Scholar] [CrossRef]
- Isfordink, C.J.; van de Laar, T.J.W.; Rebers, S.P.H.; Wessels, E.; Molenkamp, R.; Knoester, M.; Baak, B.C.; van Nieuwkoop, C.; van Hoek, B.; Brakenhoff, S.M.; et al. Direct-Acting Antiviral Treatment for Hepatitis C Genotypes Uncommon in High-Income Countries: A Dutch Nationwide Cohort Study. Open Forum Infect. Dis. 2021, 8, ofab006. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Lim, S.G.; Xie, Q.; Văn, K.N.; Piratvisuth, T.; Huang, Y.; Wu, S.; Xu, M.; Tang, H.; Cheng, J.; et al. Sofosbuvir–velpatasvir for treatment of chronic hepatitis C virus infection in Asia: A single-arm, open-label, phase 3 trial. Lancet Gastroenterol. Hepatol. 2019, 4, 127–134. [Google Scholar] [CrossRef]
- Pawlotsky, J.M. DAA failures in African patients with “unusual” HCV subtypes: Hey! Didn’t you know there was another world? J. Hepatol. 2019, 71, 1070–1072. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.; Smith, D.; Vaughan-Jackson, A.; Magri, A.; Consortium, S.-H.; Barnes, E.; Simmonds, P. Efficacy of NS5A inhibitors against unusual and potentially difficult-to-treat HCV subtypes commonly found in sub-Saharan Africa and South East Asia. J. Hepatol. 2020, 73, 794–799. [Google Scholar] [CrossRef]
- Popping, S.; Cento, V.; García, F.; Ceccherini-Silberstein, F.; Seguin-Devaux, C.; Vijver, D.A.; Boucher, C.A. The need for a European hepatitis C programme monitoring resistance to direct-acting antiviral agents in real life to eliminate hepatitis C. Elsevier 2018, 4, 179–181. [Google Scholar] [CrossRef]
- Howe, A.; Cento, V.; Knight, N.; Dietz, J.; Di Maio, V.C.; De Salazar, A.; Popping, S.; Fourati, S.; Knops, E.; Kjellin, M. A real world resistance profile of virologic failures collected from an international collaboration (SHARED). Hepatology 2018, 68, 128A. [Google Scholar]
- Popping, S.; Fourati, S.; Howe, A.; Di Maio, V.C.; Tay, E.; Rodrigo, C.; Cunningham, E.; Kjellin, M.; Sfalcin, J.; Gomes, P. The Global prevalence of resistance associated substitutions (RASs) in unusual HCV subtypes. Hepatology 2019, 70, 77–78. [Google Scholar]
- Popping, S.; Fourati, S.; Howe, A.; Maio, V.C.D.; Salazar, A.D.; Rodrigo, C.; Kjellin, M.; Lennerstrand, J.; Douglas, M.; Silberstein, F.C.; et al. Resistance-Associated Substitutions (RAS) in “Unusual” HCV Subtypes (#563). In Proceedings of the Conference on Retroviruses and Opportunistic Infections, Boston, MA, USA, 8–11 March 2020. [Google Scholar]
- Fourati, S.; Silberstein, F.C.; Howe, A.; De Salazar, A.; Popping, S.; Di Maio, V.C.; Tay, E.; Rodrigo, C.; Cunningham, E.; Kjellin, M. HCV resistance patterns in a worldwide network of cohorts of GT-3a infected patients. Hepatology 2019, 70, 180A–181A. [Google Scholar]
- Howe, A.; De Salazar, A.; Aragri, M.; Popping, S.; Fourati, S.; Tay, E.; Rodrigo, C.; Cunningham, E.; Kjellin, M.; Fernando Fay, F. Genotype misclassification negatively impact the choice of regimens and treatment outcomes in the management of hepatitis C. Hepatology 2019, 70, 318A–319A. [Google Scholar]
