Evaluation of Cardiac Biomarkers and Expression Analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 among COVID-19 Patients from Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Consideration
2.2. Inclusive Criteria and Control Group
2.3. Exclusive Criteria
2.4. Blood Samples and Data Collection
2.5. Extraction and Preparation of RNA from PBMCs
2.6. Synthesis of cDNA and Genes Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Clinical and Demographic Characteristics
3.2. Laboratory Parameters
3.3. Correlation of Cytokines with Cardiac Biomarkers
3.4. Risk Factors for COVID-19 Associated Death in Hospitalized Patients
3.5. Expression Analysis of IL-1, IL-6, IL-10, IL-17 and IL-25 Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. World Health Organization. 2022. Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1 (accessed on 1 June 2022).
- Alhogbani, T. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus. Ann. Saudi Med. 2016, 36, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Sala, S.; Peretto, G.; Gramegna, M.; Palmisano, A.; Villatore, A.; Vignale, D.; De Cobelli, F.; Tresoldi, M.; Cappelletti, A.M.; Basso, C.; et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur. Heart J. 2020, 41, 1861–1862. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, M.L.V.; Zanchettin, A.C.; Vaz de Paula, C.B.; Motta Júnior, J.D.S.; Malaquias, M.A.S.; Raboni, S.M.; de Noronha, L. Lung neutrophilic recruitment and IL-8/IL-17A tissue expression in COVID-19. Front. Immunol. 2021, 12, 656350. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 27 September 2022).
- Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Madjid, M.; Vela, D.; Khalili-Tabrizi, H.; Casscells, S.W.; Litovsky, S. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: Clues to the triggering effect of acute infections on acute coronary syndromes. Tex Heart Inst. J. 2007, 34, 11–18. [Google Scholar]
- Kwong, J.C.; Schwartz, K.L.; Campitelli, M.A.; Chung, H.; Crowcroft, N.S.; Karnauchow, T.; Katz, K.; Ko, D.T.; McGeer, A.J.; McNally, D.; et al. Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. N. Engl. J. Med. 2018, 378, 2540–2541. [Google Scholar] [CrossRef]
- Nunes, B.; Viboud, C.; Machado, A.; Ringholz, C.; Rebelo-de-Andrade, H.; Nogueira, P.; Miller, M. Excess mortality associated with influenza epidemics in Portugal, 1980 to 2004. PLoS ONE 2011, 6, e20661. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Bhatraju, P.K.; Ghassemieh, B.J.; Nichols, M.; Kim, R.; Jerome, K.R.; Nalla, A.K.; Greninger, A.L.; Pipavath, S.; Wurfel, M.M.; Evans, L.; et al. COVID-19 in Critically Ill Patients in the Seattle Region—Case Series. N. Engl. J. Med. 2020, 382, 2012–2022. [Google Scholar] [CrossRef]
- Fried, J.A.; Ramasubbu, K.; Bhatt, R.; Topkara, V.K.; Clerkin, K.J.; Horn, E.; Rabbani, L.; Brodie, D.; Jain, S.S.; Kirtane, A.J.; et al. The Variety of Cardiovascular Presentations of COVID-19. Circulation 2020, 141, 1930–1936. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yan, J.T.; Zhou, N.; Zhao, J.P.; Wang, D.W. Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19. Zhonghua Xin Xue Guan Bing Za Zhi 2020, 48, E008. [Google Scholar] [CrossRef]
