Identification of a BTV-Strain-Specific Single Gene That Increases Culicoides Vector Infection Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Viruses
2.2.1. Wild-Type BTV Strains
2.2.2. Reverse-Engineered and Reassortant BTV Strains
2.3. RT-qPCR
2.4. High-Throughput Sequencing
2.5. Genome Assembly
2.6. Virus Titrations
2.7. Oral Infection of C. sonorensis with BTV
2.8. Replication Kinetics
2.9. Statistical Analysis
2.9.1. Vector Infection Rate
2.9.2. Replication Kinetics in KC Cells
3. Results
3.1. Generation of Plasmid Clones
3.2. Generation of Reverse-Engineered and Reassortant BTV Strains
3.3. Full-Genome Sequencing
3.4. Oral Infection of C. sonorensis
3.5. Replication Kinetics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gethmann, J.; Probst, C.; Conraths, F.J. Economic impact of a bluetongue serotype 8 epidemic in Germany. Front. Vet. Sci. 2020, 7, 12. [Google Scholar] [CrossRef]
- OIE World Organisation for Animal Health (OIE). Technical Disease Cards-Bluetongue. Available online: https://www.oie.int/app/uploads/2021/03/bluetongue.pdf (accessed on 6 March 2021).
- Mellor, P.S.; Boorman, J.; Baylis, M. Culicoides biting midges: Their role as arbovirus vectors. Annu. Rev. Entomol. 2000, 45, 307–340. [Google Scholar] [CrossRef]
- Purse, B.V.; Carpenter, S.; Venter, G.J.; Bellis, G.; Mullens, B.A. Bionomics of Temperate and Tropical Culicoides Midges: Knowledge Gaps and Consequences for Transmission of Culicoides-Borne Viruses. Annu. Rev. Entomol. 2015, 60, 373–392. [Google Scholar] [CrossRef]
- Wilson, A.; Mellor, P. Bluetongue in Europe: Vectors, epidemiology and climate change. Parasitol. Res. 2008, 103 (Suppl. S1), S69–S77. [Google Scholar] [CrossRef]
- Hardy, J.L. Susceptibility and Resistance of Vector Mosquitoes. In The Arboviruses: Epidemiology and Ecology; Monath, T.P., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 87–126. [Google Scholar]
- Alto, B.W.; Lounibos, L.P. Vector competence for arboviruses in relation to the larval environment of mosquitoes. In Ecology of Parasite-Vector Interactions; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 81–101. [Google Scholar]
- Morales-Hojas, R.; Hinsley, M.; Armean, I.M.; Silk, R.; Harrup, L.E.; Gonzalez-Uriarte, A.; Veronesi, E.; Campbell, L.; Nayduch, D.; Saski, C.; et al. The genome of the biting midge Culicoides sonorensis and gene expression analyses of vector competence for Bluetongue virus. BMC Genom. 2018, 19, 16. [Google Scholar] [CrossRef]
- Mills, M.K.; Michel, K.; Pfannenstiel, R.S.; Ruder, M.G.; Veronesi, E.; Nayduch, D. Culicoides-virus interactions: Infection barriers and possible factors underlying vector competence. Curr. Opin. Insect Sci. 2017, 22, 7–15. [Google Scholar] [CrossRef]
