GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Capture and Specimen Collection
2.2. GPS Tracking
2.3. GPS Data Analysis
2.4. RNA Extraction and qRT-PCR
2.5. Serology
2.6. Sequencing
2.7. Phylogenetic Analysis
3. Results
3.1. Specimen Testing
3.2. Sequencing and Phylogenetic Analysis
3.3. Activity and Movement
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses 2015, 1282, 1–23. [Google Scholar]
- Anthony, S.J.; Johnson, C.K.; Greig, D.J.; Kramer, S.; Che, X.; Wells, H.; Hicks, A.L.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; et al. Global patterns in coronavirus diversity. Virus Evol. 2017, 3, vex012. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.C.; Bevins, S.N.; Ellis, J.W.; Linder, T.J.; Tell, R.M.; Jenkins-Moore, M.; Root, J.J.; Lenoch, J.B.; Robbe-Austerman, S.; DeLiberto, T.J.; et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl. Acad. Sci. USA 2021, 118, e2114828118. [Google Scholar] [CrossRef]
- Palmer, M.V.; Martins, M.; Falkenberg, S.; Buckley, A.; Caserta, L.C.; Mitchell, P.K.; Cassmann, E.D.; Rollins, A.; Zylich, N.C.; Renshaw, R.W.; et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J. Virol. 2021, 95, e00083-21. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Huang, Y.; Yuen, K.-Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. M. 2009, 234, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1953–1966. [Google Scholar] [CrossRef]
- Zhong, N.; Zheng, B.; Li, Y.; Poon, L.; Xie, Z.; Chan, K.; Li, P.; Tan, S.; Chang, Q.; Xie, J.; et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003, 362, 1353–1358. [Google Scholar] [CrossRef]
- Zaki, A.M.; Van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.; Lau, E.H.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef]
- Munir, K.; Ashraf, S.; Munir, I.; Khalid, H.; Muneer, M.A.; Mukhtar, N.; Amin, S.; Ashraf, S.; Imran, M.A.; Chaudhry, U.; et al. Zoonotic and reverse zoonotic events of SARS-CoV-2 and their impact on global health. Emerg. Microbes Infec. 2020, 9, 2222–2235. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J.; Cryan, P.M.; Amman, B.R.; Baric, R.S.; Blehert, D.S.; Brook, C.E.; Calisher, C.H.; Castle, K.T.; Coleman, J.T.; Daszak, P.; et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathog. 2020, 16, e1008758. [Google Scholar] [CrossRef] [PubMed]
- Prince, T.; Smith, S.L.; Radford, A.D.; Solomon, T.; Hughes, G.L.; Patterson, E.I. SARS-CoV-2 infections in animals: Reservoirs for reverse zoonosis and models for study. Viruses 2021, 13, 494. [Google Scholar] [CrossRef] [PubMed]
- Bosco-Lauth, A.M.; Walker, A.; Guilbert, L.; Porter, S.; Hartwig, A.; McVicker, E.; Bielefeldt-Ohmann, H.; Bowen, R.A. Susceptibility of livestock to SARS-CoV-2 infection. Emerg. Microbes Infec. 2021, 10, 2199–2201. [Google Scholar] [CrossRef]
- Fagre, A.; Lewis, J.; Eckley, M.; Zhan, S.; Rocha, S.M.; Sexton, N.R.; Burke, B.; Geiss, B.; Peersen, O.; Kading, R.; et al. SARS-CoV-2 infection, neuropathogenesis and transmission among deer mice: Implications for reverse zoonosis to New World rodents. PLoS Pathog. 2021, 17, e1009585. [Google Scholar] [CrossRef]
- Gryseels, S.; De Bruyn, L.; Gyselings, R.; Calvignac-Spencer, S.; Leendertz, F.H.; Leirs, H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mammal Rev. 2021, 51, 272–292. [Google Scholar] [CrossRef]
- Pickering, B.S.; Smith, G.; Pinette, M.M.; Embury-Hyatt, C.; Moffat, E.; Marszal, P.; Lewis, C.E. Susceptibility of domestic swine to experimental infection with severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2021, 27, 104. [Google Scholar] [CrossRef]