- Deng, Q.; Hu, B.; Zhang, Y.; Wang, H.; Zhou, X.; Hu, W.; Cheng, Y.; Yan, J.; Ping, H.; Zhou, Q. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int. J. Cardiol. 2020, 311, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, M.; Lin, W.; Cai, Q.; Zhang, L.; Chen, D.; Liu, F.; Xiong, X.; Chu, J.; Peng, J.; et al. Cardiac biomarkers, cardiac injury, and comorbidities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Immun. Inflamm. Dis. 2021, 9, 1071–1100. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 2006, 7, 131–137. [Google Scholar] [CrossRef]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res. 2014, 1843, 2563–2582. [Google Scholar] [CrossRef]
- Rojas, J.M.; Avia, M.; Martín, V.; Sevilla, N. IL-10: A multifunctional cytokine in viral infections. J. Immunol. Res. 2017, 2017, 6104054. [Google Scholar] [CrossRef]
- Ragab, D.; Eldin, H.S.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 cytokine storm; what we know so far. Front. Immunol. 2020, 16, 1446. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Lau, S.K.P.; To, K.K.W.; Cheng, V.C.C.; Woo, P.C.Y.; Yue, K.Y. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 2015, 28, 465–522. [Google Scholar] [CrossRef]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Liu, Y.; Zhou, R.; Deng, X.; Li, F.; Liang, K.; Shi, Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology 2020, 160, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Akbari, H.; Tabrizi, R.; Lankarani, K.B.; Aria, H.; Vakili, S.; Asadian, F.; Noroozi, S.; Keshavarz, P.; Faramarz, S. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci. 2020, 258, 118167. [Google Scholar] [CrossRef] [PubMed]
- Javaid, A.; Hussain, N. Mutational analysis of Forkhead box P3 gene in Pakistani Human Immunodeficient Virus Patients. Pak. J. Zool. 2019, 51, 1987–1990. [Google Scholar] [CrossRef]
- Fichna, M.; Żurawek, M.; Bratland, E.; Husebye, E.S.; Kasperlik-Załuska, A.; Czarnocka, B.; Januszkiewicz-Lewandowska, D.; Nowak, J. Interleukin-2 and subunit alpha of its soluble receptor in autoimmune Addison’s disease–An association study and expression analysis. Autoimmunity 2015, 48, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Wongchana, W.; Palaga, T. Direct regulation of interleukin-6 expression by Notch signaling in macrophages. Cell. Mol. Immunol. 2012, 9, 155–162. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Vasilyev, F.F.; Silkov, A.N.; Sennikov, S.V. Relationship between interleukin-1 type 1 and 2 receptor gene polymorphisms and the expression level of membrane-bound receptors. Cell. Mol. Immunol. 2015, 12, 222–230. [Google Scholar] [CrossRef]
- Afzal, M.S.; Anjum, S.; Zaidi, N.U.S.S. Effect of functional interleukin-10 polymorphism on pegylated interferon-α plus ribavirin therapy response in chronic hepatitis C virus patients infected with 3a genotype in Pakistani population. Hepatitis Mon. 2013, 13. [Google Scholar] [CrossRef]
- Okamura, Y.; Morimoto, N.; Ikeda, D.; Mizusawa, N.; Watabe, S.; Miyanishi, H.; Saeki, Y.; Takeyama, H.; Aoki, T.; Kinoshita, M.; et al. Interleukin-17A/F1 deficiency reduces antimicrobial gene expression and contributes to microbiome alterations in intestines of Japanese medaka (Oryzias latipes). Front. Immunol. 2020, 11, 425. [Google Scholar] [CrossRef]