- Feenstra, F.; Drolet, B.S.; Boonstra, J.; van Rijn, P.A. Non-structural protein NS3/NS3a is required for propagation of Bluetongue virus in Culicoides sonorensis. Parasites Vectors 2015, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- van Gennip, R.G.P.; Drolet, B.S.; Lopez, P.R.; Roost, A.J.C.; Boonstra, J.; van Rijn, P.A. Vector competence is strongly affected by a small deletion or point mutations in Bluetongue virus. Parasites Vectors 2019, 12, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paweska, J.T.; Venter, G.J.; Mellor, P.S. Vector competence of South African Culicoides species for Bluetongue virus serotype 1 (BTV-1) with special reference to the effect of temperature on the rate of virus replication in C. imicola and C. bolitinos. Med. Vet. Entomol. 2002, 16, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, E.J.; Mellor, P.S.; Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis. Med. Vet. Entomol. 2002, 16, 147–156. [Google Scholar] [CrossRef]
- Federici, V.; Goffredo, M.; Mancini, G.; Quaglia, M.; Santilli, A.; Di Nicola, F.; De Ascentis, M.; Cabras, P.; Volpicelli, C.; De Liberato, C.; et al. Vector competence of Italian populations of Culicoides for some Bluetongue virus strains responsible for recent northern African and European outbreaks. Viruses 2019, 11, 941. [Google Scholar] [CrossRef] [Green Version]
- Venter, G.J.; Paweska, J.T.; van Dijk, A.A.; Mellor, P.S.; Tabachnick, W.J. Vector competence of Culicoides bolitinos and C. imicola for South African Bluetongue virus serotypes 1, 3 and 4. Med. Vet. Entomol. 1998, 12, 378–385. [Google Scholar] [CrossRef]
- Patel, A.; Roy, P. The molecular biology of Bluetongue virus replication. Virus Res. 2014, 182, 5–20. [Google Scholar] [CrossRef]
- Roy, P. Bluetongue virus structure and assembly. Curr. Opin. Virol. 2017, 24, 115–123. [Google Scholar] [CrossRef]
- Labadie, T.; Sullivan, E.; Roy, P. Multiple routes of Bluetongue virus egress. Microorganisms 2020, 8, 965. [Google Scholar] [CrossRef]
- Mohl, B.-P.; Roy, P. Elucidating virus entry using a tetracysteine-tagged virus. Methods 2017, 127, 23–29. [Google Scholar] [CrossRef]
- Maan, N.S.; Maan, S.; Belaganahalli, M.N.; Ostlund, E.N.; Johnson, D.J.; Nomikou, K.; Mertens, P.P.C. Identification and differentiation of the twenty six Bluetongue virus serotypes by rt-PCR amplification of the serotype-specific genome segment 2. PLoS ONE 2012, 7, e32601. [Google Scholar] [CrossRef] [PubMed]
- Schwartz-Cornil, I.; Mertens, P.P.C.; Contreras, V.; Hemati, B.; Pascale, F.; Breard, E.; Mellor, P.S.; MacLachlan, N.J.; Zientara, S. Bluetongue virus: Virology, pathogenesis and immunity. Vet. Res. 2008, 39, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batten, C.; Darpel, K.; Henstock, M.; Fay, P.; Veronesi, E.; Gubbins, S.; Graves, S.; Frost, L.; Oura, C. Evidence for Transmission of Bluetongue virus Serotype 26 through Direct Contact. PLoS ONE 2014, 9, e96049. [Google Scholar] [CrossRef] [Green Version]
- Bumbarov, V.; Golender, N.; Jenckel, M.; Wernike, K.; Beer, M.; Khinich, E.; Zalesky, O.; Erster, O. Characterization of Bluetongue virus serotype 28. Transbound. Emerg. Dis. 2020, 67, 171–182. [Google Scholar] [CrossRef]
- Flannery, J.; Sanz-Bernardo, B.; Ashby, M.; Brown, H.; Carpenter, S.; Cooke, L.; Corla, A.; Frost, L.; Gubbins, S.; Hicks, H.; et al. Evidence of reduced viremia, pathogenicity and vector competence in a re-emerging European strain of Bluetongue virus serotype 8 in sheep. Transbound. Emerg. Dis. 2019, 66, 1177–1185. [Google Scholar] [CrossRef] [Green Version]
