Genome Analysis of an Alphabaculovirus Isolated from the Larch Looper, Erannis ankeraria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Isolation
2.2. Electron Microscopy
2.3. Viral DNA Isolation, Sequencing, and Assembly
2.4. Genome Sequence Analysis
2.5. Phylogeny and Kimura 2-Parameter Analysis
2.6. Field Testing of EranNPV
3. Results and Discussion
3.1. Ultrastructural Features of Occlusion Bodies
3.2. Features of EranNPV Genome
3.3. Homologous Regions
3.4. Phylogenetic Analysis of EranNPV
3.5. Genome Comparison
3.6. Gene Content of EranNPV
3.6.1. Classification of EranNPV Genes
3.6.2. Analysis of EranNPV Multi-Copy Genes
3.7. The Potential of EranNPV as Bio-Pesticide
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szewczyk, B.; Hoyos-Carvajal, L.; Paluszek, M.; Skrzecz, W.; de Souza, M.L. Baculoviruses-re-emerging biopesticides. Biotechnol. Adv. 2006, 24, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.L. History and current status of development and use of viral insecticides in China. Viruses 2015, 7, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Schaly, S.; Ghebretatios, M.; Prakash, S. Baculoviruses in gene therapy and personalized medicine. Biologics 2021, 15, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Possee, R.D.; Chambers, A.C.; Graves, L.P.; Aksular, M.; King, L.A. Recent developments in the use of baculovirus expression vectors. Curr. Issues Mol. Biol. 2019, 34, 215–230. [Google Scholar]
- Rohrmann, G.F. Baculovirus Molecular Biology, 4th ed.; National Center for Biotechnology Information: Bethesda, MD, USA, 2019.
- Blissard, G.W.; Theilmann, D.A. Baculovirus entry and egress from insect cells. Annu. Rev. Virol. 2018, 5, 113–139. [Google Scholar] [CrossRef] [PubMed]
- Jehle, J.A.; Blissard, G.W.; Bonning, B.C.; Cory, J.S.; Herniou, E.A.; Rohrmann, G.F.; Theilmann, D.A.; Thiem, S.M.; Vlak, J.M. On the classification and nomenclature of baculoviruses: A proposal for revision. Arch. Virol. 2006, 151, 1257–1266. [Google Scholar] [CrossRef]
- Harrison, R.L.; Herniou, E.A.; Jehle, J.A.; Theilmann, D.A.; Burand, J.P.; Becnel, J.J.; Krell, P.J.; van Oers, M.M.; Mowery, J.D.; Bauchan, G.R.; et al. ICTV virus taxonomy profile: Baculoviridae. J. Gen. Virol. 2018, 99, 1185–1186. [Google Scholar] [CrossRef]
- Theze, J.; Lopez-Vaamonde, C.; Cory, J.S.; Herniou, E.A. Biodiversity, evolution and ecological specialization of baculoviruses: A treasure trove for future applied research. Viruses 2018, 10, 366. [Google Scholar] [CrossRef] [Green Version]
- Ward, V.K.; Sneddon, K.M.B.; Hyink, O.; Kalmakoff, J. Baculovirus genomics: A resource for biocontrol. In Advances in Microbial Control of Insect Pests, 1st ed.; Upadhyay, R.K., Ed.; Springer: Boston, MA, USA, 2003; pp. 127–143. [Google Scholar]
- Gencer, D.; Bayramoglu, Z.; Nalcacioglu, R.; Demirbag, Z.; Demir, I. Genome sequence analysis and organization of the Hyphantria cunea granulovirus (HycuGV-Hc1) from Turkey. Genomics 2020, 112, 459–466. [Google Scholar] [CrossRef]
- Liu, F.; Li, F.; Zhang, S.; Kong, X.; Zhang, Z. Ultrastructure of antennal sensilla of Erannis ankeraria Staudinger (Lepidoptera: Geometridae). Microsc. Res. Tech. 2019, 82, 1903–1910. [Google Scholar] [CrossRef]
- King, L.A.; Possee, R.D. Propagation of baculoviruses in insect larvae. In The Baculovirus Expression System: A Laboratory Guide, 1st ed.; Springer: Dordrecht, The Netherlands, 1992; pp. 180–194. [Google Scholar]
