Reverse Genetics and Artificial Replication Systems of Borna Disease Virus 1
Abstract
:1. Introduction
2. Orthobornavirus
3. Principle of the Artificial Replication System of Bornaviruses
3.1. Artificial Viral Replication of Mononegaviruses
3.2. Minireplicon System of Orthobornaviruses
3.3. Reverse Genetics Technology of BoDV-1
4. Latest Progress in Reverse Genetics System of BoDV-1
4.1. Replacement of the Helper Plasmid of BoDV-1 N with That of BoDV-2 N
4.2. Exogeneous Expression of M and G
5. Application of the Artificial Replication System of BoDV-1
6. Perspectives
6.1. Elucidation of the Replication Mechanisms of Orthobornaviruses
6.2. Reverse Genetics Systems of Other Mammalian and Avian Bornaviruses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staeheli, P.; Sauder, C.; Hausmann, J.; Ehrensperger, F.; Schwemmle, M. Epidemiology of Borna disease virus. J. Gen. Virol. 2000, 81 Pt 9, 2123–2135. [Google Scholar] [CrossRef]
- Richt, J.A.; Rott, R. Borna disease virus: A mystery as an emerging zoonotic pathogen. Vet. J. 2001, 161, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, P.M.; Palva, A.; Vaheri, A.; Vapalahti, O. Epidemiology and host spectrum of Borna disease virus infections. J. Gen. Virol. 2013, 94 Pt 2, 247–262. [Google Scholar] [CrossRef]
- Nowotny, N.; Kolodziejek, J.; Jehle, C.O.; Suchy, A.; Staeheli, P.; Schwemmle, M. Isolation and characterization of a new subtype of Borna disease virus. J. Virol. 2000, 74, 5655–5658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleschka, S.; Staeheli, P.; Kolodziejek, J.; Richt, J.A.; Nowotny, N.; Schwemmle, M. Conservation of coding potential and terminal sequences in four different isolates of Borna disease virus. J. Gen. Virol. 2001, 82 Pt 11, 2681–2690. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Briese, T.; Dürrwald, R.; Horie, M.; Hyndman, T.H.; Kuhn, J.H.; Nowotny, N.; Payne, S.; Stenglein, M.D.; Tomonaga, K.; et al. ICTV virus taxonomy profile: Bornaviridae. J. Gen. Virol. 2021, 102, 001613. [Google Scholar] [CrossRef] [PubMed]
- Korn, K.; Coras, R.; Bobinger, T.; Herzog, S.M.; Lücking, H.; Stöhr, R.; Huttner, H.B.; Hartmann, A.; Ensser, A. Fatal encephalitis associated with Borna disease virus 1. N. Engl. J. Med. 2018, 379, 1375–1377. [Google Scholar] [CrossRef] [PubMed]
- Schlottau, K.; Forth, L.; Angstwurm, K.; Höper, D.; Zecher, D.; Liesche, F.; Hoffmann, B.; Kegel, V.; Seehofer, D.; Platen, S.; et al. Fatal encephalitic Borna disease virus 1 in solid-organ transplant recipients. N. Engl. J. Med. 2018, 379, 1377–1379. [Google Scholar] [CrossRef] [PubMed]
- Coras, R.; Korn, K.; Kuerten, S.; Huttner, H.B.; Ensser, A. Severe bornavirus-encephalitis presenting as Guillain-Barre-syndrome. Acta Neuropathol. 2019, 137, 1017–1019. [Google Scholar] [CrossRef] [PubMed]
- Liesche, F.; Ruf, V.; Zoubaa, S.; Kaletka, G.; Rosati, M.; Rubbenstroth, D.; Herden, C.; Goehring, L.; Wunderlich, S.; Wachter, M.F.; et al. The neuropathology of fatal encephalomyelitis in human Borna virus infection. Acta Neuropathol. 2019, 138, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Niller, H.H.; Angstwurm, K.; Rubbenstroth, D.; Schlottau, K.; Ebinger, A.; Giese, S.; Wunderlich, S.; Banas, B.; Forth, L.F.; Hoffmann, D.; et al. Zoonotic spillover infections with Borna disease virus 1 leading to fatal human encephalitis, 1999–2019: An epidemiological investigation. Lancet Infect. Dis. 2020, 20, 467–477. [Google Scholar] [CrossRef]