- Melzi, E.; Caporale, M.; Rocchi, M.; Martin, V.; Gamino, V.; di Provvido, A.; Marruchella, G.; Entrican, G.; Sevilla, N.; Palmarini, M. Follicular dendritic cell disruption as a novel mechanism of virus-induced immunosuppression. Proc. Natl. Acad. Sci. USA 2016, 113, E6238–E6247. [Google Scholar] [CrossRef] [Green Version]
- Meroc, E.; Herr, C.; Verheyden, B.; Hooyberghs, J.; Houdart, P.; Raemaekers, M.; Vandenbussche, F.; De Clercq, K.; Mintiens, K. Bluetongue in Belgium: Episode II. Transbound. Emerg. Dis. 2009, 56, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Elbers, A.R.W.; Backx, A.; Meroc, E.; Gerbier, G.; Staubach, C.; Hendrickx, G.; van der Spek, A.; Mintiens, K. Field observations during the Bluetongue serotype 8 epidemic in 2006-I. Detection of first outbreaks and clinical signs in sheep and cattle in Belgium, France and the Netherlands. Prev. Vet. Med. 2008, 87, 21–30. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, P.A.; Geurts, Y.; van der Spek, A.N.; Veldman, D.; van Gennip, R.G.P. Bluetongue virus serotype 6 in Europe in 2008-Emergence and disappearance of an unexpected non-virulent BTV. Vet. Microbiol. 2012, 158, 23–32. [Google Scholar] [CrossRef]
- Listes, E.; Monaco, F.; Labrovic, A.; Paladini, C.; Leone, A.; Di Gialleonardo, L.; Camma, C.; Savini, G. First evidence of bluetongue virus serotype 16 in Croatia. Vet. Microbiol. 2009, 138, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Kundlacz, C.; Caignard, G.; Sailleau, C.; Viarouge, C.; Postic, L.; Vitour, D.; Zientara, S.; Breard, E. Bluetongue virus in France: An Illustration of the European and Mediterranean Context since the 2000s. Viruses 2019, 11, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushton, J.; Lyons, N. Economic impact of Bluetongue: A review of the effects on production. Vet. Ital. 2015, 51, 401–406. [Google Scholar]
- Belbis, G.; Zientara, S.; Breard, E.; Sailleau, C.; Caignard, G.; Vitour, D.; Attoui, H. Bluetongue virus: From BTV-1 to BTV-27. Adv. Virus Res. 2017, 99, 161–197. [Google Scholar]
- Nicolas, G.; Tisseuil, C.; Conte, A.; Allepuz, A.; Pioz, M.; Lancelot, R.; Gilbert, M. Environmental heterogeneity and variations in the velocity of Bluetongue virus spread in six European epidemics. Prev. Vet. Med. 2018, 149, 1–9. [Google Scholar] [CrossRef]
- European Commission on Bluetongue. Available online: https://ec.europa.eu/food/animals/animal-diseases/control-measures/bluetongue_en (accessed on 17 March 2021).
- Golender, N.; Eldar, A.; Ehrlich, M.; Khinich, Y.; Kenigswald, G.; Varsano, J.S.; Ertracht, S.; Abramovitz, I.; Assis, I.; Shlamovitz, I.; et al. Emergence of a Novel Reassortant Strain of Bluetongue Serotype 6 in Israel, 2017: Clinical Manifestations of the Disease and Molecular Characterization. Viruses 2019, 11, 633. [Google Scholar] [CrossRef] [Green Version]
- Brown-Joseph, T.; Batten, C.; Harrup, L.E.; Frost, L.; Flannery, J.; Hicks, H.; Ramkissoon, V.; Ramdeen, R.; Carrington, C.V.; Oura, C.A.L. Bluetongue virus infection in naive cattle: Identification of circulating serotypes and associated Culicoides biting midge species in Trinidad. Vet. Microbiol. 2017, 211, 1–5. [Google Scholar] [CrossRef]
