An Improved Protocol for Comprehensive Etiological Characterization of Skin Warts and Determining Causative Human Papillomavirus Types in 128 Histologically Confirmed Common Warts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Samples
2.2. Total DNA Extraction and Quality Verification
2.3. HPV DNA Detection and Typing
2.4. Viral Load Calculation
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Patients and Common Warts
3.2. HPV DNA Detection and Typing
3.3. Causative HPV Type Determination
3.4. Viral Load of Causative HPV Types
3.5. Relationship between Causative HPV Types and Patient Characteristics
3.6. Relationship between Causative HPV Types and Clinical Features of Common Warts
3.7. Robustness of the Improved Diagnostic Protocol for Comprehensive Etiological Characterization of Common Warts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef] [PubMed]
- International Human Papillomavirus (HPV) Reference Center—HPV Reference Clones. Available online: https://www.hpvcenter.se/human_reference_clones/ (accessed on 15 September 2022).
- Bruggink, S.C.; Gussekloo, J.; de Koning, M.N.; Feltkamp, M.C.; Bavinck, J.N.; Quint, W.G.; Assendelft, W.J.; Eekhof, J.A. HPV type in plantar warts influences natural course and treatment response: Secondary analysis of a randomised controlled trial. J. Clin. Virol. 2013, 57, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogendoorn, G.K.; Bruggink, S.C.; de Koning, M.N.C.; Eekhof, J.A.H.; Hermans, K.E.; Rissmann, R.; Burggraaf, J.; Wolterbeek, R.; Quint, K.D.; Kouwenhoven, S.T.P.; et al. Morphological characteristics and human papillomavirus genotype predict the treatment response in cutaneous warts. Br. J. Dermatol. 2018, 178, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, J.C.; Calonje, E. Cutaneous manifestations of human papillomaviruses: A review. Acta Dermatovenerol. Alp. Pannonica Adriat. 2011, 20, 145–154. [Google Scholar] [PubMed]
- Bacaj, P.; Burch, D. Human papillomavirus infection of the skin. Arch. Pathol. Lab. Med. 2018, 142, 700–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rübben, A.; Kalka, K.; Spelten, B.; Grussendorf-Conen, E.I. Clinical features and age distribution of patients with HPV 2/27/57-induced common warts. Arch. Dermatol. Res. 1997, 289, 337–340. [Google Scholar] [CrossRef]
- Harwood, C.A.; Spink, P.J.; Surentheran, T.; Leigh, I.M.; de Villiers, E.M.; McGregor, J.M.; Proby, C.M.; Breuer, J. Degenerate and nested PCR: A highly sensitive and specific method for detection of human papillomavirus infection in cutaneous warts. J. Clin. Microbiol. 1999, 37, 3545–3555. [Google Scholar] [CrossRef] [Green Version]
- Porro, A.M.; Alchorne, M.M.; Mota, G.R.; Michalany, N.; Pignatari, A.C.; Souza, I.E. Detection and typing of human papillomavirus in cutaneous warts of patients infected with human immunodeficiency virus type 1. Br. J. Dermatol. 2003, 149, 1192–1199. [Google Scholar] [CrossRef]
- Lei, Y.J.; Gao, C.; Wang, C.; Han, J.; Chen, J.M.; Xiang, G.C.; Shi, Q.; Jiang, H.Y.; Zhou, W.; An, R.; et al. Molecular epidemiological study on prevalence of human papillomaviruses in patients with common warts in Beijing area. Biomed. Environ. Sci. 2009, 22, 55–61. [Google Scholar] [CrossRef]
