Direct-Acting Antiviral Therapy for Hepatitis C Virus in Patients with BCLC Stage B/C Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Enrollment and Data Organization
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics and Variables Associated with Non-SVR
3.2. Patientoverall Survival and the Associated Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshida, H.; Tateishi, R.; Arakawa, Y.; Sata, M.; Fujiyama, S.; Nishiguchi, S.; Ishibashi, H.; Yamada, G.; Yokosuka, O.; Shiratori, Y.; et al. Benefit of interferon therapy in hepatocellular carcinoma prevention for individual patients with chronic hepatitis C. Gut 2004, 53, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.S.; Lee, S.W.; Yang, S.S.; Tsai, H.J.; Lee, T.Y. Advances in the era of direct-acting antivirals for hepatitis C in patients with unresectable hepatocellular carcinoma. Dig. Dis. 2022, 40, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Backus, L.I.; Belperio, P.S.; Shahoumian, T.A.; Mole, L.A. Impact of sustained virologic response with direct- acting antiviral treatment on mortality in patients with advanced liver disease. Hepatology 2019, 69, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannou, G.N.; Green, P.K.; Berry, K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J. Hepatol. 2017, 68, 25–32. [Google Scholar] [CrossRef]
- Cabibbo, G.; Celsa, C.; Calvaruso, V.; Petta, S.; Cacciola, I.; Cannavò, M.R.; Madonia, S.; Rossi, M.; Magro, B.; Rini, F.; et al. Direct-acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J. Hepatol. 2019, 71, 265–273. [Google Scholar] [CrossRef]
- Ohki, T.; Sato, K.; Kondo, M.; Goto, E.; Sato, T.; Kondo, Y.; Akamatsu, M.; Sato, S.; Yoshida, H.; Koike, Y.; et al. Effectiveness of direct acting antiviral agents for hepatitis C virus related recurrent hepatocellular carcinoma patients who had multiple courses of recurrence. J. Viral Hepat. 2021, 28, 1597–1603. [Google Scholar] [CrossRef]
- Ji, F.; Yeo, Y.H.; Wei, M.T.; Ogawa, E.; Enomoto, M.; Lee, D.H.; Iio, E.; Lubel, J.; Wang, W.; Wei, B.; et al. Sustained virologic response to direct-acting antiviral therapy in patients with chronic hepatitis C and hepatocellular carcinoma: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Yang, S.S.; Lien, H.C.; Peng, Y.C.; Tung, C.F.; Lee, T.Y. The Combining of Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors as First-Line Treatment for Advanced Stage Hepatocellular Carcinoma. J. Clin. Med. 2022, 11, 4874. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Cabibbo, G. Antiviral therapy in the palliative setting of HCC (BCLC-B and -C). J. Hepatol. 2021, 74, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, T.Y.; Peng, Y.C.; Yang, S.S.; Yeh, H.Z.; Chang, C.S. Sorafenib treatment on Chinese patients with advanced hepatocellular carcinoma: A study on prognostic factors of the viral and tumor status. Medicine 2019, 98, e17692. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Yang, S.S.; Lee, S.W.; Tsai, H.J.; Lee, T.Y. Cessation of Nucleos(t)ide Analogue Therapy in Non-Cirrhotic Hepatitis B Patients with Prior Severe Acute Exacerbation. J. Clin. Med. 2021, 10, 4883. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Q.; Merli, M.; Ginanni Corradini, S.; Mennini, G.; Gentili, F.; Molinaro, A.; Morabito, V.; Ferretti, G.; Pugliese, F.; Novelli, G.; et al. Predictive factors of recurrence of hepatocellular carcinoma after liver transplantation: A multivariate analysis. Transplant. Proc. 2009, 41, 1306–1309. [Google Scholar] [CrossRef]
- Deterding, K.; Höner Zu Siederdissen, C.; Port, K.; Solbach, P.; Sollik, L.; Kirschner, J.; Mix, C.; Cornberg, J.; Worzala, D.; Mix, H.; et al. Improvement of liver function parameters in advanced HCV-associated liver cirrhosis by IFN-free antiviral therapies. Aliment. Pharmacol. Ther. 2015, 42, 889–901. [Google Scholar] [CrossRef]
- Tapper, E.B.; Parikh, N.D.; Green, P.K.; Berry, K.; Waljee, A.K.; Moon, A.M.; Ioannou, G.N. Reduced Incidence of Hepatic Encephalopathy and Higher Odds of Resolution Associated With Eradication of HCV Infection. Clin. Gastroenterol. Hepatol. 2020, 18, 1197–1206.e7. [Google Scholar] [CrossRef]