- Tappe, D.; Pörtner, K.; Frank, C.; Wilking, H.; Ebinger, A.; Herden, C.; Schulze, C.; Muntau, B.; Eggert, P.; Allartz, P.; et al. Investigation of fatal human Borna disease virus 1 encephalitis outside the previously known area for human cases, Brandenburg, Germany—A case report. BMC Infect. Dis. 2021, 21, 787. [Google Scholar] [CrossRef] [PubMed]
- Frank, C.; Wickel, J.; Brämer, D.; Matschke, J.; Ibe, R.; Gazivoda, C.; Günther, A.; Hartmann, C.; Rehn, K.; Cadar, D.; et al. Human Borna disease virus 1 (BoDV-1) encephalitis cases in the north and east of Germany. Emerg. Microbes Infect. 2022, 11, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Bourgade, K.; Thouard, A.; Abravanel, F.; Hebral, A.L.; Del Bello, A.; Viguier, A.; Gonzalez-Dunia, D.; Kamar, N. Fatal encephalitis and Borna Disease Virus-1 seropositivity in two kidney-transplant patients living in the same nonendemic area. Transpl. Infect. Dis. 2021, 23, e13734. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Tappe, D.; Höper, D.; Herden, C.; Boldt, A.; Mawrin, C.; Niederstraßer, O.; Müller, T.; Jenckel, M.; van der Grinten, E.; et al. A variegated squirrel bornavirus associated with fatal human encephalitis. N. Engl. J. Med. 2015, 373, 154–162. [Google Scholar] [CrossRef]
- Tappe, D.; Schlottau, K.; Cadar, D.; Hoffmann, B.; Balke, L.; Bewig, B.; Hoffmann, D.; Eisermann, P.; Fickenscher, H.; Krumbholz, A.; et al. Occupation-associated fatal limbic encephalitis caused by variegated squirrel bornavirus 1, Germany, 2013. Emerg. Infect. Dis. 2018, 24, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Tappe, D.; Frank, C.; Homeier-Bachmann, T.; Wilking, H.; Allendorf, V.; Schlottau, K.; Muñoz-Fontela, C.; Rottstegge, M.; Port, J.R.; Rissland, J.; et al. Analysis of exotic squirrel trade and detection of human infections with variegated squirrel bornavirus 1, Germany, 2005 to 2018. Eurosurveillance 2019, 24, 1800483. [Google Scholar] [CrossRef] [Green Version]
- Eisermann, P.; Rubbenstroth, D.; Cadar, D.; Thomé-Bolduan, C.; Eggert, P.; Schlaphof, A.; Leypoldt, F.; Stangel, M.; Fortwängler, T.; Hoffmann, F.; et al. Active case finding of current bornavirus infections in human encephalitis cases of unknown etiology, Germany, 2018–2020. Emerg. Infect. Dis. 2021, 27, 1371–1379. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Schlottau, K.; Schwemmle, M.; Rissland, J.; Beer, M. Human bornavirus research: Back on track! PLoS Pathog. 2019, 15, e1007873. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Schwemmle, M.; Staeheli, P. Genome trimming: A unique strategy for replication control employed by Borna disease virus. Proc. Natl. Acad. Sci. USA 2005, 102, 3441–3446. [Google Scholar] [CrossRef]
- de la Torre, J.C. Reverse-genetic approaches to the study of Borna disease virus. Nat. Rev. Microbiol. 2006, 4, 777–783. [Google Scholar] [CrossRef]
- Briese, T.; de la Torre, J.C.; Lewis, A.; Ludwig, H.; Lipkin, W.I. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc. Natl. Acad. Sci. USA 1992, 89, 11486–11489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briese, T.; Schneemann, A.; Lewis, A.J.; Park, Y.S.; Kim, S.; Ludwig, H.; Lipkin, W.I. Genomic organization of Borna disease virus. Proc. Natl. Acad. Sci. USA 1994, 91, 4362–4366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomonaga, K.; Kobayashi, T.; Ikuta, K. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 2002, 4, 491–500. [Google Scholar] [CrossRef]