- Pusterla, N.; Chaillon, A.; Ignacio, C.; Smith, D.M.; Barnum, S.; Lawton, K.O.; Smith, G.; Pickering, B. SARS-CoV-2 Seroconversion in an Adult Horse with Direct Contact to a COVID-19 Individual. Viruses 2022, 14, 1047. [Google Scholar] [CrossRef]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef]
- Yoo, H.S.; Yoo, D. COVID-19 and veterinarians for one health, zoonotic-and reverse-zoonotic transmissions. J. Vet. Sci. 2020, 21, e51. [Google Scholar] [CrossRef]
- Patterson, B.D.; Ramírez-Chaves, H.E.; Vilela, J.F.; Soares, A.E.R.; Grewe, F. On the nomenclature of the American clade of weasels (Carnivora: Mustelidae). J. Animal Diversity 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Boklund, A.; Hammer, A.S.; Quaade, M.L.; Rasmussen, T.B.; Lohse, L.; Strandbygaard, B.; Jørgensen, C.S.; Olesen, A.S.; Hjerpe, F.B.; Petersen, H.H.; et al. SARS-CoV-2 in Danish mink farms: Course of the epidemic and a descriptive analysis of the outbreaks in 2020. Animals 2021, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Fenollar, F.; Mediannikov, O.; Maurin, M.; Devaux, C.; Colson, P.; Levasseur, A.; Fournier, P.-E.; Raoult, D. Mink, SARS-CoV-2, and the human-animal interface. Front. Microb. 2021, 12, 745. [Google Scholar] [CrossRef] [PubMed]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Munnink, B.B.O. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 2020, 25, 2001005. [Google Scholar] [CrossRef] [PubMed]
- Eckstrand, C.; Baldwin, T.; Torchetti, M.K.; Killian, M.L.; Rood, K.A.; Clayton, M.; Lott, J.K.; Wolking, R.M.; Bradway, D.S.; Baszler, T.; et al. An outbreak of SARS-CoV-2 with high mortality in mink (Neovison vison) on multiple Utah farms. PLoS Pathog. 2021, 17, e1009952. [Google Scholar] [CrossRef]
- Munnink, B.B.O.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; Van Der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef]
- Koley, T.; Madaan, S.; Chowdhury, S.R.; Kumar, M.; Kaur, P.; Singh, T.P.; Ethayathulla, A.S. Structural analysis of COVID-19 spike protein in recognizing the ACE2 receptor of different mammalian species and its susceptibility to viral infection. 3 Biotech 2021, 11, 109. [Google Scholar] [CrossRef]
- Barrs, V.R.; Peiris, M.; Tam, K.W.; Law, P.Y.; Brackman, C.J.; To, E.M.; Yu, V.Y.; Chu, D.K.; Perera, R.A.; Sit, T.H. SARS-CoV-2 in quarantined domestic cats from COVID-19 households or close contacts, Hong Kong, China. Emerg. Infect. Dis. 2020, 26, 3071. [Google Scholar] [CrossRef]
- Segalés, J.; Puig, M.; Rodon, J.; Avila-Nieto, C.; Carrillo, J.; Cantero, G.; Terrón, M.T.; Cruz, S.; Parera, M.; Noguera-Julián, M.; et al. Detection of SARS-CoV-2 in a cat owned by a COVID-19− affected patient in Spain. Prod. Natl. Acad. Sci. USA 2020, 117, 24790–24793. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Gao, J.; Huang, K.; Yang, Y.; Hui, X.; He, X.; Li, C.; Gong, W.; Zhang, Y.; et al. A serological survey of SARS-CoV-2 in cat in Wuhan. Emerg. Microbes Infec. 2020, 9, 2013–2019. [Google Scholar] [CrossRef]
- Bosco-Lauth, A.M.; Hartwig, A.E.; Porter, S.M.; Gordy, P.W.; Nehring, M.; Byas, A.D.; VandeWoude, S.; Ragan, I.K.; Maison, R.M.; Bowen, R.A. Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to reexposure in cats. Proc. Natl. Acad. Sci. USA 2020, 117, 26382–26388. [Google Scholar] [CrossRef]
- Sila, T.; Sunghan, J.; Laochareonsuk, W.; Surasombatpattana, S.; Kongkamol, C.; Ingviya, T.; Siripaitoon, P.; Kositpantawong, N.; Kanchanasuwan, S.; Hortiwakul, T.; et al. Suspected cat-to-human transmission of SARS-CoV-2, Thailand, July–September 2021. Emerg. Infect. Dis 2022, 28, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Cossaboom, C.M.; Wendling, N.M.; Lewis, N.M.; Rettler, H.; Harvey, R.; Amman, B.R.; Towner, J.S.; Spengler, J.; Erickson, R.; Burnett, C.; et al. One health investigation of SARS-CoV-2 in people and animals on multiple mink farms in Utah. Viruses 2022, in preparation. [Google Scholar]