- Harrigan, R.P.; Chulanov, V.; Zhigalkina, P.; Fourati, S.; Pawlotsky, J.M.; Salazar Ad, F.G.; Jacka, B.; Verich, A.; Applegate, T.; Newton, E.; et al. HCV RECall-Automated Sanger Basecalling for HCV Genotyping and Sequencing For Drug Resistance Evaluation. In Proceedings of the 17th European Meeting on HIV & Hepatitits, Rome, Italy, 22–24 May 2019. [Google Scholar]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total |
---|---|
Number of Patients, n | 4911 |
Male sex, n (%) | 3643 (74%) |
Age in 2021, median (IQR) | 56 (48–63) |
Ethnicity, n | 832 |
caucasian, n (%) | 751 (90%) |
black, n (%) | 20 (2%) |
other, n (%) | 61 (7%) |
Illicit Drug use, n | 1500 |
injection drug use, n (%) | 887 (59%) |
non-injection drug use, n (%) | 382 (25%) |
Sexual orientation, n | 902 |
heterosexual, n (%) | 528 (59%) |
homosexual, n (%) | 343 (38%) |
bisexual, n (%) | 29 (3%) |
Coinfection, n | 2819 |
HIV-HCV, n (%) | 750 (27%) |
HBV-HCV, n (%) | 103 (4%) |
Cirrhosis, n | 2464 |
yes, n (%) | 1012 (41%) |
Genotype *, n | 4911 |
GT1a, n (%) | 1754 (36%) |
GT1b, n (%) | 1285 (26%) |
GT1-other, n (%) | 33 (1%) |
GT 2, n (%) | 147 (3%) |
GT3, n (%) | 1395 (28%) |
GT4, n (%) | 276 (6%) |
GT5, n (%) | 2 (0.04%) |
GT6, n (%) | 18 (0.4%) |
GT8, n (%) | 1 (0.02%) |
Treatment history, n | 3195 |
treatment naïve, n (%) | 2315 (72%) |
treatment experienced, n (%) | 880 (28%) |
prior PEG/RBV, n (%) | 463 (53%) |
prior DAA, n (%) | 141 (16%) |
unknown, n (%) | 276 (31%) |
Treatment, n | 3951 |
NS5AI + NI, n (%) | 2203 (56%) |
NS5AI + PI, n (%) | 770 (19%) |
PI + NI, n (%) | 153 (4%) |
NS5AI + PI + NI or NNI, n (%) | 504 (13%) |
other, n (%) | 321 (8%) |
Treatment Response to DAA, n | 3354 |
sustained viral response | 1342 (40%) |
virologic failure | 2012 (60%) |
HCV sequences, n | 10,332 |
NS3 | 2772 (27%) |
NS5A | 4640 (45%) |
NS5B | 2472 (24%) |
Core -E1-E2 | 448 (4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howe, A.Y.M.; Ceccherini-Silberstein, F.; Dietz, J.; Popping, S.; Grebely, J.; Rodrigo, C.; Lennerstrand, J.; Douglas, M.W.; Parczewsk, M.; Harrigan, P.R.; et al. SHARED: An International Collaboration to Unravel Hepatitis C Resistance. Viruses 2021, 13, 1580. https://doi.org/10.3390/v13081580
Howe AYM, Ceccherini-Silberstein F, Dietz J, Popping S, Grebely J, Rodrigo C, Lennerstrand J, Douglas MW, Parczewsk M, Harrigan PR, et al. SHARED: An International Collaboration to Unravel Hepatitis C Resistance. Viruses. 2021; 13(8):1580. https://doi.org/10.3390/v13081580
Chicago/Turabian StyleHowe, Anita Y.M., Francesca Ceccherini-Silberstein, Julia Dietz, Stephanie Popping, Jason Grebely, Chaturaka Rodrigo, Johan Lennerstrand, Mark W. Douglas, Milosz Parczewsk, P. Richard Harrigan, and et al. 2021. "SHARED: An International Collaboration to Unravel Hepatitis C Resistance" Viruses 13, no. 8: 1580. https://doi.org/10.3390/v13081580
APA StyleHowe, A. Y. M., Ceccherini-Silberstein, F., Dietz, J., Popping, S., Grebely, J., Rodrigo, C., Lennerstrand, J., Douglas, M. W., Parczewsk, M., Harrigan, P. R., Pawlotsky, J. -M., Garcia, F., & Collaborators, S. (2021). SHARED: An International Collaboration to Unravel Hepatitis C Resistance. Viruses, 13(8), 1580. https://doi.org/10.3390/v13081580