- Perez, M.; Sanchez, A.; Cubitt, B.; Rosario, D.; de la Torre, J.C. A reverse genetics system for Borna disease virus. J. Gen. Virol. 2003, 84 Pt 11, 3099–3104. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.; Naegele, M.; Staeheli, P.; Schwemmle, M. Active Borna disease virus polymerase complex requires a distinct nucleoprotein-to-phosphoprotein ratio but no viral X protein. J. Virol. 2003, 77, 11781–11789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, U.; Blechschmidt, K.; Schwemmle, M.; Staeheli, P. Overlap of interaction domains indicates a central role of the P protein in assembly and regulation of the Borna disease virus polymerase complex. J. Biol. Chem. 2004, 279, 55290–55296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, M.; de la Torre, J.C. Identification of the Borna disease virus (BDV) proteins required for the formation of BDV-like particles. J. Gen. Virol. 2005, 86 Pt 7, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
- Kraus, I.; Bogner, E.; Lilie, H.; Eickmann, M.; Garten, W. Oligomerization and assembly of the matrix protein of Borna disease virus. FEBS Lett. 2005, 579, 2686–2692. [Google Scholar] [CrossRef] [Green Version]
- Sakai, M.; Fujita, Y.; Komorizono, R.; Kanda, T.; Komatsu, Y.; Noda, T.; Tomonaga, K.; Makino, A. Optimal expression of the envelope glycoprotein of orthobornaviruses determines the production of mature virus particles. J. Virol. 2020, 95, e02221-20. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Dunia, D.; Cubitt, B.; Grasser, F.A.; de la Torre, J.C. Characterization of Borna disease virus p56 protein, a surface glycoprotein involved in virus entry. J. Virol. 1997, 71, 3208–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Dunia, D.; Cubitt, B.; de la Torre, J.C. Mechanism of Borna disease virus entry into cells. J. Virol. 1998, 72, 783–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, M.; Watanabe, M.; Whitt, M.A.; de la Torre, J.C. N-terminal domain of Borna disease virus G (p56) protein is sufficient for virus receptor recognition and cell entry. J. Virol. 2001, 75, 7078–7085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, G.; Mayer, D.; Hildebrand, A.; Frank, R.; Hayashi, Y.; Tomonaga, K.; Schwemmle, M. Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. J. Virol. 2007, 81, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Schwemmle, M.; Salvatore, M.; Shi, L.; Richt, J.; Lee, C.H.; Lipkin, W.I. Interactions of the Borna disease virus P, N, and X proteins and their functional implications. J. Biol. Chem. 1998, 273, 9007–9012. [Google Scholar] [CrossRef] [Green Version]
- Schwardt, M.; Mayer, D.; Frank, R.; Schneider, U.; Eickmann, M.; Planz, O.; Wolff, T.; Schwemmle, M. The negative regulator of Borna disease virus polymerase is a non-structural protein. J. Gen. Virol. 2005, 86 Pt 11, 3163–3169. [Google Scholar] [CrossRef]
- Neumann, G.; Whitt, M.A.; Kawaoka, Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA—What have we learned? J. Gen. Virol. 2002, 83 Pt 11, 2635–2662. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, A.K.; Ball, L.A.; LeGrone, A.W.; Wertz, G.W. Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 1992, 69, 1011–1020. [Google Scholar] [CrossRef]
- Calain, P.; Curran, J.; Kolakofsky, D.; Roux, L. Molecular cloning of natural paramyxovirus copy-back defective interfering RNAs and their expression from DNA. Virology 1992, 191, 62–71. [Google Scholar] [CrossRef]
- Grosfeld, H.; Hill, M.G.; Collins, P.L. RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J. Virol. 1995, 69, 5677–5686. [Google Scholar] [CrossRef]