- Bumbarov, V.; Golender, N.; Rotenberg, D.; Brenner, J. Unusual clinical manifestations in Israeli ruminant populations infected with Orbiviruses. Vet. Ital. 2016, 52, 343–351. [Google Scholar]
- Guimarães, L.L.B.; Rosa, J.C.C.; Matos, A.C.D.; Cruz, R.A.S.; Guedes, M.I.M.C.; Dorella, F.A.; Figueiredo, H.C.P.; Pavarini, S.P.; Sonne, L.; Lobato, Z.I.P.; et al. Identification of Bluetongue virus serotypes 1, 4, and 17 co-infections in sheep flocks during outbreaks in Brazil. Res. Vet. Sci. 2017, 113, 87–93. [Google Scholar] [CrossRef]
- Nomikou, K.; Hughes, J.; Wash, R.; Kellam, P.; Breard, E.; Zientara, S.; Palmarini, M.; Biek, R.; Mertens, P. Widespread Reassortment Shapes the Evolution and Epidemiology of Bluetongue virus following European Invasion. PLoS Pathog. 2015, 11, e1005056. [Google Scholar] [CrossRef]
- Sanders, C.; Veronesi, E.; Rajko-Nenow, P.; Mertens, P.P.C.; Batten, C.; Gubbins, S.; Darpel, K.; Carpenter, S. Natural reassortment of a segmented RNA arbovirus illustrates plasticity of phenotype in the arthropod vector and mammalian host in vivo. bioRxiv 2021. Available online: https://www.biorxiv.org/content/10.1101/2021.08.09.455771v1 (accessed on 1 April 2021).
- Sato, M.; Maeda, N.; Yoshida, H.; Urade, M.; Saito, S. Plaque formation of herpes virus hominis type 2 and rubella virus in variants isolated from the colonies of BHK21/WI-2 cells formed in soft agar. Arch. Virol. 1977, 53, 269–273. [Google Scholar] [CrossRef]
- Wechsler, S.J.; McHolland, L.E.; Tabachnick, W.J. Cell-lines from Culicoides variipennis (diptera, Ceratopogonidae) support replication of Bluetongue virus. J. Invertebr. Pathol. 1989, 54, 385–393. [Google Scholar] [CrossRef]
- Hofmann, M.; Griot, C.; Chaignat, V.; Perler, L.; Thur, B. Blauzungenkrankheit erreicht die Schweiz. Schweiz. Arch. Tierheilkd. 2008, 150, 49–56. [Google Scholar] [CrossRef]
- Pullinger, G.D.; Guimerà Busquets, M.; Nomikou, K.; Boyce, M.; Attoui, H.; Mertens, P.P. Identification of the Genome Segments of Bluetongue virus Serotype 26 (Isolate KUW2010/02) that Restrict Replication in a Culicoides sonorensis Cell Line (KC Cells). PLoS ONE 2016, 11, e0149709. [Google Scholar] [CrossRef]
- Boyce, M.; Celma, C.C.P.; Roy, P. Development of reverse genetics systems for Bluetongue virus: Recovery of infectious virus from synthetic RNA transcripts. J. Virol. 2008, 82, 8339–8348. [Google Scholar] [CrossRef] [Green Version]
- Maan, S.; Rao, S.J.; Maan, N.S.; Anthony, S.J.; Attoui, H.; Samuel, A.R.; Paul, P.; Mertens, C. Rapid cDNA synthesis and sequencing techniques for the genetic study of Bluetongue and other dsRNA viruses. J. Virol. Methods 2007, 143, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Flannery, J.; Rajko-Nenow, P.; Hicks, H.; Hill, H.; Gubbins, S.; Batten, C. Evaluating the most appropriate pooling ratio for EDTA blood samples to detect Bluetongue virus using real-time RT-PCR. Vet. Microbiol. 2018, 217, 58–63. [Google Scholar] [CrossRef]