- Barati, M.; Sinaeian, M.; Shokrollahi Barough, M.; Pak, F.; Semnani, V.; Kokhaei, P.; Momtazi-Borojeni, A.A. Evaluation of interleukin 25 and interleukin 25 receptor expression in peripheral blood mononuclear cells of breast cancer patients and normal subjects. J. Interferon Cytokine Res. 2020, 40, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Santoso, A.; Pranata, R.; Wibowo, A.; Al-Farabi, M.J.; Huang, I.; Antariksa, B. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: A meta-analysis. Am. J. Emerg. Med. 2021, 44, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, Z.; Zhang, Y. Association of Myocardial Enzyme Abnormality with Clinical Outcomes of Patients with COVID-19: A Retrospective Study. Dis. Markers 2021, 2021, 3440714. [Google Scholar] [CrossRef]
- Mureddu, G.F.; Ambrosetti, M.; Venturini, E.; La Rovere, M.T.; Mazza, A.; Pedretti, R.; Sarullo, F.; Fattirolli, F.; Faggiano, P.; Giallauria, F.; et al. Cardiac rehabilitation activities during the COVID-19 pandemic in Italy. Position Paper of the AICPR (Italian Association of Clinical Cardiology, Prevention and Rehabilitation). Monaldi Arch. Chest Dis. 2020, 90. [Google Scholar] [CrossRef] [PubMed]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef]
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef] [PubMed]
- Nidadavolu, L.S.; Walston, J.D. Underlying Vulnerabilities to the Cytokine Storm and Adverse COVID-19 Outcomes in the Aging Immune System. J. Gerontol. A. Biol. Sci. Med. Sci. 2021, 76, e13–e18. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, Z.; Wu, K.; Junhua, Z. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2. Aging 2020, 12, 7639–7651. [Google Scholar] [CrossRef]
- Bullard, J.; Dust, K.; Funk, D.; Strong, J.E.; Alexander, D.; Garnett, L.; Boodman, C.; Bello, A.; Hedley, A.; Schiffman, Z.; et al. Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples. Clin. Infect. Dis. 2020, 71, 2663–2666. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 2020, 26, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Y.; Ling, Y.; Lu, G.; Liu, F.; Yi, Z.; Jia, X.; Wu, M.; Shi, B.; Xu, S.; et al. Viral and host factors related to the clinical outcome of COVID-19. Nature 2020, 583, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.C.K.; Pollara, G.; Pascoe, M.; Tomlinson, G.S.; Lehloenya, R.J.; Roe, J.; Meldau, R.; Miller, R.F.; Ramsay, A.; Chain, B.M.; et al. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis. PLOS Pathog. 2016, 12, e1005469. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Maes, B.; Bosteels, C.; De Leeuw, E.; Declercq, J.; Van Damme, K.; Delporte, A.; Demeyere, B.; Vermeersch, S.; Vuylsteke, M.; Willaert, J.; et al. Treatment of severely ill COVID-19 patients with anti-interleukin drugs (COV-AID): A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 1–2. [Google Scholar] [CrossRef]
- Yang, X.; Rutkovsky, A.C.; Zhou, J.; Zhong, Y.; Reese, J.; Schnell, T.; Albrecht, H.; Owens, W.B.; Nagarkatti, P.S.; Nagarkatti, M. Characterization of Altered Gene Expression and Histone Methylation in Peripheral Blood Mononuclear Cells Regulating Inflammation in COVID-19 Patients. J. Immunol. 2022, 208, 1968–1977. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the Interleukin-10 Receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef]
- Maris, C.H.; Chappell, C.P.; Jacob, J. Interleukin-10 plays an early role in generating virus-specific T cell anergy. BMC Immunol. 2007, 8, 8–9. [Google Scholar] [CrossRef]