- Schnell, M.J.; Mebatsion, T.; Conzelmann, K.K. Infectious rabies viruses from cloned cDNA. EMBO J. 1994, 13, 4195–4203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanai, H.; Hayashi, Y.; Watanabe, Y.; Ohtaki, N.; Kobayashi, T.; Nozaki, Y.; Ikuta, K.; Tomonaga, K. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect. 2006, 8, 1522–1529. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, T.; Yamamoto, Y.; Sakai, M.; Tomonaga, K.; Honda, T. Antiviral activity of favipiravir (T-705) against mammalian and avian bornaviruses. Antiviral Res. 2017, 143, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Reuter, A.; Horie, M.; Höper, D.; Ohnemus, A.; Narr, A.; Rinder, M.; Beer, M.; Staeheli, P.; Rubbenstroth, D. Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells. J. Gen. Virol. 2016, 97, 2096–2103. [Google Scholar] [CrossRef]
- Komorizono, R.; Sassa, Y.; Horie, M.; Makino, A.; Tomonaga, K. Evolutionary selection of the nuclear localization signal in the viral nucleoprotein leads to host adaptation of the genus Orthobornavirus. Viruses 2020, 12, 1291. [Google Scholar] [CrossRef]
- Martin, A.; Staeheli, P.; Schneider, U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J. Virol. 2006, 80, 5708–5715. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, A.; Staeheli, P.; Schneider, U. Adaptation of Borna disease virus to new host species attributed to altered regulation of viral polymerase activity. J. Virol. 2007, 81, 7933–7940. [Google Scholar] [CrossRef] [Green Version]
- Parks, C.L.; Lerch, R.A.; Walpita, P.; Sidhu, M.S.; Udem, S.A. Enhanced measles virus cDNA rescue and gene expression after heat shock. J. Virol. 1999, 73, 3560–3566. [Google Scholar] [CrossRef] [Green Version]
- Kojima, S.; Honda, T.; Matsumoto, Y.; Tomonaga, K. Heat stress is a potent stimulus for enhancing rescue efficiency of recombinant Borna disease virus. Microbiol. Immunol. 2014, 58, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Ackermann, A.; Staeheli, P. A Borna disease virus vector for expression of foreign genes in neurons of rodents. J. Virol. 2007, 81, 7293–7296. [Google Scholar] [CrossRef]
- Daito, T.; Fujino, K.; Honda, T.; Matsumoto, Y.; Watanabe, Y.; Tomonaga, K. A novel Borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. J. Virol. 2011, 85, 12170–12178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, Y.; Tanaka, C.; Komorizono, R.; Tomonaga, K. In vivo biodistribution analysis of transmission competent and defective RNA virus-based episomal vector. Sci. Rep. 2020, 10, 5890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, Y.; Tomonaga, K. Reverse genetics approaches of Borna disease virus: Applications in development of viral vectors and preventive vaccines. Curr. Opin. Virol. 2020, 44, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Charlier, C.M.; Wu, Y.J.; Allart, S.; Malnou, C.E.; Schwemmle, M.; Gonzalez-Dunia, D. Analysis of Borna disease virus trafficking in live infected cells by using a virus encoding a tetracysteine-tagged p protein. J. Virol. 2013, 87, 12339–12348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, T.; Horie, M.; Komatsu, Y.; Tomonaga, K. The Borna disease virus 2 (BoDV-2) nucleoprotein is a conspecific protein that enhances BoDV-1 RNA-dependent RNA polymerase activity. J. Virol. 2021, 95, e0093621. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.A.; Schneemann, A.; Lipkin, W.I. RNA splicing in Borna disease virus, a nonsegmented, negative-strand RNA virus. J. Virol. 1994, 68, 5007–5012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, P.A.; Kim, R.; Lipkin, W.I. Evidence for translation of the Borna disease virus G protein by leaky ribosomal scanning and ribosomal reinitiation. J. Virol. 1997, 71, 5614–5619. [Google Scholar] [CrossRef] [Green Version]