- Rajko-Nenow, P.; Christodoulou, V.; Thurston, W.; Ropiak, H.M.; Savva, S.; Brown, H.; Qureshi, M.; Alvanitopoulos, K.; Gubbins, S.; Flannery, J.; et al. Origin of Bluetongue Virus Serotype 8 Outbreak in Cyprus, September 2016. Viruses 2020, 12, 96. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.M.; Moffat, K.; Cooke, L.; Nomikou, K.; Mertens, P.P.C.; Jackson, T.; Darpel, K.E. A low-passage insect-cell isolate of Bluetongue virus uses a macropinocytosis-like entry pathway to infect natural target cells derived from the bovine host. J. Gen. Virol. 2019, 100, 568–582. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Guimerà Busquets, M. Determinants of Bluetongue Virus Serotype 26 That Drive Vector Competence. Ph.D. Thesis, University of Glasgow, Glasgow, Scotland, 2017. [Google Scholar]
- Veronesi, E.; Antony, F.; Gubbins, S.; Golding, N.; Blackwell, A.; Mertens, P.P.; Brownlie, J.; Darpel, K.E.; Mellor, P.S.; Carpenter, S. Measurement of the infection and dissemination of Bluetongue virus in Culicoides biting midges using a semi-quantitative rt-PCR assay and isolation of infectious virus. PLoS ONE 2013, 8, e70800. [Google Scholar] [CrossRef]
- Jones, R.H.; Foster, N.M. Relevance of laboratory colonies of vector in arbovirus research-Culicoides variipennis and bluetongue. Am. J. Trop. Med. Hyg. 1978, 27, 168–177. [Google Scholar] [CrossRef]
- Stevens, L.M. Understanding the Early Events in Bluetongue Virus Cell Entry. Ph.D. Thesis, University of Surrey, Guildford, UK, 2016. [Google Scholar]
- R Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 1 April 2021).
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. 2002, 64, 583–639. [Google Scholar] [CrossRef] [Green Version]
- Venter, G.J.; Mellor, P.S.; Paweska, A.T. Oral susceptibility of South African stock-associated Culicoides species to Bluetongue virus. Med. Vet. Entomol. 2006, 20, 329–334. [Google Scholar] [CrossRef]
- Guimerà Busquets, M.; Pullinger, G.D.; Darpel, K.E.; Cooke, L.; Armstrong, S.; Simpson, J.; Palmarini, M.; Fragkoudis, R.; Mertens, P.P.C. An early block in the replication of the atypical Bluetongue virus serotype 26 in Culicoides cells. Viruses 2021, 13, 919. [Google Scholar] [CrossRef]
- Stokstad, M.; Coetzee, P.; Myrmel, M.; Mutowembwa, P.; Venter, E.H.; Larsen, S. Refined experimental design may increase the value of murine models for estimation of Bluetongue virus virulence. Lab. Anim. 2021, 55, 53–64. [Google Scholar] [CrossRef]
- Janowicz, A.; Caporale, M.; Shaw, A.; Gulletta, S.; Di Gialleonardo, L.; Ratinier, M.; Palmarini, M. Multiple genome segments determine virulence of Bluetongue virus serotype 8. J. Virol. 2015, 89, 5238–5249. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.E.; Ratinier, M.; Nunes, S.F.; Nomikou, K.; Caporale, M.; Golder, M.; Allan, K.; Hamers, C.; Hudelet, P.; Zientara, S.; et al. Reassortment between Two Serologically Unrelated Bluetongue virus Strains Is Flexible and Can Involve any Genome Segment. J. Virol. 2013, 87, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Celma, C.C.; Bhattacharya, B.; Eschbaumer, M.; Wernike, K.; Beer, M.; Roy, P. Pathogenicity study in sheep using reverse-genetics-based reassortant bluetongue viruses. Vet. Microbiol. 2014, 174, 139–147. [Google Scholar] [CrossRef] [Green Version]