- Brooks, D.G.; Trifilo, M.J.; Edelmann, K.H.; Teyton, L.; McGavern, D.; A Oldstone, M.B. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 2006, 12, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Ejrnaes, M.; Filippi, C.M.; Martinic, M.; Ling, E.M.; Togher, L.M.; Crotty, S.; Von Herrath, M.G. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med. 2006, 203, 2461–2472. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.S.; Pedicord, V.; PLoss, A.; Menet, E.; Leiner, I.; Pamer, E.G. Pathogen-Specific CD8 T Cell Responses Are Directly Inhibited by IL-10. J. Immunol. 2007, 179, 4520–4528. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qin, L.; Zhang, P.; Li, K.; Liang, L.; Sun, J.; Xu, B.; Dai, Y.; Li, X.; Zhang, C.; et al. Longitudinal profiling of cytokines and chemo-kines in COVID-19 reveals inhibitory mediators IL-1Ra and IL-10 are associated with disease severity while elevated RANTES is an early predictor of mild disease. Lancet 2020. [Google Scholar] [CrossRef]
- Lakoski, S.G.; Liu, Y.; Brosnihan, K.B.; Herrington, D.M. Interleukin-10 concentration and coronary heart disease (CHD) event risk in the estrogen replacement and atherosclerosis (ERA) study. Atherosclerosis 2008, 197, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; He, X.; Li, X.; Qian, Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell. Mol. Immunol. 2016, 13, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Vidy, A.; Maisonnasse, P.; Da Costa, B.; Delmas, B.; Chevalier, C.; Le Goffic, R. The Influenza Virus Protein PB1-F2 Increases Viral Pathogenesis through Neutrophil Recruitment and NK Cells Inhibition. PLoS ONE 2016, 11, e0165361. [Google Scholar] [CrossRef]
- Xu, Y. Interleukin-25 increases in human coronary artery disease and is associated with the severity of coronary stenosis. Anatol. J. Cardiol. 2019, 23, 151–159. [Google Scholar] [CrossRef]
- Naumenko, V.; Turk, M.; Jenne, C.N.; Kim, S.-J. Neutrophils in viral infection. Cell Tissue Res. 2018, 371, 505–516. [Google Scholar] [CrossRef]
- Kikkert, M. Innate Immune Evasion by Human Respiratory RNA Viruses. J. Innate Immun. 2020, 12, 4–20. [Google Scholar] [CrossRef]
- Muir, R.; Osbourn, M.; Dubois, A.V.; Doran, E.; Small, D.M.; Monahan, A.; O’Kane, C.M.; McAllister, K.; Fitzgerald, D.C.; Kissenpfennig, A.; et al. Innate Lymphoid Cells Are the Predominant Source of IL-17A during the Early Pathogenesis of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2016, 193, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angkasekwinai, P.; Park, H.; Wang, Y.-H.; Wang, Y.-H.; Chang, S.H.; Corry, D.B.; Liu, Y.-J.; Zhu, Z.; Dong, C. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 2007, 204, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.; Fritz, Y.; Dawes, S.M.; Diaconu, D.; Al-Attar, P.M.; Guzman, A.M.; Chen, C.S.; Fu, W.; Gudjonsson, J.E.; McCormick, T.S.; et al. Keratinocyte Overexpression of IL-17C Promotes Psoriasiform Skin Inflammation. J. Immunol. 2013, 190, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Dong, C. IL-25 in allergic inflammation. Immunol. Rev. 2017, 278, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Caruso, R.; Sarra, M.; Stolfi, C.; Rizzo, A.; Fina, D.; Fantini, M.C.; Pallone, F.; MacDonald, T.T.; Monteleone, G. Interleukin-25 Inhibits Interleukin-12 Production and Th1 Cell-Driven Inflammation in the Gut. Gastroenterology 2009, 136, 2270–2279. [Google Scholar] [CrossRef]