- Bruggink, S.C.; de Koning, M.N.; Gussekloo, J.; Egberts, P.F.; Ter Schegget, J.; Feltkamp, M.C.; Bavinck, J.N.; Quint, W.G.; Assendelft, W.J.; Eekhof, J.A. Cutaneous wart-associated HPV types: Prevalence and relation with patient characteristics. J. Clin. Virol. 2012, 55, 250–255. [Google Scholar] [CrossRef]
- Al Bdour, S.; Akkash, L.; Shehabi, A.A. Detection and typing of common human papillomaviruses among Jordanian patients. J. Med. Virol. 2013, 85, 1058–1062. [Google Scholar] [CrossRef]
- Giannaki, M.; Kakourou, T.; Theodoridou, M.; Syriopoulou, V.; Kabouris, M.; Louizou, E.; Chrousos, G. Human papillomavirus (HPV) genotyping of cutaneous warts in Greek children. Pediatr. Dermatol. 2013, 30, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Al-Awadhi, R.; Al-Mutairi, N.; Chehadeh, W. Prevalence of HPV genotypes in adult male patients with cutaneous warts: A cross-sectional study. Med. Princ. Pract. 2020, 29, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Breznik, V.; Fujs Komloš, K.; Hošnjak, L.; Luzar, B.; Kavalar, R.; Miljković, J.; Poljak, M. Determination of causative human papillomavirus type in tissue specimens of common warts based on estimated viral loads. Front. Cell. Infect. Microbiol. 2020, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagiwara, K.; Uezato, H.; Arakaki, H.; Nonaka, S.; Nonaka, K.; Nonaka, H.; Asato, T.; Oshiro, M.; Kariya, K.; Hattori, A. A genotype distribution of human papillomaviruses detected by polymerase chain reaction and direct sequencing analysis in a large sample of common warts in Japan. J. Med. Virol. 2005, 77, 107–112. [Google Scholar] [CrossRef]
- Quint, W.; Jenkins, D.; Molijn, A.; Struijk, L.; van de Sandt, M.; Doorbar, J.; Mols, J.; Van Hoof, C.; Hardt, K.; Struyf, F.; et al. One virus, one lesion—Individual components of CIN lesions contain a specific HPV type. J. Pathol. 2012, 227, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Forslund, O.; Lindelöf, B.; Hradil, E.; Nordin, P.; Stenquist, B.; Kirnbauer, R.; Slupetzky, K.; Dillner, J. High prevalence of cutaneous human papillomavirus DNA on the top of skin tumors but not in “stripped” biopsies from the same tumors. J. Investig. Dermatol. 2004, 123, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Foulongne, V.; Sauvage, V.; Hebert, C.; Dereure, O.; Cheval, J.; Gouilh, M.A.; Pariente, K.; Segondy, M.; Burguière, A.; Manuguerra, J.C.; et al. Human skin microbiota: High diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 2012, 7, e38499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, A.; Meyer, T.; Stockfleth, E.; Nindl, I. High viral load of human wart-associated papillomaviruses (PV) but not beta-PV in cutaneous warts independent of immunosuppression. Br. J. Dermatol. 2009, 161, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Tom, L.N.; Dix, C.F.; Hoang, V.L.T.; Lin, L.L.; Nufer, K.L.; Tomihara, S.; Prow, N.A.; Soyer, H.P.; Prow, T.W.; Ardigo, M. Skin microbiopsy for HPV DNA detection in cutaneous warts. J. Eur. Acad. Dermatol. Venereol. 2016, 30, e216–e217. [Google Scholar] [CrossRef] [PubMed]