- Li, X.F.; Yu, H.; Zhang, C.X.; Chen, H.; Wang, D. Helicoverpa armigera nucleopolyhedrovirus orf81 is a late gene involved in budded virus production. Arch. Virol. 2014, 159, 2011–2022. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.H.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002, 1, 2.3.1–2.3.22. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.; Bernhart, S.H.; Höner Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Hu, Z.H.; Arif, B.M.; Jin, F.; Martens, J.W.M.; Chen, X.W.; Sun, J.S.; Zuidema, D.; Goldbach, R.W.; Vlak, J.M. Distinct gene arrangement in the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome. J. Gen. Virol. 1998, 79, 2841–2851. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Gao, F.L.; Jakovlic, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar]
- Wennmann, J.T.; Keilwagen, J.; Jehle, J.A. Baculovirus Kimura two-parameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. J. Gen. Virol. 2018, 99, 1307–1320. [Google Scholar]
- Harrison, R.L.; Mowery, J.D.; Bauchan, G.R.; Theilmann, D.A.; Erlandson, M.A. The complete genome sequence of a second alphabaculovirus from the true armyworm, Mythimna unipuncta: Implications for baculovirus phylogeny and host specificity. Virus Genes 2019, 55, 104–116. [Google Scholar] [CrossRef]
- Marsberg, T.; Jukes, M.D.; Krejmer-Rabalska, M.; Rabalski, L.; Knox, C.M.; Moore, S.D.; Hill, M.P.; Szewczyk, B. Morphological, genetic and biological characterisation of a novel alphabaculovirus isolated from Cryptophlebia peltastica (Lepidoptera: Tortricidae). J. Invertebr. Pathol. 2018, 157, 90–99. [Google Scholar]
- Harrison, R.L.; Rowley, D.L.; Mowery, J.D.; Bauchan, G.R.; Burand, J.P. The Operophtera brumata nucleopolyhedrovirus (OpbuNPV) represents an early, divergent lineage within genus Alphabaculovirus. Viruses 2017, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Garavaglia, M.J.; Miele, S.A.B.; Iserte, J.A.; Belaich, M.N.; Ghiringhelli, P.D. The ac53, ac78, ac101, and ac103 genes are newly discovered core genes in the family Baculoviridae. J. Virol. 2012, 86, 12069–12079. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.A.; Biswas, S.; Willis, L.G.; Harris, S.; Pritchard, C.; van Oers, M.M.; Donly, B.C.; Erlandson, M.A.; Hegedus, D.D.; Theilmann, D.A. Autographa californica multiple nucleopolyhedrovirus AC83 is a per os infectivity factor (PIF) protein required for occlusion-derived virus (ODV) and budded virus nucleocapsid assembly as well as assembly of the PIF complex in ODV envelopes. J. Virol. 2017, 91, e02115–e02116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oers, M.M.; Vlak, J.M. Baculovirus genomics. Curr. Drug Targets 2007, 8, 1051–1068. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Suryamohan, K.; Kuriakose, B.; Janakiraman, V.; Reichelt, M.; Chaudhuri, S.; Guillory, J.; Divakaran, N.; Rabins, P.; Goel, R. Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus. Sci. Rep. 2018, 8, 8924. [Google Scholar] [CrossRef]
- Guarino, L.A.; Gonzalez, M.A.; Summers, M.D. Complete sequence and enhancer function of the homologous DNA regions of Autographa californica nuclear polyhedrosis virus. J. Virol. 1986, 60, 224–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kool, M.; Voeten, J.T.; Goldbach, R.W.; Tramper, J.; Vlak, J.M. Identification of seven putative origins of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus DNA replication. J. Gen. Virol. 1993, 74, 2661–2668. [Google Scholar] [CrossRef]