- Owyang, A.M.; Zaph, C.; Wilson, E.H.; Guild, K.J.; McClanahan, T.; Miller, H.R.P.; Cua, D.J.; Goldschmidt, M.; Hunter, C.A.; Kastelein, R.A.; et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 2006, 203, 843–849. [Google Scholar] [CrossRef]
- Hvid, M.; Vestergaard, C.; Kemp, K.; Christensen, G.B.; Deleuran, B.; Deleuran, M. IL-25 in Atopic Dermatitis: A Possible Link between Inflammation and Skin Barrier Dysfunction? J. Investig. Dermatol. 2011, 131, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Deleuran, M.; Hvid, M.; Kemp, K.; Christensen, G.B.; Deleuran, B.; Vestergaard, C. IL-25 Induces Both Inflammation and Skin Barrier Dysfunction in Atopic Dermatitis. New Trends Allergy Atopic Eczema 2012, 96, 45–49. [Google Scholar] [CrossRef]
- Valizadeh, A.; Khosravi, A.; Zadeh, L.J.; Parizad, E.G. Role of IL-25 in Immunity. J. Clin. Diagn. Res. 2015, 9, OE01. [Google Scholar] [CrossRef]
- Corrigan, C.J.; Wang, W.; Meng, Q.; Fang, C.; Wu, H.; Reay, V.; Lv, Z.; Fan, Y.; An, Y.; Wang, Y.-H.; et al. T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proc. Natl. Acad. Sci. USA 2011, 108, 1579–1584. [Google Scholar] [CrossRef]
- Jiang, L.; Xue, W.; Wang, Y. RETRACTED: Inhibition of miR-31a-5p decreases inflammation by down-regulating IL-25 expression in human dermal fibroblast cells (CC-2511 cells) under hyperthermic stress via Wnt/β-catenin pathway. Biomed. Pharmacother. 2018, 107, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Vannella, K.M.; Ramalingam, T.R.; Borthwick, L.A.; Barron, L.; Hart, K.M.; Thompson, R.W.; Kindrachuk, K.N.; Cheever, A.W.; White, S.; Budelsky, A.L.; et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine–driven inflammation and fibrosis. Sci. Transl. Med. 2016, 8, 337ra65. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yang, Z.; Su, L.; Shan, J.; Xu, H.; Xu, Y.; Liu, L.; Zhu, W.; Chen, X.; Liu, C.; et al. Non-CSCs nourish CSCs through interleukin-17E-mediated activation of NF-κB and JAK/STAT3 signaling in human hepatocellular carcinoma. Cancer Lett. 2016, 375, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Li, L.; Ou, Z.; Li, Q.; Gong, B.; Zhao, Z.; Qi, W.; Zhou, T.; Zhong, J.; Cai, W.; et al. IL-25 stimulates M2 macrophage polarization and thereby promotes mitochondrial respiratory capacity and lipolysis in adipose tissues against obesity. Cell. Mol. Immunol. 2017, 15, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Niu, Z.; Tan, J.; Yang, J.; Liu, Y.; Ma, H.; Lee, V.; Sun, S.; Song, X.; Guo, M.; et al. IL-25 Elicits Innate Lymphoid Cells and Multipotent Progenitor Type 2 Cells That Reduce Renal Ischemic/Reperfusion Injury. J. Am. Soc. Nephrol. 2015, 26, 2199–2211. [Google Scholar] [CrossRef] [Green Version]
Primer | Primer Sequence | Annealing | Reference |
---|---|---|---|
IL-1 | F-5′ TCT GGGGCATACTCACAGGGGT-3′ R-5′ AGCTGGGTTGTGGTAGCCTTACTG-3′ | 52 °C/30 s | [30] |
IL-6 | F-5′ CATGTTCTCTGGGAAATCGTGG-3′ R-5′ AACGCACTAGGTTTGCCGAGTA-3′ | 51.4 °C/30 s | [28] |
IL-10 | F-5′ACTACTAAGGCTTCTTTGGGAA-3′ R-5′ CAGTGCCAACTGAGAATTTGG-3′ | 56 °C/30 s | [31] |
IL-17 | F-5′ GCTCCTCTGGCCTTGATGATG-3′ R-5′ CTTGTACGTCCACGGCGAGATG-3′ | 53 °C/30 s | [32] |
IL-25 | F-5′ GTGCCTGTGCCTCCCCTA-3′ R-5′ CGC CTGTAGAAGACA GTCTG-3′ | 57 °C/30 s | [33] |
GAPDH | F-5′ CTTTGTCAAGCTCATTTCCTGG-3′ R-5′ TCTTCCTCTTGTGCTCTTGC-3′ | 57 °C/30 s | [28] |