- Kanda, T.; Sakai, M.; Makino, A.; Tomonaga, K. Exogenous expression of both matrix protein and glycoprotein facilitates infectious viral particle production of Borna disease virus 1. J. Gen. Virol. 2022, 103, 001767. [Google Scholar] [CrossRef] [PubMed]
- Hans, A.; Bajramovic, J.J.; Syan, S.; Perret, E.; Dunia, I.; Brahic, M.; Gonzalez-Dunia, D. Persistent, noncytolytic infection of neurons by Borna disease virus interferes with ERK 1/2 signaling and abrogates BDNF-induced synaptogenesis. FASEB J. 2004, 18, 863–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, Y.; Hayashi, Y.; Omori, H.; Honda, T.; Daito, T.; Horie, M.; Ikuta, K.; Fujino, K.; Nakamura, S.; Schneider, U.; et al. Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection. Cell Host Microbe 2012, 11, 492–503. [Google Scholar] [CrossRef]
- Hirai, Y.; Hirano, Y.; Matsuda, A.; Hiraoka, Y.; Honda, T.; Tomonaga, K. Borna disease virus assembles porous cage-like viral factories in the nucleus. J. Biol. Chem. 2016, 291, 25789–25798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horie, M.; Kobayashi, Y.; Suzuki, Y.; Tomonaga, K. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujino, K.; Yamamoto, Y.; Daito, T.; Makino, A.; Honda, T.; Tomonaga, K. Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes. Microbiol. Immunol. 2017, 61, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, Y.; Makino, A.; Matchett, W.E.; Holditch, S.J.; Lu, B.; Dietz, A.B.; Tomonaga, K. A novel intranuclear RNA vector system for long-term stem cell modification. Gene Ther. 2016, 23, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, Y.; Takeuchi, D.; Tokunaga, T.; Sakurai, H.; Makino, A.; Honda, T.; Ikeda, Y.; Tomonaga, K. RNA virus-based episomal vector with a fail-safe switch facilitating efficient genetic modification and differentiation of iPSCs. Mol. Ther. Methods Clin. Dev. 2019, 14, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Poenisch, M.; Unterstab, G.; Wolff, T.; Staeheli, P.; Schneider, U. The X protein of Borna disease virus regulates viral polymerase activity through interaction with the P protein. J. Gen. Virol. 2004, 85 Pt 7, 1895–1898. [Google Scholar] [CrossRef]
- Wolff, T.; Unterstab, G.; Heins, G.; Richt, J.A.; Kann, M. Characterization of an unusual importin alpha binding motif in the Borna disease virus p10 protein that directs nuclear import. J. Biol. Chem. 2002, 277, 12151–12157. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Horie, M.; Daito, T.; Honda, T.; Ikuta, K.; Tomonaga, K. Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X. Microbes Infect. 2009, 11, 394–402. [Google Scholar] [CrossRef]
- Kobayashi, T.; Zhang, G.; Lee, B.J.; Baba, S.; Yamashita, M.; Kamitani, W.; Yanai, H.; Tomonaga, K.; Ikuta, K. Modulation of Borna disease virus phosphoprotein nuclear localization by the viral protein X encoded in the overlapping open reading frame. J. Virol. 2003, 77, 8099–8107. [Google Scholar] [CrossRef] [Green Version]
- Yanai, H.; Kobayashi, T.; Hayashi, Y.; Watanabe, Y.; Ohtaki, N.; Zhang, G.; de la Torre, J.C.; Ikuta, K.; Tomonaga, K. A methionine-rich domain mediates CRM1-dependent nuclear export activity of Borna disease virus phosphoprotein. J. Virol. 2006, 80, 1121–1129. [Google Scholar] [CrossRef]