- van Duin, M.; Snijders, P.J.; Schrijnemakers, H.F.; Voorhorst, F.J.; Rozendaal, L.; Nobbenhuis, M.A.; van den Brule, A.J.; Verheijen, R.H.; Helmerhorst, T.J.; Meijer, C.J. Human papillomavirus 16 load in normal and abnormal cervical scrapes: An indicator of CIN II/III and viral clearance. Int. J. Cancer 2002, 98, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Hošnjak, L.; Fujs Komloš, K.; Kocjan, B.J.; Seme, K.; Poljak, M. Development of a novel multiplex type-specific quantitative real-time PCR for detection and differentiation of infections with human papillomavirus types HPV2, HPV27, and HPV57. Acta Dermatovenerol. Alp. Pannonica Adriat. 2016, 25, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Šterbenc, A.; Hošnjak, L.; Chouhy, D.; Bolatti, E.M.; Oštrbenk, A.; Seme, K.; Kocjan, B.J.; Luzar, B.; Giri, A.A.; Poljak, M. Molecular characterization, tissue tropism, and genetic variability of the novel Mupapillomavirus type HPV204 and phylogenetically related types HPV1 and HPV63. PLoS ONE 2017, 12, e0175892. [Google Scholar] [CrossRef]
- Stephenson, F.H. Chapter 9—The real-time polymerase chain reaction (RT-PCR). In Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory, 2nd ed.; Academic Press: London, UK, 2011; pp. 211–311. [Google Scholar]
- Chouhy, D.; Bolatti, E.M.; Piccirilli, G.; Sánchez, A.; Fernandez Bussy, R.; Giri, A.A. Identification of human papillomavirus type 156, the prototype of a new human gammapapillomavirus species, by a generic and highly sensitive PCR strategy for long DNA fragments. J. Gen. Virol. 2013, 94, 524–533. [Google Scholar] [CrossRef]
- Odar, K.; Kocjan, B.J.; Hošnjak, L.; Gale, N.; Poljak, M.; Zidar, N. Verrucous carcinoma of the head and neck—not a human papillomavirus-related tumour. J. Cell. Mol. Med. 2014, 18, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Hošnjak, L.; Kocjan, B.J.; Pirš, B.; Seme, K.; Poljak, M. Characterization of two novel gammapapillomaviruses, HPV179 and HPV184, isolated from common warts of a renal-transplant recipient. PLoS ONE 2015, 10, e0119154. [Google Scholar]
- Platt, A.R.; Woodhall, R.W.; George, A.L. Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. Biotechniques 2007, 43, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocjan, B.J.; Poljak, M.; Seme, K.; Potocnik, M.; Fujs, K.; Babic, D.Z. Distribution of human papillomavirus genotypes in plucked eyebrow hairs from Slovenian males with genital warts. Infect. Genet. Evol. 2005, 5, 255–259. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Doorslaer, K.; Li, Z.; Xirasagar, S.; Maes, P.; Kaminsky, D.; Liou, D.; Sun, Q.; Kaur, R.; Huyen, Y.; McBride, A.A. The Papillomavirus Episteme: A major update to the papillomavirus sequence database. Nucleic Acids Res. 2017, 45, D499–D506. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.M.; Kang, H.; Kim, H.O.; Park, Y.M. Differential diagnosis of plantar wart from corn, callus and healed wart with the aid of dermoscopy. Br. J. Dermatol. 2009, 160, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Aldabagh, B.; Angeles, J.G.; Cardones, A.R.; Arron, S.T. Cutaneous squamous cell carcinoma and human papillomavirus: Is there an association? Dermatol. Surg. 2013, 39, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Oreja, S.; Álvaro-Afonso, F.J.; Sevillano-Fernández, D.; Tardáguila-García, A.; López-Moral, M.; Lázaro-Martínez, J.L. A non-invasive method for diagnosing plantar warts caused by human papillomavirus (HPV). J. Med. Virol. 2022, 94, 2897–2901. [Google Scholar] [CrossRef] [PubMed]
- de Koning, M.N.; Quint, K.D.; Bruggink, S.C.; Gussekloo, J.; Bouwes Bavinck, J.N.; Feltkamp, M.C.; Quint, W.G.; Eekhof, J.A. High prevalence of cutaneous warts in elementary school children and the ubiquitous presence of wart-associated human papillomavirus on clinically normal skin. Br. J. Dermatol. 2015, 172, 196–201. [Google Scholar] [CrossRef]
