Neotropical Sylvatic Mosquitoes and Aedes aegypti Are Not Competent to Transmit 17DD Attenuated Yellow Fever Virus from Vaccinated Viremic New World Non-Human Primates
Abstract
:1. Introduction
2. Material and Methods
2.1. NHPs Used in the Study
2.2. Mosquitoes
2.3. Blood Meal on Vaccinated NHPs
2.4. Artificial Laboratory Mosquito Oral Challenge
2.5. Mosquito Screening and Incubation
2.6. Mosquito Examination
3. Results
3.1. Mosquitoes Were Not Infected when Fed Viremic YF 17DD-Vaccinated Lion Tamarins
3.2. Infection and Dissemination Rate Determinations of Laboratory Orally Challenged Mosquitoes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- PAHO—Pan American Health Organization. Epidemiological Update Yellow Fever 28 December 2021. Available online: https://iris.paho.org/bitstream/handle/10665.2/55653/EpiUpdate28Dec2021_eng.pdf?sequence=1&isAllowed=y (accessed on 30 July 2022).
- Vasconcelos, P.F.C. Yellow fever. Rev Soc Bras Med. Trop. 2003, 36, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Grobbelaar, A.A.; Weyer, J.; Moolla, N.; Jansen, V.P.; Moises, F.; Paweska, J.T. Resurgence of yellow fever in Angola, 2015-2016. Emerg. Infect. Dis. 2016, 22, 1854–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO-World Health Organization. Yellow Fever Urban Outbreak in Angola and the Risk of Extension. Weekly Epidemiol. Record 2016, 91, 186–190. [Google Scholar]
- Ministério da Saúde/Secretaria de Vigilância Epidemiológica. Reemergência e manutenção extra-Amazônica da Febre Amarela no Brasil, 2014 a 2019: Principais Desafios para a Vigilância, a Prevenção e o Controle. In Saúde Brasil 2019: Uma Análise da Situação de Saúde com Enfoque nas Doenças Imunopreveníveis e na Imunização; Ministério da Saúde: Brasília, Brazil, 2019. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/saude_brasil_2019_analise_situacao.pdf (accessed on 24 June 2022).
- Abreu, F.V.S.; Ribeiro, I.P.; Ferreira-de-Brito, A.; dos Santos, A.A.C.; de Miranda, R.M.; Bonelly, I.; Neves, M.S.A.S.; Bersot, M.I.; dos Santos, T.P.; Gomes, M.Q.; et al. Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018. Emerg. Microb. Infect. 2019, 8, 218–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, M.S.; Tubaki, R.M.; Menezes, R.M.T.; Pereira, M.; Caleiro, G.S.; Coelho, E.; Saad, L.D.C.; Fernandes, N.C.C.A.; Guerra, J.M.; Nogueira, J.S.; et al. Possible non-sylvatic transmission of yellow fever between non-human primates in São Paulo city, Brazil, 2017-2018. Sci. Rep. 2020, 10, 8. [Google Scholar] [CrossRef]
- Theiler, M.; Smith, H.H. The effect of prolonged cultivation in vitro upon the pathogenicity of yellow fever virus. J. Exp. Med. 1937, 65, 767–786. [Google Scholar] [CrossRef]
- Benchimol, J.L. Febre Amarela: A Doença E A Vacina, Uma História Inacabada, 1st ed; Fiocruz: Rio de Janeiro, Brazil, 2001; p. 470. [Google Scholar]
- Gubler, D.J.; Kuno, G.; Markoff, L. Flavivirus. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Willkins: Philadelphia, PA, USA, 2007; pp. 1153–1252. [Google Scholar]
- Staples, J.E.; Monath, T.P. Yellow fever: 100 years of discovery. JAMA 2008, 300, 960–962. [Google Scholar] [CrossRef]
- Melo, A.B.; Silva, M.P.; Magalhaes, M.C.; Gonzales, G.L.H.; Freese, C.E.M.; Ulisses, M.; Bertani, G.R.; Marques, E.T.A.; Cordeiro, M.T. Description of a prospective 17DD yellow fever vaccine cohort in Recife, Brazil. Am. J. Trop. Med. Hyg. 2011, 85, 739–747. [Google Scholar] [CrossRef] [Green Version]