- Hilton, S.; Winstanley, D. The origins of replication of granuloviruses. Arch. Virol. 2008, 153, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Jehle, J.A.; Lange, M.; Wang, H.L.; Hu, Z.H.; Wang, Y.J.; Hauschild, W. Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 2006, 346, 180–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thumbi, D.K.; Béliveau, C.; Cusson, M.; Lapointe, R.; Lucarotti, C.J. Comparative genome sequence analysis of Choristoneura occidentalis Freeman and C. rosaceana Harris (Lepidoptera: Tortricidae) alphabaculoviruses. PLoS ONE 2013, 8, e68968. [Google Scholar] [CrossRef] [Green Version]
- Pearson, M.N.; Rohrmann, G.F. Characterization of a baculovirus-encoded ATP-dependent DNA ligase. J. Virol. 1998, 72, 9142–9149. [Google Scholar] [CrossRef] [PubMed]
- Ferrelli, M.L.; Pidre, M.L.; Ghiringhelli, P.D.; Torres, S.; Fabre, M.L.; Masson, T.; Cedola, M.T.; Sciocco-Cap, A.; Romanowski, V. Genomic analysis of an Argentinean isolate of Spodoptera frugiperda granulovirus reveals that various baculoviruses code for Lef-7 proteins with three F-box domains. PLoS ONE 2018, 13, e0202598. [Google Scholar]
- Mitchell, J.K.; Byers, N.M.; Friesen, P.D. Baculovirus F-box protein LEF-7 modifies the host DNA damage response to enhance virus multiplication. J. Virol. 2013, 87, 12592–12599. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Zhu, Z.; Liu, X.; Hou, D.; Wang, J.; Zhang, L.; Wang, M.; Kou, Z.; Wang, H.; Deng, F. The complete genome of a new betabaculovirus from Clostera anastomosis. PLoS ONE 2015, 10, e0132792. [Google Scholar] [CrossRef]
- Wang, X.; Shang, Y.; Chen, C.; Liu, S.; Chang, M.; Zhang, N.; Hu, H.; Zhang, F.; Zhang, T.; Wang, Z.; et al. Baculovirus per os infectivity factor complex: Components and assembly. J. Virol. 2019, 93, e02053–e02118. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.R.; Deng, F.; Hou, D.H.; Zhao, Y.; Guo, L.; Wang, H.L.; Hu, Z.H. Proteomics of the Autographa californica nucleopolyhedrovirus budded virions. J. Virol. 2010, 84, 7233–7242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, D.H.; Zhang, L.K.; Deng, F.; Fang, W.; Wang, R.R.; Liu, X.J.; Guo, L.; Rayner, S.; Chen, X.W.; Wang, H.L.; et al. Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. J. Virol. 2013, 87, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Kuang, W.; Luo, S.; Zhang, F.; Zhou, F.; Chen, T.; Zhang, Y.; Wang, H.; Hu, Z.; Deng, F.; et al. Baculovirus ODV-E66 degrades larval peritrophic membrane to facilitate baculovirus oral infection. Virology 2019, 537, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Ferrelli, M.L.; Sciocco-Cap, A.; Berretta, M.F.; Belaich, M.N.; Ghiringhelli, P.D.; Romanowski, V. The baculoviral genome. In Viral Genomes-Molecular Structure, Diversity, Gene Expression Mechanisms and Host-Virus Interactions, 1st ed.; Garcia, M.L., Romanowski, V., Eds.; IntechOpen: London, UK, 2012; pp. 3–32. [Google Scholar]
- Shu, R.H.; Meng, Q.; Miao, L.; Liang, H.B.; Chen, J.; Xu, Y.; Cheng, L.Q.; Jin, W.Y.; Qin, Q.L.; Zhang, H. Genome analysis of a novel clade b betabaculovirus isolated from the legume pest Matsumuraeses phaseoli (Lepidoptera: Tortricidae). Viruses 2020, 12, 1068. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.K.; Imai, N.; Suzuki, M.; Iwanaga, M.; Matsumoto, S.; Zemskov, E.A. Interaction of Bombyx mori nucleopolyhedrovirus BRO-A and host cell protein laminin. Arch. Virol. 2003, 148, 99–113. [Google Scholar] [CrossRef]