Clinical and Demographics Parameters | Normal Value | Total Samples (500) | Abnormal Cardiac Biomarkers (n= 481) | Normal Cardiac Biomarkers (n = 19) | Z/χ2 | p-Value |
---|---|---|---|---|---|---|
Age Groups | ||||||
Age group 1 (18–28) | 95 | 65 (13%) | 30 (6%) | 5.870 | <0.001 | |
Age group 2 (29–38) | 89 | 73 (14.6%) | 16 (3.2%) | |||
Age group 3 (39–48) | 96 | 89 (17.8%) | 7 (1.4%) | |||
Age group 4 (49–58) | 116 | 91 (18.2%) | 25 (5%) | |||
Age group 5 (58 and above) | 104 | 88 (17.6%) | 16 (3.2%) | |||
Gender and Symptoms | ||||||
Male | 351 | 236 (47.2%) | 115 (23%) | 6.676 | 0.008 | |
Female | 149 | 107 (21.4%) | 42 (8.4%) | |||
Fever | 413 | 297 (59.4%) | 116 (23.2%) | 0.009 | 0.926 | |
Cough | 382 | 303 (60.6%) | 79 (15.8%) | 0.261 | 0.61 | |
Chest pain/tightness | 295 | 218 (43.6%) | 77 (15.4%) | 0.303 | 0.582 | |
Respiratory rate | 273 | 229 (45.8%) | 44 (8.8%) | 0.004 | ||
Systolic pressure | 90–140 mm Hg | 327 | 299 (59.8%) | 28 (5.6%) | −3.046 | 0.002 |
Diastolic pressure | 60–90 mm Hg | 358 | 307 (61.4%) | 51 (10.2%) | −0.027 | 0.978 |
Comorbidities | ||||||
Hypertension | 181 | 113 (22.6%) | 68 (13.6%) | 6.655 | 0.01 | |
Diabetes | 95 | 57 (11.4%) | 38 (7.6%) | 9.571 | 0.002 | |
Other CVD | 83 | 63 (12.6%) | 20 (4%) | 0.398 | 0.528 | |
CPD | 56 | 26 (5.2%) | 30 (6%) | 4.058 | 0.044 | |
With more than one comorbidity | 139 | 91 (18.2%) | 48 (9.6%) | 7.865 | 0.005 | |
Laboratory Observations | ||||||
Blood routine tests | high | |||||
White blood cells | 3.5–9.5 109/L | 201 | 76 (15.2%) | 125 (25%) | 3.59 | <0.001 |
Neutrophil | 1.8–6.3 109/L | 232 | 92 (18.4%) | 140 (28%) | 5.282 | <0.001 |
Lymphocyte | 1.1–3.2 109/L | 185 | 102 (20.4%) | 83 (16.6%) | −5.25 | <0.001 |
Platelet count | 125–350 109/L | 255 | 97 (19.4%) | 157 (31.4%) | −0.188 | 0.851 |
Haemoglobin | 130–175 g/L | 49 | 31 (6.2%) | 18 (3.6%) | −1.62 | 0.105 |
Monocyte count | 0.1–0.6 109/L | 352 | 165 (33%) | 187 (37.4%) | −0.799 | 0.424 |
Random Blood Sugar and Lipids | ||||||
FBG | 4.1–5.9 mmol/L | 189 | 92 (18.4%) | 97 (19.4%) | 3.185 | 0.001 |
Total cholesterol | <5.2 mmol/L | 316 | 200 (40%) | 116 (23.2%) | 0.22 | |
Triglyceride | <1.7 mmol/L | 281 | 196 (39.2%) | 85 (17%) | −0.591 | 0.555 |
HDL | 1.16–1.42 mmol/L | 132 | 69 (13.8%) | 63 (12.6%) | −2.091 | 0.036 |
LDL | 2.7–3.1 mmol/L | 199 | 115 (23%) | 84 (16.8%) | 0.18 | |
Cytokines and Inflammatory Biomarkers | ||||||
CRP | <8 mg/L | 152 | 71 (14.2%) | 81 (16.2%) | −6.588 | <0.001 |
Procalcitonin | <0.5 μg/L | 183 | 101 (20.2%) | 82 (16.4%) | −5.242 | <0.001 |
SAA | <10 mg/L | 93 | 57 (11.4%) | 36 (7.2%) | 5.326 | <0.001 |
ESR | <20 mm/h | 117 | 39 (7.8%) | 78 (15.6%) | 5.598 | <0.001 |
IL-1 | 0–5 pg/mL | 431 | 157 (31.4%) | 274 (54.8%) | −4.201 | <0.001 |
IL-6 | 0.12–2.9 ng/L | 465 | 186 (37.2%) | 279 (55.8%) | −4.912 | <0.001 |
IL-10 | 0.1–5 ng/L | 472 | 135 (27%) | 337 (67.4%) | −4.832 | <0.001 |
IL-17 | ≤10 pg/mL | 416 | 162 (32.4%) | 254 (50.8%) | −4.710 | <0.001 |
IL-25 | 23 and 200 pg/mL | 422 | 179 (35.8%) | 243 (48.6%) | −4.347 | <0.001 |
Cardiac Biomarkers | ||||||
CK | 138–174 U/L | 438 | 392 (78.4%) | 46 (9.2%) | −5.743 | <0.001 |
LDH | 109–245 U/L | 481 | 435 (87%) | 46 (9.2%) | −9.962 | <0.001 |
TN1 | <26.2 μg/L | 450 | 402 (80.4%) | 48 (9.6%) | −5.207 | <0.001 |
CKMB | 0–24 μg/L | 476 | 415 (83%) | 61 (12.2%) | −2.404 | 0.016 |