- Costa, Z.G.A.; Romano, A.P.M.; Elkhoury, A.N.S.M.; Flannery, B. Evolução histórica da vigilância epidemiológica e do controle da febre amarela no Brasil. Rev. Pan-Amaz Saúde 2011, 2, 11–26. [Google Scholar] [CrossRef]
- Frierson, J.G. A vacina contra a febre amarela: Uma história. Yale J. Biol. Med. 2010, 83, 77–85. [Google Scholar]
- Whitman, L. Failure of Aedes aegypti to transmit yellow fever cultured virus (17D). Am. J. Trop. Med. Hyg. 1939, 19, 16–19. [Google Scholar] [CrossRef]
- McElroy, K.L.; Girard, Y.A.; McGee, C.E.; Tsetsarkin, K.A.; Vanlandingham, D.L.; Higgs, S. Characterization of the antigen distribution and tissue tropisms of three phenotypically distinct yellow fever virus variants in orally infected Aedes aegypti mosquitoes. Vect. Borne Zoon. Dis. 2008, 8, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Strode, G.K. Yellow Fever, 1st ed.; McGraw-Hill: New York, NY, USA; London, UK, 1951; pp. 1–710. [Google Scholar]
- Mares-Guia, M.A.M.M.; Horta, M.A.; Romano, A.; Rodrigues, C.D.S.; Mendonça, M.C.L.; Santos, C.C.; Torres, M.C.; Araujo, E.S.M.; Fabri, A.; Souza, E.R.; et al. Yellow fever epizootics in non-human primates, Southeast and Northeast Brazil (2017 and 2018). Parasit Vectors 2020, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Abreu, F.V.S.; Ferreira-de-Brito, A.; Azevedo, A.D.S.; Linhares, J.H.R.; Oliveira, S.V.; Hime, M.E.; Neves, M.S.A.S.; Yousfi, L.; Ribeiro, I.P.; Santos, A.A.C.; et al. Survey on non-human primates and mosquitoes does not provide evidences of spillover/spillback between the urban and sylvatic cycles of yellow fever and Zika viruses following severe outbreaks in Southeast Brazil. Viruses. 2020, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Dietz, J.M.; Hankerson, S.J.; Alexandre, B.R.; Henry, M.D.; Martins, A.F.; Ferraz, L.P.; Ruiz-Miranda, C.R. Yellow fever in Brazil threatens successful recovery of endangered golden lion tamarins. Sci. Rep. 2019, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Fioravanti, C. Vaccinating Primates Against Yellow Fever. Pesquisa FAPESP. Available online: https://revistapesquisa.fapesp.br/en/vaccinating-primates-against-yellow-fever (accessed on 14 May 2022).
- Fernandes, A.T.S.; Moreira, S.S.B.; Gaspar, L.P.; Simões, M.; Cajaraville, A.C.A.R.; Pereira, R.C.; Barros, M.P.G.; Linhares, J.H.R.; Santos, V.O.; Santos, R.T.; et al. Safety and immunogenicity of 17DD attenuated yellow fever vaccine in howler monkeys (Alouatta spp.). J. Med. Primatol. 2021, 40, 36–45. [Google Scholar] [CrossRef]
- Carpenter, J.W. Exotic Animal Formulary, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Trindade, G.F.; Marchevsky, R.S.; Fillipis, A.M.B.; Nogueira, R.M.R.; Bonaldo, M.C.; Acero, P.C.; Caride, E.; Freire, M.S.; Galler, R. Limited replication of yellow fever 17DD and 17D-Dengue recombinant viruses in rhesus monkeys. An. Acad. Bras. Ciênc. 2008, 80, 311–321. [Google Scholar] [CrossRef]
- Theiler, M.; Hughes, T.P. Studies of circulating virus and protective antibodies in susceptible and relatively insusceptible monkeys after inoculation with yellow fever virus. Trans. R. Soc. Trop. Med. Hyg. 1935, 28, 481–500. [Google Scholar] [CrossRef]