- Mikhallov, V.S.; Vanarsdall, A.L.; Rohrynann, G.F. Isolation and characterization of the DNA-binding protein (DBP) of the Autographa californica multiple nucleopolyhedrovirus. Virology 2008, 370, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Crook, N.E.; Clem, R.J.; Miller, L.K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 1993, 67, 2168–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birnbaum, M.J.; Clem, R.J.; Miller, L.K. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J. Virol. 1994, 68, 2521–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clem, R.J. Viral IAPs, then and now. Semin. Cell Dev. Biol. 2015, 39, 72–79. [Google Scholar] [CrossRef]
- Zheng, F.L.; Huang, Y.; Long, G.; Sun, X.L.; Wang, H.Z. Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus ORF51 is a ChaB homologous gene involved in budded virus production and DNA replication. Virus Res. 2011, 155, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Lü, Z.; Dai, R. A bioassay on toxicity of Erannis ankeraria Staudinger nuclear polyhedrosis virus. Acta Agric. Boreali Sin. 1988, 3, 64–70. [Google Scholar]
- Guo, Z.J.; Ge, J.Q.; Wang, D.; Shao, Y.M.; Tang, Q.Y.; Zhang, C.X. Biological comparison of two genotypes of Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus. BioControl 2006, 51, 809–820. [Google Scholar] [CrossRef]
- Sun, S.; Lü, Z.; Huang, G.; Dai, R.; Gao, Y.; Li, Z. The use of larch looper NPV to control larch looper Erannis ankeraria (Lepidoptera: Geometridae). Chin. J. Biol. Control 1990, 1, 46. [Google Scholar]
(A) | |||||||||||
polh/lef-8/lef-9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
polh | |||||||||||
1 | EranNPV | - | 0.12 | 0.35 | 0.34 | 0.34 | 0.34 | 0.33 | 0.33 | 0.33 | 0.34 |
2 | ApciNPV | 0.09 | - | 0.36 | 0.35 | 0.34 | 0.35 | 0.34 | 0.33 | 0.35 | 0.34 |
3 | SujuNPV | 0.20 | 0.20 | - | 0.30 | 0.31 | 0.36 | 0.34 | 0.34 | 0.36 | 0.35 |
4 | HytaNPV | 0.22 | 0.21 | 0.23 | - | 0.18 | 0.34 | 0.33 | 0.32 | 0.33 | 0.32 |
5 | BuzuNPV | 0.21 | 0.20 | 0.24 | 0.17 | - | 0.35 | 0.34 | 0.33 | 0.33 | 0.34 |
6 | HespNPV | 0.22 | 0.23 | 0.23 | 0.22 | 0.23 | - | 0.34 | 0.34 | 0.35 | 0.35 |
7 | EcobNPV | 0.21 | 0.22 | 0.23 | 0.19 | 0.23 | 0.22 | - | 0.34 | 0.33 | 0.34 |
8 | OrleNPV | 0.21 | 0.20 | 0.22 | 0.19 | 0.21 | 0.21 | 0.21 | - | 0.31 | 0.30 |
9 | EupsNPV | 0.27 | 0.28 | 0.26 | 0.24 | 0.22 | 0.25 | 0.24 | 0.22 | - | 0.24 |
10 | ArdiNPV | 0.23 | 0.22 | 0.25 | 0.19 | 0.20 | 0.21 | 0.21 | 0.21 | 0.21 | - |
(B) | |||||||||||
lef-9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
lef-8 | |||||||||||
1 | EranNPV | - | 0.12 | 0.35 | 0.34 | 0.35 | 0.33 | 0.33 | 0.34 | 0.33 | 0.37 |
2 | ApciNPV | 0.12 | - | 0.36 | 0.36 | 0.36 | 0.36 | 0.35 | 0.35 | 0.36 | 0.36 |
3 | SujuNPV | 0.39 | 0.40 | - | 0.31 | 0.32 | 0.37 | 0.32 | 0.34 | 0.38 | 0.35 |
4 | HytaNPV | 0.38 | 0.38 | 0.31 | - | 0.16 | 0.34 | 0.32 | 0.31 | 0.35 | 0.35 |
5 | BuzuNPV | 0.38 | 0.37 | 0.33 | 0.18 | - | 0.34 | 0.30 | 0.30 | 0.35 | 0.35 |
6 | HespNPV | 0.38 | 0.39 | 0.40 | 0.38 | 0.40 | - | 0.35 | 0.35 | 0.35 | 0.35 |
7 | EcobNPV | 0.37 | 0.37 | 0.39 | 0.38 | 0.40 | 0.37 | - | 0.33 | 0.33 | 0.36 |
8 | OrleNPV | 0.37 | 0.36 | 0.38 | 0.36 | 0.38 | 0.38 | 0.37 | - | 0.31 | 0.29 |
9 | EupsNPV | 0.35 | 0.36 | 0.38 | 0.34 | 0.36 | 0.37 | 0.37 | 0.34 | - | 0.27 |
10 | ArdiNPV | 0.36 | 0.36 | 0.38 | 0.35 | 0.37 | 0.39 | 0.37 | 0.33 | 0.24 | - |
(C) | |||||||||||