- Centonze, L.A.; Levy, J.K. Characteristics of free-roaming cats and their caretakers. J. Am. Vet. Med. Assoc. 2002, 220, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.M.; Lopez, R.R.; Collier, B.A. Survival, fecundity, and movements of free-roaming cats. J. Wild. Manag. 2007, 71, 915–919. [Google Scholar] [CrossRef]
- Kainulainen, M.H.; Bergeron, E.; Chatterjee, P.; Chapman, A.P.; Lee, J.; Chida, A.; Tang, X.; Wharton, R.E.; Mercer, K.B.; Petway, M.; et al. High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay. Sci. Rep. 2021, 11, 12330. [Google Scholar] [CrossRef] [PubMed]
- Paden, C.R.; Tao, Y.; Queen, K.; Zhang, J.; Li, Y.; Uehara, A.; Tong, S. Rapid, sensitive, full-genome sequencing of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020, 26, 2401. [Google Scholar] [CrossRef] [PubMed]
- Shepard, S.S.; Meno, S.; Bahl, J.; Wilson, M.M.; Barnes, J.; Neuhaus, E. Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genom. 2016, 17, 1–18. [Google Scholar]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef]
- Goryoka, G.W.; Cossaboom, C.M.; Gharpure, R.; Dawson, P.; Tansey, C.; Rossow, J.; Mrotz, V.; Rooney, J.; Torchetti, M.; Loiacono, C.M.; et al. One Health Investigation of SARS-CoV-2 infection and seropositivity among pets in households with confirmed human COVID-19 cases—Utah and Wisconsin, 2020. Viruses 2021, 13, 1813. [Google Scholar] [CrossRef]
- Bonanni, R.; Cafazzo, S.; Fantini, C.; Pontier, D.; Natoli, E. Feeding-order in an urban feral domestic cat colony: Relationship to dominance rank, sex and age. Anim. Behav. 2007, 74, 1369–1379. [Google Scholar] [CrossRef]
- Messeri, P. Social structure of a semi-feral population of domestic cats. Ethol. Ecol. Evol. 1990, 2, 316. [Google Scholar] [CrossRef]
- Foley, P.; Foley, J.E.; Levy, J.K.; Paik, T. Analysis of the impact of trap-neuter-return programs on populations of feral cats. J. Am. Vet. Med. Assoc. 2005, 227, 1775–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, J.M.; Wilson, T.M.; Gary, J.M.; Seixas, J.N.; Martines, R.B.; Bhatnagar, J.; Bollweg, B.C.; Lee, E.; Estetter, L.; Silva-Flannery, L.; et al. Histopathology and localization of SARS-CoV-2 and its host cell entry receptor ACE2 in tissues from naturally infected US-farmed mink (Neovison vison). Vet. Pathol. 2022, 59, 03009858221079665. [Google Scholar] [CrossRef]
- Griffin, B.D.; Chan, M.; Tailor, N.; Mendoza, E.J.; Leung, A.; Warner, B.M.; Duggan, A.T.; Moffat, E.; He, S.; Garnett, L.; et al. SARS-CoV-2 infection and transmission in the North American deer mouse. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bosco-Lauth, A.M.; Root, J.J.; Porter, S.M.; Walker, A.E.; Guilbert, L.; Hawvermale, D.; Pepper, A.; Maison, R.M.; Hartwig, A.E.; Gordy, P.; et al. Peridomestic mammal susceptibility to severe acute respiratory syndrome Coronavirus 2 infection. Emerg. Infect. Dis. 2021, 27, 2073. [Google Scholar] [CrossRef]
- Pickering, B.; Lung, O.; Maguire, F.; Kruczkiewicz, P.; Kotwa, J.D.; Buchanan, T.; Gagnier, M.; Guthrie, J.L.; Jardine, C.M.; Marchand-Austin, A.; et al. Highly divergent white-tailed deer SARS-CoV-2 with potential deer-to-human transmission. BioRxiv 2022. [Google Scholar] [CrossRef]
Sex | Age | No. Collared | No. with GPS Data | No. PCR+ | No. Ab+ |
---|---|---|---|---|---|
Female | Adult | 3 | 2 | 1 | 0 |
Juvenile | 2 | 2 | 0 | 1 | |
Male | Adult | 8 | 7 | 2 | 4 |