- Neves, P.C.C.; Rudersdorf, R.A.; Galler, R.; Bonaldo, M.C.; Santana, M.G.V.M.; Martins, P.A.; Rakasz, M.A.; Wilson, E.G.; Nancy, A.; Watkins, D.I. CD8+ gamma-delta TCR+ and CD4+ T cells produce IFN-γ at 5–7 days after yellow fever vaccination in Indian rhesus macaques, before the induction of classical antigen-specific T cell responses. Vaccine 2010, 28, 8183–8188. [Google Scholar] [CrossRef] [Green Version]
- McElroy, K.L.; Tsetsarkin, K.A.; Vanlandingham, D.L.; Higgs, S. Role of the yellow fever virus structural protein genes in viral dissemination from the Aedes aegypti mosquito midgut. J. Gen. Virol. 2006, 87, 2993–3001. [Google Scholar] [CrossRef]
- McElroy, K.L.; Tsetsarkin, K.A.; Vanlandingham, D.L.; Higgs, S. Manipulation of the yellow fever virus non-structural genes 2A and 4B and the 3′ non-coding region to evaluate genetic determinants of viral dissemination from the Aedes aegypti midgut. Am. J. Trop. Med. Hyg. 2006, 75, 1158–1164. [Google Scholar] [CrossRef]
- Danet, L.; Beauclair, G.; Berthet, M.; Moratorio, G.; Gracias, S.; Tangy, F.; Choumet, V.; Jouvenet, N. Midgut barriers prevent the replication and dissemination of the yellow fever vaccine in Aedes aegypti. PLoS Negl. Trop. Dis. 2019, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Couto-Lima, D.; Madec, Y.; Bersot, M.I.; Campos, S.S.; Motta, M.A.; Santos, F.B.D.; Vazeille, M.; Vasconcelos, P.F.D.C.; Lourenço-de-Oliveira, R.; Failloux, A.B. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Sci Rep. 2017, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, R.S.; Campos, S.S.; Ferreira-de-Brito, A.; Miranda, R.M.; Barbosa, K.A.S.; Castro, M.G.; Raphael, L.M.; Brasil, P.; Failloux, A.B.; Bonaldo, M.C.; et al. Culex quinquefasciatus from Rio de Janeiro is not competent to transmit the local Zika virus. PLoS Negl. Trop. Dis. 2016, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenço-de-Oliveira, R.; Failloux, A.B. High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Negl. Trop. Dis. 2017, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo, C.; Patel, P.; Yillah, J.; Weidmann, M.; Méndez, J.A.; Nakouné, E.R.; Niedrig, M. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. J. Clin. Microbiol. 2012, 50, 4054–4060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega-Rúa, A.; Zouache, K.; Girod, R.; Failloux, A.B.; Lourenço-de-Oliveira, R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J. Virol. 2014, 88, 6294–6306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Possas, C.; Martins, R.M.; Lourenço-de-Oliveira, R.; Homma, A. Urgent call for action: Avoiding spread and reurbanisation of yellow fever in Brazil. Mem. Inst. Oswaldo Cruz 2018, 113, 2. [Google Scholar] [CrossRef] [Green Version]
- Massad, E.; Miguel, M.M.; Coutinho, F.A.B. Is vaccinating monkeys against yellow fever the ultimate solution for the Brazilian recurrent epizootics? Epidemiol. Infect. 2018, 146, 1622–1624. [Google Scholar] [CrossRef] [Green Version]
- Seligman, S.J.; Gould, E.A. Live Flavivirus vaccines: Reasons for caution. Lancet 2004, 363, 2073–2075. [Google Scholar] [CrossRef]
- Marchevsky, R.S.; Freire, M.S.; Coutinho, E.S.F.; Galler, R. Neurovirulence of yellow fever 17DD vaccine virus to rhesus monkeys. Virology 2003, 316, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Tabachnick, W.J. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int. J. Environ. Res. Publ. Health 2013, 10, 249–277. [Google Scholar] [CrossRef]