38 Core Genes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
1 | EranNPV | ||||||||||
2 | ApciNPV | 0.13 | |||||||||
3 | SujuNPV | 0.49 | 0.48 | ||||||||
4 | HytaNPV | 0.51 | 0.49 | 0.45 | |||||||
5 | BuzuNPV | 0.48 | 0.47 | 0.43 | 0.25 | ||||||
6 | HespNPV | 0.49 | 0.47 | 0.51 | 0.51 | 0.50 | |||||
7 | EcobNPV | 0.49 | 0.47 | 0.50 | 0.51 | 0.50 | 0.50 | ||||
8 | OrleNPV | 0.49 | 0.47 | 0.50 | 0.49 | 0.48 | 0.48 | 0.50 | |||
9 | EupsNPV | 0.49 | 0.48 | 0.51 | 0.50 | 0.50 | 0.49 | 0.50 | 0.46 | ||
10 | ArdiNPV | 0.49 | 0.48 | 0.50 | 0.49 | 0.49 | 0.49 | 0.49 | 0.46 | 0.33 |
Gene Function | Genes Present in EranNPV (ORF No.) | Genes Missing in EranNPV |
---|---|---|
Replication | ie-1 (8), me53 (15), dbp-1 (17), lef-11 (27), dbp-2 (29), lef-2 (35), nrk-1 (41), parg (43), endonuclease (52), helicase (64), DNA polymerase (80), lef-3 (82), alk-exo (118), DNA photolyase (121), lef-1 (130) | helicase-2, DNA ligase, dUTPase, pcna, lef7, rr1, rr2 |
Transcription | ie-0 (14), lef-6 (18), 39k/pp31 (26), p47 (30), lef-5 (61), lef-4 (69), vlf-1 (77), lef-9 (94), lef-10 (102), lef-8 (109), lef-12 (111) | ie-2, pe38 |
Structure | polyhedrin (1), orf1629 (2), pk-1 (3), odv-ec27 (11), odv-e18 (12), p49 (13), p10 (21), gp16 (31), p24 (33), pkip (36), calyx/pep (49), odv-ec43 (54), vp80 (56), p48/45 (57), p12 (58), p40 (59), p6.9 (60), 38k (62), odv-e25 (65), p18 (66), p33 (67), vp39 (70), cg30 (71), tlp-20 (73), ac81 (74), gp41 (75), ac78 (76), desmoplakin (81), fp25k (95), vp1054 (101), ac53 (104), F (124), ac17/bv-ec31 (126) | gp50, gp64 |
Oral infectivity | odv-e56/pif-5 (7), p74/pif-0 (16), pif-2 (39), pif-3 (45), ac108/pif-9 (53), ac110/pif-7 (55), odv-e28/pif-4 (63), vp91/p95/pif-8 (72), pif-6 (83), pif-1 (113), odv-e66 (123) | |
Auxiliary | p26-1 (20), ubiquitin (23), ADPRase (28), arif-1 (38), sod (47), ring finger protein (68), iap-3 (84), iap-2 (85), p26-2 (86), v-cath (87), chitinase (88), vef (90), gp37 (91), bro-1 (92), bro-2 (93), iap-2-like (107), djbp (108), fgf (115), egt (128), 38.7k (131) | ptp-1, ptp-2, ctl-1, ctl-2 |
Unknown | hoar (4), orf5 (5), orf6 (6), ep23/ac146 (9), chtBD2 (10), ac29 (19), ac34 (22), orf24 (24), orf25 (25), orf32 (32), orf34 (34), orf37 (37), orf40 (40), ac106 (42), orf44 (44), orf46 (46), orf48 (48), orf50 (50), orf51 (51), ac76 (78), ac75 (79), orf89 (89), chaB1 (96), chaB2 (97), ac57 (98), ac56 (99), ac55 (100), orf103 (103), ac52 (105), orf106 (106), ac43 (110), ac111 (112), ac120 (114), orf116 (116), orf117 (117), ac18 (119), ac19 (120), chaB3 (122), peptidase MA superfamily (125), orf127 (127), orf129 (129) | ac145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, Z.; Liu, C.; Qu, L.; Wang, D. Genome Analysis of an Alphabaculovirus Isolated from the Larch Looper, Erannis ankeraria. Viruses 2022, 14, 34. https://doi.org/10.3390/v14010034
Liu L, Zhang Z, Liu C, Qu L, Wang D. Genome Analysis of an Alphabaculovirus Isolated from the Larch Looper, Erannis ankeraria. Viruses. 2022; 14(1):34. https://doi.org/10.3390/v14010034
Chicago/Turabian StyleLiu, Long, Zhilin Zhang, Chenglin Liu, Liangjian Qu, and Dun Wang. 2022. "Genome Analysis of an Alphabaculovirus Isolated from the Larch Looper, Erannis ankeraria" Viruses 14, no. 1: 34. https://doi.org/10.3390/v14010034
APA StyleLiu, L., Zhang, Z., Liu, C., Qu, L., & Wang, D. (2022). Genome Analysis of an Alphabaculovirus Isolated from the Larch Looper, Erannis ankeraria. Viruses, 14(1), 34. https://doi.org/10.3390/v14010034