- Iftner, A.; Klug, S.J.; Garbe, C.; Blum, A.; Stancu, A.; Wilczynski, S.P.; Iftner, T. The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Res. 2003, 63, 7515–7519. [Google Scholar] [PubMed]
- Doorbar, J.; Egawa, N.; Griffin, H.; Kranjec, C.; Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015, 25, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Egawa, K.; Kimmel, R.; De Villiers, E.M. A novel type of human papillomavirus (HPV 95): Comparison with infections of closely related human papillomavirus types. Br. J. Dermatol. 2005, 153, 688–689. [Google Scholar] [CrossRef]
- Doorbar, J. The E4 protein; structure, function and patterns of expression. Virology 2013, 445, 80–98. [Google Scholar] [CrossRef] [Green Version]
- Ghorzang, E.; de Koning, M.N.C.; Bouwes Bavinck, J.N.; Gussekloo, J.; Quint, K.D.; Goeman, J.J.; Feltkamp, M.C.W.; Bruggink, S.C.; Eekhof, J.A.H. HPV type-specific distribution among family members and linen in households of cutaneous wart patients. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Malin, K.; Louise, B.M.; Gisela, H.; Mats, K.G.; Gabriella, L.L. Optimization of droplet digital PCR assays for the type-specific detection and quantification of five HPV genotypes, including additional data on viral loads of nine different HPV genotypes in cervical carcinomas. J. Virol. Methods 2021, 294, 114193. [Google Scholar] [CrossRef] [PubMed]
- Lebelo, R.L.; Thys, S.; Benoy, I.; Depuydt, C.E.; Bogers, J.P.; Bida, M.N.; Mphahlele, M.J. Laser micro-dissection and qPCR for identifying specific HPV types responsible for malignancy in penile lesions. J. Med. Virol. 2015, 87, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Hazard, K.; Karlsson, A.; Andersson, K.; Ekberg, H.; Dillner, J.; Forslund, O. Cutaneous human papillomaviruses persist on healthy skin. J. Investig. Dermatol. 2007, 127, 116–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egawa, N.; Egawa, K.; Griffin, H.; Doorbar, J. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses 2015, 7, 3863–3890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.R.; Weaver, B. Human papillomavirus in older women: New infection or reactivation? J. Infect. Dis. 2013, 207, 211–212. [Google Scholar] [CrossRef] [Green Version]
- Gravitt, P.E.; Rositch, A.F.; Silver, M.I.; Marks, M.A.; Chang, K.; Burke, A.E.; Viscidi, R.P. A cohort effect of the sexual revolution may be masking an increase in human papillomavirus detection at menopause in the United States. J. Infect. Dis. 2013, 207, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonska, S.; Orth, G.; Obalek, S.; Croissant, O. Cutaneous warts. Clinical, histologic, and virologic correlations. Clin. Dermatol. 1985, 3, 71–82. [Google Scholar] [CrossRef]
- Gaiser, M.R.; Textor, S.; Senger, T.; Schädlich, L.; Waterboer, T.; Kaufmann, A.M.; Süsal, C.; Pawlita, M.; Enk, A.H.; Gissmann, L.; et al. Evaluation of specific humoral and cellular immune responses against the major capsid L1 protein of cutaneous wart-associated alpha-Papillomaviruses in solid organ transplant recipients. J. Dermatol. Sci. 2015, 77, 37–45. [Google Scholar] [CrossRef] [PubMed]
Primer/Probe | Target | Amplicon Size | Nucleotide Sequence (5′–3′) | Reference |