- Lambrechts, L. Quantitative genetics of Aedes aegypti vector competence for dengue viruses: Towards a new paradigm? Trends Parasitol. 2011, 27, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Zouache, K.; Fontaine, A.; Vega-Rua, A.; Mousson, L.; Thiberge, J.M.; Lourenco-de-Oliveira, R.; Caro, V.; Lambrechts, L.; Failloux, A.B. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc. R. Soc. 2014, 281, 9. [Google Scholar] [CrossRef] [PubMed]
- Chouin-Carneiro, T.; David, M.R.; de Bruycker-Nogueira, F.; Santos, F.B.; Lourenço-de-Oliveira, R. Zika virus transmission by Brazilian Aedes aegypti and Aedes albopictus is virus dose and temperature-dependent. PLoS Negl. Trop. Dis. 2020, 14, 14. [Google Scholar] [CrossRef]
- Azar, S.R.; Roundy, C.M.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Vitek, C.J.; Paploski, I.A.D.; Stark, P.M.; et al. Differential vector competency of Aedes albopictus populations from the Americas for Zika virus. Am. J. Trop. Med. Hyg. 2017, 97, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Dickson, L.B.; Merkling, S.H.; Gautier, M.; Ghozlane, A.; Jiolle, D.; Paupy, C.; Ayala, D.; Moltini-Conclois, I.; Fontaine, A.; Lambrechts, L. Exome- wide association study reveals largely distinct gene sets underlying specific resistance to dengue virus types 1 and 3 in Aedes aegypti. PLoS Genet. 2020, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Barret, A.D.; Teuwen, D.E.F. Yellow fever vaccine-how does it work and why do rare cases of serious adverse events take place? Curr. Opin. Immunol. 2009, 21, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Brault, A.C.; Powers, A.M.; Weaver, S.C. Vector infection determinants of venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J. Virol. 2002, 76, 6387–6392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brault, A.C.; Powers, A.M.; Ortiz, D.; Estrada-Franco, J.G.; Navarro, L.R.; Weaver, S.C. Venezuelan equine encephalitis emergence: Enhanced vector infection from a single amino acid substitution in the envelope protein. Proc. Natl. Acad. Sci. USA 2004, 101, 11344–11349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, G.V.; Isreal, B.A.; Christensen, B.M.; Yuill, T.M.; Schultz, K.T. Role of La Crosse virus glycoproteins in attachment of virus to host cells. Virology 1991, 181, 564–571. [Google Scholar] [CrossRef]
- Sundin, D.R.; Beaty, B.J.; Nathanson, M.; Gonzales-Scarano, F. A G1 glycoprotein epitope of La Crosse virus: A determinant of infection of Aedes triseriatus. Science 1987, 235, 591–593. [Google Scholar] [CrossRef]
- Woodward, T.M.; Miller, B.R.; Beaty, B.J.; Trent, D.W.; Roehrig, J.T. A single amino acid change in the E2 glycoprotein of Venezuelan equine encephalitis virus affects replication and dissemination in Aedes aegypti mosquitoes. J. Gen. Virol. 1991, 72, 2431–2435. [Google Scholar] [CrossRef] [PubMed]
Lion Tamarin Species (Individual Identification Number) | Viremia (FFU/mL) | Mosquitoes | Total | 14 d.p.i. | 21 d.p.i. | IR | DR |
---|---|---|---|---|---|---|---|
Leontopithecus rosalia (3617) | 6.61 × 103 | Sa. identicus | 15 | - | 15 | 0 | 0 |
Ae. aegypti | 34 | 34 | - | 0 | 0 | ||
Leontopithecus rosalia (2435) | 5.37 × 103 | Sa. albiprivus | 21 | 21 | - | 0 | 0 |
Ae. aegypti | 28 | - | 28 | 0 | 0 | ||
Leontopithecus chrysomelas (3504) | 3.63 × 103 | Sa. albiprivus | 13 | 13 | - | 0 | NA |
Ae. aegypti | 36 | - | 36 | 0 | NA | ||