Juvenile | 2 | 2 | 1 | 1 | |
Total | 15 | 13 | 4 | 6 |
Activity/Movement | Age | Mean | Standard Deviation | p Value |
---|---|---|---|---|
Mink shed visits (no.) | Adult | 5.22 | 4.47 | 0.014 |
Juvenile | 14.25 | 6.65 | ||
Home visits * (no.) | Adult | 47.00 | 29.00 | 0.155 |
Juvenile | 22.50 | 19.33 | ||
Neighborhood visits ** (no.) | Adult | 0.67 | 1.41 | 0.546 |
Juvenile | 1.25 | 1.89 | ||
Time in/near mink sheds (in minutes) | Adult | 48.89 | 38.87 | 0.043 |
Juvenile | 423.75 | 518.83 | ||
Time in/near homes (in minutes) | Adult | 2083.89 | 1313.44 | 0.106 |
Juvenile | 762.50 | 1059.01 | ||
Time in neighborhoods (in minutes) | Adult | 28.89 | 67.16 | 0.104 |
Juvenile | 141.25 | 169.72 | ||
MCP *** movement area (in hectares) | Adult | 9.00 | 15.75 | 0.829 |
Juvenile | 7.19 | 5.91 |
Activity/Movement | Infection Status | Mean | Minimum | Maximum | Standard Deviation | p Value |
---|---|---|---|---|---|---|
Mink Shed Visits (no.) | Ab− | 7.63 | 2.00 | 15.00 | 4.17 | 0.087 |
Ab+ | 8.60 | 0.00 | 24.00 | 9.91 | ||
PCR− | 8.00 | 2.00 | 15.00 | 5.29 | 1.00 | |
PCR+ | 8.00 | 0.00 | 24.00 | 8.37 | ||
Home visits * (no.) | Ab− | 42.75 | 2.00 | 82.00 | 32.28 | 0.616 |
Ab+ | 34.20 | 1.00 | 54.00 | 22.30 | ||
PCR− | 35.71 | 2.00 | 82.00 | 29.76 | 0.626 | |
PCR+ | 43.83 | 1.00 | 79.00 | 28.22 | ||
Neighborhood visits ** | Ab− | 0.88 | 0.00 | 4.00 | 1.46 | 0.935 |
Ab+ | 0.80 | 0.00 | 4.00 | 1.79 | ||
PCR− | 1.00 | 20.00 | 250.00 | 1.53 | 0.711 | |
PCR+ | 0.67 | 0.00 | 1195.00 | 1.63 | ||
Time in/near mink sheds (in minutes) | Ab− | 88.13 | 20.00 | 250.00 | 73.821 | 0.293 |
Ab+ | 286.00 | 0.00 | 1195.00 | 512.39 | ||
PCR− | 100.00 | 20.00 | 250.00 | 85.29 | 0.455 | |
PCR+ | 239.17 | 0.00 | 1195.00 | 469.59 | ||
Time in/near homes (in minutes) | Ab− | 1738.13 | 10.00 | 3915.00 | 1454.08 | 0.848 |
Ab+ | 1580.00 | 5.00 | 2800.00 | 1334.48 | ||
PCR− | 1603.57 | 10.00 | 3140.00 | 1384.28 | 0.843 | |
PCR+ | 1763.33 | 5.00 | 3915.00 | 1443.67 | ||
Time in neighborhoods (in minutes) | Ab− | 78.13 | 0.00 | 340.00 | 131.47 | 0.582 |
Ab+ | 40.00 | 0.00 | 200.00 | 89.44 | ||
PCR− | 89.29 | 0.00 | 340.00 | 137.85 | 0.403 | |
PCR+ | 33.33 | 0.00 | 200.00 | 81.65 | ||
MCP *** movement area (in hectares) | Ab− | 5.80 | 1.24 | 14.13 | 4.502 | 0.385 |
Ab+ | 12.72 | 0.83 | 50.75 | 21.42 | ||
PCR− | 5.23 | 0.83 | 14.13 | 5.25 | 0.366 | |
PCR+ | 12.24 | 2.27 | 50.75 | 18.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amman, B.R.; Cossaboom, C.M.; Wendling, N.M.; Harvey, R.R.; Rettler, H.; Taylor, D.; Kainulainen, M.H.; Ahmad, A.; Bunkley, P.; Godino, C.; et al. GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah. Viruses 2022, 14, 2131. https://doi.org/10.3390/v14102131
Amman BR, Cossaboom CM, Wendling NM, Harvey RR, Rettler H, Taylor D, Kainulainen MH, Ahmad A, Bunkley P, Godino C, et al. GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah. Viruses. 2022; 14(10):2131. https://doi.org/10.3390/v14102131
Chicago/Turabian StyleAmman, Brian R., Caitlin M. Cossaboom, Natalie M. Wendling, R. Reid Harvey, Hannah Rettler, Dean Taylor, Markus H. Kainulainen, Ausaf Ahmad, Paige Bunkley, Claire Godino, and et al. 2022. "GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah" Viruses 14, no. 10: 2131. https://doi.org/10.3390/v14102131
APA StyleAmman, B. R., Cossaboom, C. M., Wendling, N. M., Harvey, R. R., Rettler, H., Taylor, D., Kainulainen, M. H., Ahmad, A., Bunkley, P., Godino, C., Tong, S., Li, Y., Uehara, A., Kelleher, A., Zhang, J., Lynch, B., Behravesh, C. B., & Towner, J. S. (2022). GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah. Viruses, 14(10), 2131. https://doi.org/10.3390/v14102131