- Fujino, K.; Horie, M.; Honda, T.; Nakamura, S.; Matsumoto, Y.; Francischetti, I.M.; Tomonaga, K. Evolutionarily conserved interaction between the phosphoproteins and X proteins of bornaviruses from different vertebrate species. PLoS ONE 2012, 7, e51161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poenisch, M.; Burger, N.; Staeheli, P.; Bauer, G.; Schneider, U. Protein X of Borna disease virus inhibits apoptosis and promotes viral persistence in the central nervous systems of newborn-infected rats. J. Virol. 2009, 83, 4297–4307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Song, W.; Wu, J.; Zhang, Q.; He, J.; Li, A.; Qian, J.; Zhai, A.; Hu, Y.; Kao, W.; et al. MAVS-mediated host cell defense is inhibited by Borna disease virus. Int. J. Biochem. Cell Biol. 2013, 45, 1546–1555. [Google Scholar] [CrossRef]
- Ferré, C.A.; Davezac, N.; Thouard, A.; Peyrin, J.M.; Belenguer, P.; Miquel, M.C.; Gonzalez-Dunia, D.; Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential. FASEB J. 2016, 30, 1523–1533. [Google Scholar] [CrossRef] [Green Version]
- Szelechowski, M.; Betourne, A.; Monnet, Y.; Ferre, C.A.; Thouard, A.; Foret, C.; Peyrin, J.M.; Hunot, S.; Gonzalez-Dunia, D. A viral peptide that targets mitochondria protects against neuronal degeneration in models of Parkinson’s disease. Nat. Commun. 2014, 5, 5181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poenisch, M.; Wille, S.; Ackermann, A.; Staeheli, P.; Schneider, U. The X protein of Borna disease virus serves essential functions in the viral multiplication cycle. J. Virol. 2007, 81, 7297–7299. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Tomonaga, K.; Honda, T. Development of an RNA virus-based episomal vector capable of switching transgene expression. Front. Microbiol. 2019, 10, 2485. [Google Scholar] [CrossRef]
- Honkavuori, K.S.; Shivaprasad, H.L.; Williams, B.L.; Quan, P.L.; Hornig, M.; Street, C.; Palacios, G.; Hutchison, S.K.; Franca, M.; Egholm, M.; et al. Novel borna virus in psittacine birds with proventricular dilatation disease. Emerg. Infect. Dis. 2008, 14, 1883–1886. [Google Scholar] [CrossRef]
- Kistler, A.L.; Gancz, A.; Clubb, S.; Skewes-Cox, P.; Fischer, K.; Sorber, K.; Chiu, C.Y.; Lublin, A.; Mechani, S.; Farnoushi, Y.; et al. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: Identification of a candidate etiologic agent. Virol. J. 2008, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Rubbenstroth, D. Avian bornavirus research—A comprehensive review. Viruses 2022, 14, 1513. [Google Scholar] [CrossRef]
- Weissenböck, H.; Bakonyi, T.; Sekulin, K.; Ehrensperger, F.; Doneley, R.J.; Dürrwald, R.; Hoop, R.; Erdélyi, K.; Gál, J.; Kolodziejek, J.; et al. Avian bornaviruses in psittacine birds from Europe and Australia with proventricular dilatation disease. Emerg. Infect. Dis. 2009, 15, 1453–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heffels-Redmann, U.; Enderlein, D.; Herzog, S.; Herden, C.; Piepenbring, A.; Neumann, D.; Müller, H.; Capelli, S.; Müller, H.; Oberhäuser, K.; et al. Occurrence of avian bornavirus infection in captive psittacines in various European countries and its association with proventricular dilatation disease. Avian Pathol. 2011, 40, 419–426. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanda, T.; Tomonaga, K. Reverse Genetics and Artificial Replication Systems of Borna Disease Virus 1. Viruses 2022, 14, 2236. https://doi.org/10.3390/v14102236
Kanda T, Tomonaga K. Reverse Genetics and Artificial Replication Systems of Borna Disease Virus 1. Viruses. 2022; 14(10):2236. https://doi.org/10.3390/v14102236
Chicago/Turabian StyleKanda, Takehiro, and Keizo Tomonaga. 2022. "Reverse Genetics and Artificial Replication Systems of Borna Disease Virus 1" Viruses 14, no. 10: 2236. https://doi.org/10.3390/v14102236
APA StyleKanda, T., & Tomonaga, K. (2022). Reverse Genetics and Artificial Replication Systems of Borna Disease Virus 1. Viruses, 14(10), 2236. https://doi.org/10.3390/v14102236