Leontopithecus chrysomelas (3408) | 3.54 × 103 | Sa. albiprivus | 12 | 12 | - | 0 | NA |
Sa. identicus | 7 | 7 | - | 0 | NA | ||
Hg. leucocelaenus | 46 | 46 | - | 0 | NA | ||
Ae. aegypti | 17 | 17 | - | 0 | NA | ||
Leontopithecus chrysomelas (3644) | 3.31 × 103 | Sa. albiprivus | 30 | 30 | - | 0 | NA |
Sa. identicus | 15 | 15 | - | 0 | NA | ||
Hg. leucocelaenus | 53 | 53 | - | 0 | NA | ||
Ae. aegypti | 32 | 32 | - | 0 | NA | ||
Leontopithecus chrysomelas (3595) | 2.75 × 103 | Sa. albiprivus | 40 | 40 | - | 0 | NA |
Sa. identicus | 29 | 29 | - | 0 | NA | ||
Hg. janthinomys/capricornii | 5 | 5 | - | 0 | NA | ||
Hg. leucocelaenus | 42 | 42 | - | 0 | NA | ||
Ae. aegypti | 42 | 42 | - | 0 | NA | ||
Leontopithecus rosalia (3503) | 1.95 × 103 | Ae. aegypti | 30 | 30 | - | 0 | NA |
Leontopithecus chrysopygus (3533) | 1.12 × 103 | Sa. albiprivus | 11 | 11 | - | 0 | NA |
Ae. aegypti | 43 | - | 43 | 0 | NA | ||
Leontopithecus chrysopygus (2266) | 1.05 × 103 | Sa. identicus | 11 | 11 | - | 0 | NA |
Ae. aegypti | 38 | 38 | - | 0 | NA | ||
Leontopithecus chrysomelas (3110) | 4.57 × 102 | Ae. aegypti | 19 | 19 | - | 0 | NA |
Leontopithecus chrysomelas (3654) | 1.91 × 102 | Sa. albiprivus | 20 | 20 | - | 0 | NA |
YF 17DD FFU/mL | Mosquito Species | Number of Tested Mosquitoes | IR N (%) | DR N (%) |
---|---|---|---|---|
1 × 104 | Ae. aegypti Hg. leucocelaenus | 59 37 | 0 (0,0) 1 (2.7) | 0 (0.0) 0 (0.0) |
1 × 103 | Ae. aegypti | 30 | 0 (0.0) | 0 (0.0) |
1 × 102 | Ae. aegypti | 30 | 0 (0.0) | 0 (0.0) |
Total | 156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Miranda, R.M.; Fernandes, R.S.; da Silva-Fernandes, A.T.; Ferreira-de-Brito, A.; Moreira, S.B.; Pereira, R.C.; da Silva Mendes, Y.; de Lima, S.M.B.; Pissinatti, A.; Freire, M.d.S.; et al. Neotropical Sylvatic Mosquitoes and Aedes aegypti Are Not Competent to Transmit 17DD Attenuated Yellow Fever Virus from Vaccinated Viremic New World Non-Human Primates. Viruses 2022, 14, 2231. https://doi.org/10.3390/v14102231
de Miranda RM, Fernandes RS, da Silva-Fernandes AT, Ferreira-de-Brito A, Moreira SB, Pereira RC, da Silva Mendes Y, de Lima SMB, Pissinatti A, Freire MdS, et al. Neotropical Sylvatic Mosquitoes and Aedes aegypti Are Not Competent to Transmit 17DD Attenuated Yellow Fever Virus from Vaccinated Viremic New World Non-Human Primates. Viruses. 2022; 14(10):2231. https://doi.org/10.3390/v14102231
Chicago/Turabian Stylede Miranda, Rafaella Moraes, Rosilainy Surubi Fernandes, André Tavares da Silva-Fernandes, Anielly Ferreira-de-Brito, Silvia Bahadian Moreira, Renata Carvalho Pereira, Ygara da Silva Mendes, Sheila Maria Barbosa de Lima, Alcides Pissinatti, Marcos da Silva Freire, and et al. 2022. "Neotropical Sylvatic Mosquitoes and Aedes aegypti Are Not Competent to Transmit 17DD Attenuated Yellow Fever Virus from Vaccinated Viremic New World Non-Human Primates" Viruses 14, no. 10: 2231. https://doi.org/10.3390/v14102231
APA Stylede Miranda, R. M., Fernandes, R. S., da Silva-Fernandes, A. T., Ferreira-de-Brito, A., Moreira, S. B., Pereira, R. C., da Silva Mendes, Y., de Lima, S. M. B., Pissinatti, A., Freire, M. d. S., Alencar, J. A. F., & Lourenco-de-Oliveira, R. (2022). Neotropical Sylvatic Mosquitoes and Aedes aegypti Are Not Competent to Transmit 17DD Attenuated Yellow Fever Virus from Vaccinated Viremic New World Non-Human Primates. Viruses, 14(10), 2231. https://doi.org/10.3390/v14102231