- van Gennip, R.G.P.; van de Water, S.G.P.; van Rijn, P.A. Bluetongue virus Nonstructural Protein NS3/NS3a Is Not Essential for Virus Replication. PLoS ONE 2014, 9, e85788. [Google Scholar] [CrossRef]
- Zhang, X.; Boyce, M.; Bhattacharya, B.; Zhang, X.K.; Schein, S.; Roy, P.; Zhou, Z.H. Bluetongue virus coat protein VP2 contains sialic acid-binding domains, and VP5 resembles enveloped virus fusion proteins. Proc. Natl. Acad. Sci. USA 2010, 107, 6292–6297. [Google Scholar] [CrossRef] [Green Version]
- Caporale, M.; Di Gialleonorado, L.; Janowicz, A.; Wilkie, G.; Shaw, A.; Savini, G.; Van Rijn, P.A.; Mertens, P.; Di Ventura, M.; Palmarini, M. Virus and Host Factors Affecting the Clinical Outcome of Bluetongue virus Infection. J. Virol. 2014, 88, 10399–10411. [Google Scholar] [CrossRef] [Green Version]
Genome Segment (Encoded Protein) | Position of aa | Difference in aa | Type of aa Substitution | |
---|---|---|---|---|
rBTV-1 | rBTV-4 | |||
Seg-1 (VP1) | 55 | Q | R | Radical |
179 | D | N | Conservative | |
1217 | T | S | Conservative | |
1254 | M | I | Radical | |
Seg-3 (VP3) | 241 | R | K | Conservative |
Seg-4 (VP4) | 75 | N | S | Radical |
165 | E | K | Radical | |
239 | N | D | Conservative | |
305 | I | V | Conservative | |
343 | R | K | Conservative | |
355 | D | G | Radical | |
368 | K | R | Conservative | |
Seg-5 (NS1) | 66 | R | K | Conservative |
149 | I | V | Conservative | |
491 | K | R | Conservative | |
Seg-7 (VP7) | 266 | E | V | Radical |
328 | A | V | Conservative | |
Seg-8 (NS2) | 29 | Q | L | Radical |
235 | G | D | Radical | |
Seg-9 (VP6) | 5 | M | I | Radical |
14 | K | M | Radical | |
30 | V | A | Conservative | |
37 | N | D | Conservative | |
51 | A | V | Conservative | |
95 | G | R | Radical | |
112 | G | R | Radical | |
215 | H | Q | Radical | |
232 | S | P | Radical | |
Seg-10 (NS3) | 186 | K | R | Conservative |
214 | T | A | Radical |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropiak, H.M.; King, S.; Busquets, M.G.; Newbrook, K.; Pullinger, G.D.; Brown, H.; Flannery, J.; Gubbins, S.; Batten, C.; Rajko-Nenow, P.; et al. Identification of a BTV-Strain-Specific Single Gene That Increases Culicoides Vector Infection Rate. Viruses 2021, 13, 1781. https://doi.org/10.3390/v13091781
Ropiak HM, King S, Busquets MG, Newbrook K, Pullinger GD, Brown H, Flannery J, Gubbins S, Batten C, Rajko-Nenow P, et al. Identification of a BTV-Strain-Specific Single Gene That Increases Culicoides Vector Infection Rate. Viruses. 2021; 13(9):1781. https://doi.org/10.3390/v13091781
Chicago/Turabian StyleRopiak, Honorata M., Simon King, Marc Guimerà Busquets, Kerry Newbrook, Gillian D. Pullinger, Hannah Brown, John Flannery, Simon Gubbins, Carrie Batten, Paulina Rajko-Nenow, and et al. 2021. "Identification of a BTV-Strain-Specific Single Gene That Increases Culicoides Vector Infection Rate" Viruses 13, no. 9: 1781. https://doi.org/10.3390/v13091781
APA StyleRopiak, H. M., King, S., Busquets, M. G., Newbrook, K., Pullinger, G. D., Brown, H., Flannery, J., Gubbins, S., Batten, C., Rajko-Nenow, P., & Darpel, K. E. (2021). Identification of a BTV-Strain-Specific Single Gene That Increases Culicoides Vector Infection Rate. Viruses, 13(9), 1781. https://doi.org/10.3390/v13091781