D-dimer | 487 | 404 (80.8%) | 83 (16.6%) | |||
Renal and Liver Functional Tests | ||||||
ALT | 5–40 U/L | 236 | 160 (32%) | 76 (15.2%) | −3.466 | 0.001 |
AST | 8–40 U/L | 179 | 101 (20.2%) | 78 (15.6%) | −5.522 | <0.001 |
ALP | 40–150 U/L | 153 | 89 (17.8%) | 64 (12.8%) | −2.122 | 0.034 |
γ−Transglutaminase | 11–50 U/L | 211 | 176 (35.2%) | 35 (7%) | −4.053 | <0.001 |
Total bilirubin | 5.1–19 μmol/L | 189 | 132 (26.4%) | 57 (11.4%) | −3.307 | 0.001 |
Urea nitrogen | 2.9–8.2 mmol/L | 103 | 67 (13.4%) | 36 (7.2%) | −2.557 | 0.011 |
Creatinine | 46–92 μmol/L | 197 | 130 (26%) | 67 (13.4%) | −1.754 | 0.079 |
Uric acid | 149–369 μmol/L | 156 | 102 (20.4%) | 54 (10.8%) | −1.055 | 0.292 |
Clinical Typing and Outcome | ||||||
Severe | 467 | 461 (92.2%) | 6 (1.2%) | 41.314 | <0.001 | |
Non−severe | 33 | 22 (4.4%) | 11 (2.2%) | |||
Death | 457 | 441 (88.2%) | 16 (3.2%) | <0.001 | ||
Discharge | 43 | 16 (3.2%) | 23 (4.6%) |
Clinical Parameters | p-Value | OR/Univariate Analysis (95% CI) |
---|---|---|
Old age | 0.002 | 1.201 (1.03–1.132) |
Gender | 0.341 | 0.618 (0.23–1.664) |
Rate of Respiration | 0.003 | 1.231 (1.213–1.341) |
Tightness/Chest pain | 0.712 | 1.31 (0.551–3.483) |
Non-severe vs. Severe | 0.005 | 2.621 (1.342–5.117) |
Underlying comorbidities | 0.001 | 5.121 (1.809–13.531) |
Platelets | 0.001 | 0.977 (0.966–0.988) |
Neutrophil | 0.001 | 1.415 (1.207–1.658) |
WBC | 0.001 | 1.315 (1.142–1.514) |
IL-6 | 0.004 | 1.018 (1.006–1.031) |
IL-10 | 0.060 | 1.229 (0.991–1.524) |
TN1 | 0.014 | 1.009 (1.002–1.017) |
LDH | 0.001 | 1.004 (1.002–1.007) |
CK | 0.003 | 1.002 (1.001–1.004) |
EGFR | 0.001 | 0.952 (0.932–0.972) |
SAA | 0.034 | 1.003 (1–1.005) |
ESR | 0.017 | 1.031 (1.006–1.057) |
CRP | 0.001 | 1.031 (1.018–1.045) |
AST | 0.009 | 1.007 (1.002–1.013) |
ALT | 0.683 | 0.998 (0.987–1.009) |
ALP | 0.004 | 1.014 (1.004–1.023) |
Procalcitonin | 0.017 | 1.654 (1.093–2.504) |
Creatinine | 0.085 | 1.004 (0.999–1.009) |
UREA nitrogen | 0.001 | 1.714 (1.339–2.149) |
Total bile acid | 0.158 | 1.066 (0.976–1.165) |
Direct bilirubin | 0.049 | 1.069 (1–1.142) |
Total bilirubin | 0.030 | 1.062 (1.006–1.121) |
γ-Transglutaminase | 0.500 | 1.002 (0.995–1.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, R.; Khan, J.; Basharat, N.; Huo, D.; Ud Din, A.; Wang, G. Evaluation of Cardiac Biomarkers and Expression Analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 among COVID-19 Patients from Pakistan. Viruses 2022, 14, 2149. https://doi.org/10.3390/v14102149
Ullah R, Khan J, Basharat N, Huo D, Ud Din A, Wang G. Evaluation of Cardiac Biomarkers and Expression Analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 among COVID-19 Patients from Pakistan. Viruses. 2022; 14(10):2149. https://doi.org/10.3390/v14102149
Chicago/Turabian StyleUllah, Razi, Jadoon Khan, Nosheen Basharat, Danqun Huo, Ahmad Ud Din, and Guixue Wang. 2022. "Evaluation of Cardiac Biomarkers and Expression Analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 among COVID-19 Patients from Pakistan" Viruses 14, no. 10: 2149. https://doi.org/10.3390/v14102149
APA StyleUllah, R., Khan, J., Basharat, N., Huo, D., Ud Din, A., & Wang, G. (2022). Evaluation of Cardiac Biomarkers and Expression Analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 among COVID-19 Patients from Pakistan. Viruses, 14(10), 2149. https://doi.org/10.3390/v14102149