---|---|---|---|---|
beta-403f | HBB gene | 150-bp | TGGGTTTCTGATAGGCACTGACT | [22] |
beta-532r | AACAGCATCAGGAGTGGACAGAT | |||
beta-471pr | FAM-TCTACCCTT-ZEN-GGACCCAGAGGTTCTTTGAGT-IABkFQ | |||
2–27F | TACCTGCCCCCCAGACATT | [23] | ||
2R | HPV2 (L2 ORF) | 144-bp | GGAATGTACCCAGTACGCCC | |
HPV2-P0 | Cy5-CCCAAGAGT-TAO-GGAACAGAACACTTTAGCA-IAbRQSp | |||
27R | HPV27 (L2 ORF) | 145-bp | AGGAATATACCCGGTACGTCC | |
HPV27-P0 | HEX-CTAGGGGTC-ZEN-TTCTTTGGCGGTCTTG-IABkFQ | |||
57F | HPV57 (L2 ORF) | 157-bp | GCAAGCAGGCTGGAACG | |
57R | GGTATGTAGCCTGTGCGTCC | |||
HPV57-P0 | FAM-TTCGGTGGC-ZEN-CTCGGTATAGGTACT-IABkFQ | |||
HPV1-forward | HPV1 (L1 ORF) | 148-bp | AGCAACATGCAAATATCCTGATT | [24] |
HPV1-reverse | TTGTGGGACTGCCTCCTTATC | |||
HPV1-probe | HEX-GCGAGCAAA-ZEN-TGTATACCAGGCACT-IABkFQ | |||
HPV63-forward | HPV63 (E2 ORF) | 108-bp | TCCTGTCAATAGCTCCCCACT | |
HPV63-reverse | GACCCCTTCGTCTCTGCTTT | |||
HPV63-probe | FAM-ACACCAACC-ZEN-CAGCCACCCAAG-IABkFQ | |||
HPV4-forward | HPV4 (L2 ORF) | 122-bp | TCATATCTGGCACAACCGAAT | This study |
HPV4-reverse | AAAGGGGTTCAACGGTTCTAA | |||
HPV4-probe | FAM-ACATTTTCA-ZEN-GGCGATTCCATTGGTT-IABkFQ | |||
HPV65-forward | HPV65 (L2 ORF) | 130-bp | CCTTTGACGCTGACATCACTC | |
HPV65-reverse | ATTTGCCCAGTGTCTGTCTGA | |||
HPV65-probe | HEX-TATTTGAGC-ZEN-GGGACTTGGAACAGGT-IABkFQ | |||
HPV3-forward | HPV3 (L2 ORF) | 124-bp | TGGATGTGCCTTTACAACCTG | This study |
HPV3-reverse | AGATAAAAATCCCCGCCATCT | |||
HPV3-probe | FAM-CGTTTGTTC-ZEN-CCTTGTCTCCTGTTGA-IABkFQ | |||
HPV7-forward | HPV7 (E2 ORF) | 135-bp | AGCGAAGGAGAGACGGAGACT | This study |
HPV7-reverse | GACCTCCACCACTGTTCCTGA | |||
HPV7-probe | FAM-CGCTCGCCT-ZEN-GATATTGAAAGCAACA-IABkFQ | |||
HPV10-forward | HPV10 (E6 ORF) | 154-bp | GCACAGGAACCCAGAAACATA | This study |
HPV10-reverse | CCGCTCTCCACACCAAATATAA | |||
HPV10-probe | FAM-TGGAATACC-ZEN-TTTGGAGGACCTTCGC-IABkFQ | |||
HPV28-forward | HPV28 (L2 ORF) | 150-bp | AGACATTTGCTTCGCCAGGTA | This study |
HPV28-reverse | ATGAGGTGGGACGAGACAAGA | |||
HPV28-probe | FAM-AGTAGGATC-ZEN-GCTGGACCCCGTCTAT-IABkFQ | |||
HPV29-forward | HPV29 (L2 ORF) | 153-bp | CCCACCGAGGACATAGAGTTG | This study |
HPV29-reverse | AGTAATGCGACCCCCGTAAGT | |||
HPV29-probe | FAM-ATATGCTGA-ZEN-TGTGGACGAGGCTGAC-IABkFQ | |||
HPV95-forward | HPV95 (E2 ORF) | 124-bp | GCTCTACAAACCCCTCCTCCT | This study |
HPV95-reverse | GGTTGTAGTTCCCTCGACTGC | |||
HPV95-probe | FAM-CCCTCCACC-ZEN-AGCAACACCAAAACTA-IABkFQ |
HPV Type | Viral Species | Number of Patients n = 88 (%) | Median Age a Year (Range) | Number of Samples n = 126 (%) | Samples with a Single HPV n = 88 (%) | Samples with Multiple HPVs n = 38 (%) |
---|---|---|---|---|---|---|
HPV2 | Alpha-4 | 15 (17.0) | 25 (15–74) | 19 (15.1) | 8 (9.1) | 11 (28.9) |
HPV27 | 31 (35.2) | 23 (10–63) | 40 (31.7) | 25 (28.4) | 15 (39.4) | |
HPV57 | 26 (29.5) | 24 (9–54) | 38 (30.2) | 25 (28.4) | 13 (34.2) | |
HPV4 | Gamma-1 | 14 (15.9) | 23.5 (13–72) | 23 (18.3) | 15 (17.0) | 8 (21.1) |
HPV65 | 15 (17.0) | 49 (14–78) | 19 (15.1) | 8 (9.1) | 11 (28.9) | |
HPV95 | 1 (1.1) | 42 | 1 (0.8) | – | 1 (2.6) | |
HPV3 | Alpha-2 | 1 (1.1) | 54 | 1 (0.8) | – | 1 (2.6) |
HPV10 | 3 (3.4) | 49 (41–78) | 5 (4.0) | 2 (2.3) | 3 (7.9) | |
HPV28 | 1 (1.1) | 27 | 2 (1.6) | 2 (2.3) | – | |
HPV29 | 1 (1.1) | 29 | 1 (0.8) | 1 (1.1) | – | |
HPV7 | Alpha-8 | 1 (1.1) | 30 | 1 (0.8) | 1 (1.1) | – |
HPV1 | Mu-1 | 14 (15.9) | 24.5 (15–78) | 15 (11.9) | 1 (1.1) | 14 (36.8) |
HPV63 | Mu-2 | 2 (2.3) | 13, 15 | 3 (2.4) | – | 3 (7.9) |
Causative HPV Type | Viral Species | Number of Patients n = 88 (%) a | Patient Sex a | Median Age b Year (Range) | Number of Samples n = 126 (%) | Caused-Detected Proportion (%) c | |
---|---|---|---|---|---|---|---|
Female n = 46 (%) | Male n = 42 (%) | ||||||
HPV2 | Alpha-4 | 14 (15.9) | 7 (15.2) | 7 (16.7) | 24.5 (15–74) | 17 (13.5) | 17/19 (89.5) |
HPV27 | 25 (28.4) | 9 (19.7) | 16 (38.1) | 22 (10–63) | 34 (27.0) | 34/40 (85.0) | |
HPV57 | 23 (26.1) | 13 (28.3) | 10 (23.8) | 23 (9–54) | 33 (26.2) | 33/38 (86.8) | |
HPV4 | Gamma-1 | 11 (12.5) | 7 (15.2) | 4 (9.5) | 22 (13–72) | 19 (15.1) | 19/23 (82.6) |
HPV65 | 7 (8.0) | 5 (10.9) | 2 (4.8) | 52 (15–78) | 10 (7.9) | 10/19 (52.6) | |
HPV95 | 1 (1.1) | 1 (2.2) | – | 42 | 1 (0.8) | 1/1 (100) | |
HPV3 | Alpha-2 | 1 (1.1) | 1 (2.2) | – | 54 | 1 (0.8) | 1/1 (100) |
HPV10 | 2 (2.3) | – | 2 (4.8) | 41, 49 | 2 (1.6) | 2/5 (40.0) | |
HPV28 | 1 (1.1) | – | 1 (2.4) | 27 | 2 (1.6) | 2/2 (100) | |
HPV29 | 1 (1.1) | 1 (2.2) | – | 29 | 1 (0.8) | 1/1 (100) | |
HPV7 | Alpha-8 | 1 (1.1) | 1 (2.2) | – | 30 | 1 (0.8) | 1/1 (100) |
HPV1 | Mu-1 | 1 (1.1) | 1 (2.2) | – | 45 | 1 (0.8) | 1/15 (6.7) |
HPV63 | Mu-2 | – | – | – | – | – | 0/3 (0.0) |
Undetermined | – | 4 (4.5) | 1 (2.2) | 3 (7.1) | 54.5 (41–62) | 4 (3.2) | – |
Causative HPV Type | Number of Samples n = 113 | Viral Load (Viral Copies/Cell) | ||||
---|---|---|---|---|---|---|
Minimum | Maximum | Median | Mean | Standard Deviation | ||
HPV2 | 17 | 1.12 × 100 | 5.45 × 105 | 6.73 × 103 | 4.28 × 104 | 1.30 × 105 |
HPV27 | 34 | 1.85 × 100 | 1.78 × 105 | 7.73 × 103 | 1.71 × 104 | 3.05 × 104 |
HPV57 | 33 | 5.23 × 100 | 4.97 × 104 | 8.65 × 103 | 1.35 × 104 | 1.38 × 104 |
HPV4 | 19 | 1.68 × 102 | 5.65 × 105 | 2.75 × 104 | 9.19 × 104 | 1.68 × 105 |
HPV65 | 10 | 1.53 × 104 | 6.75 × 105 | 1.64 × 105 | 2.00 × 105 | 1.82 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skubic, L.; Hošnjak, L.; Breznik, V.; Fujs Komloš, K.; Luzar, B.; Poljak, M. An Improved Protocol for Comprehensive Etiological Characterization of Skin Warts and Determining Causative Human Papillomavirus Types in 128 Histologically Confirmed Common Warts. Viruses 2022, 14, 2266. https://doi.org/10.3390/v14102266
Skubic L, Hošnjak L, Breznik V, Fujs Komloš K, Luzar B, Poljak M. An Improved Protocol for Comprehensive Etiological Characterization of Skin Warts and Determining Causative Human Papillomavirus Types in 128 Histologically Confirmed Common Warts. Viruses. 2022; 14(10):2266. https://doi.org/10.3390/v14102266
Chicago/Turabian StyleSkubic, Lucijan, Lea Hošnjak, Vesna Breznik, Kristina Fujs Komloš, Boštjan Luzar, and Mario Poljak. 2022. "An Improved Protocol for Comprehensive Etiological Characterization of Skin Warts and Determining Causative Human Papillomavirus Types in 128 Histologically Confirmed Common Warts" Viruses 14, no. 10: 2266. https://doi.org/10.3390/v14102266
APA StyleSkubic, L., Hošnjak, L., Breznik, V., Fujs Komloš, K., Luzar, B., & Poljak, M. (2022). An Improved Protocol for Comprehensive Etiological Characterization of Skin Warts and Determining Causative Human Papillomavirus Types in 128 Histologically Confirmed Common Warts. Viruses, 14(10), 2266. https://doi.org/10.3390/v14102266