- Belli, L.S.; Perricone, G.; Adam, R.; Cortesi, P.A.; Strazzabosco, M.; Facchetti, R.; Karam, V.; Salizzoni, M.; Andujar, R.L.; Fondevila, C.; et al. Impact of DAAs on liver transplantation: Major effects on the evolution of indications and results. An Elita study based on the ELTR registry. J. Hepatol. 2018, 69, 810–817. [Google Scholar] [CrossRef]
- Konjeti, V.R.; John, B.V. Interaction between hepatocellular carcinoma and hepatitis C eradication with direct-acting antiviral Therapy. Curr. Treat. Options Gastroenterol. 2018, 16, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, M.; Chawla, Y.K.; Arora, S.K. Immunology of hepatocellular carcinoma. World J. Hepatol. 2015, 7, 2080–2090. [Google Scholar] [CrossRef]
- Prenner, S.B.; VanWagner, L.B.; Flamm, S.L.; Salem, R.; Lewandowski, R.J.; Kulik, L. Hepatocellular carcinoma decreases the chance of successful hepatitis C virus therapy with direct-acting antivirals. J. Hepatol. 2017, 66, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Chi, C.T.; Chen, C.Y.; Su, C.W.; Chen, P.Y.; Chu, C.J.; Lan, K.H.; Lee, I.C.; Hou, M.C.; Huang, Y.H. Direct-acting antivirals for patients with chronic hepatitis C and hepatocellular carcinoma in Taiwan. J. Microbiol. Immunol. Infect. 2021, 54, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Nishibatake Kinoshita, M.; Minami, T.; Tateishi, R.; Wake, T.; Nakagomi, R.; Fujiwara, N.; Sato, M.; Uchino, K.; Enooku, K.; Nakagawa, H.; et al. Impact of direct-acting antivirals on early recurrence of HCV-related HCC: Comparison with interferon-based therapy. J. Hepatol. 2019, 70, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Shao, P.P.; Chen, W.T.; Lin, C.C.; Lin, W.R.; Yeh, C.T. Direct-acting Antiviral Therapy Improves the outcome of chronic hepatitis C/intermediate-stage B hepatocellular carcinoma patients. Anticancer Res. 2021, 41, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.Y.; Chang, H.P.; Chen, C.J.; Hsu, W.L.; Huang, L.Y.; Lee, P.C. Effects of direct-acting antiviral therapy for patients with advanced hepatocellular carcinoma and concomitant hepatitis C-A population-based cohort study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7543–7552. [Google Scholar]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
All (n = 97) | SVR (n = 88) | Non-SVR (n = 9) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | n | % | Mean ± SD | n | % | Mean ± SD | n | % | ||
Age (years) | 69.37 ± 10.46 | 69.13 ± 10.20 | 71.56 ± 13.29 | |||||||
Gender | Male | 65 | (67.0%) | 58 | (65.9%) | 7 | (77.8%) | |||
Female | 32 | (33.0%) | 30 | (34.1%) | 2 | (22.2%) | ||||
Child–Pugh stage | A | 79 | (81.4%) | 73 | (83.0%) | 6 | (66.7%) | |||
B | 18 | (18.6%) | 15 | (17.0%) | 3 | (33.3%) | ||||
ALBI grade | 1 | 40 | (41.2%) | 38 | (43.2%) | 2 | (22.2%) | |||
2 | 53 | (54.6%) | 47 | (53.4%) | 6 | (66.7%) | ||||
3 | 4 | (4.2%) | 3 | (3.4%) | 1 | (11.1%) | ||||
FIB-4 | 6.57 ± 6.35 | 6.65 ± 6.61 | 5.88 ± 2.91 | |||||||
Totoal bilirunin (U/L) | 0.88 ± 0.54 | 0.88 ± 0.56 | 0.88 ± 0.44 | |||||||
ALT (U/L) | 87.49 ± 92.57 | 85.09 ± 95.77 | 110.00 ± 49.98 | |||||||
HBV co-infection | 6 | (6.2%) | 6 | (6.8%) | 0 | |||||
HCV RNA (IU/mL) | 5.56 ± 0.99 | 5.54 ± 0.99 | 5.82 ± 1.01 | |||||||
HCV genotype | Ia | 5 | (5.2%) | 4 | (4.5%) | 1 | (11.2%) | |||
Ib | 66 | (68.0%) | 62 | (70.5%) | 4 | (44.4%) | ||||
II | 23 | (23.7%) | 21 | (23.9%) | 2 | (22.2%) | ||||
III | 1 | (1.0%) | 1 | (1.1%) | 0 | |||||
VI | 2 | (2.1%) | 0 | 2 | (22.2%) | |||||
DAA regimen | DCV/ASV | 2 | (2.1%) | 2 | (2.3%) | 0 | ||||
EBR/GZR | 12 | (12.4%) | 12 | (13.6%) | 0 | |||||
SOF/RBV | 9 | (9.3%) | 6 | (6.8%) | 3 | (33.3%) | ||||
SOF/LDV | 25 | (25.8%) | 22 | (25.0%) | 3 | (33.3%) | ||||
SOF/DCV | 1 | (1.0%) | 1 | (1.1%) | 0 | |||||
SOF/VEL | 25 | (25.8%) | 23 | (26.1%) | 2 | (22.2%) | ||||
PrOD | 11 | (11.3%) | 11 | (12.5%) | 0 | |||||
G/P | 12 | (12.4%) | 11 | (12.5%) | 1 | (11.1%) | ||||
AFP (ng/mL) | 1116.1 ± 4415.8 | 1100.3 ± 4598.3 | 1272.0 ± 2003.4 | |||||||
AFP > 400 ng/mL | 15 | (15.5%) | 12 | (13.7%) | 3 | (33.3%) | ||||
BCLC stage | B | 77 | (79.4%) | 70 | (79.5%) | 7 | (77.8%) | |||
C | 20 | (20.6%) | 18 | (20.5%) | 2 | (22.2%) | ||||
HCC size (cm) | 4.15 ± 3.56 | 3.95 ± 3.32 | 6.09 ± 5.31 | |||||||
Pre-DAA HCC treatment * | ||||||||||
LRT | 80 | (82.5%) | 73 | (83.0%) | 7 | (77.8%) | ||||
TKI | 10 | (10.3%) | 10 | (11.4%) | 0 | |||||
ICI | 3 | (3.1%) | 3 | (3.4%) | 0 | |||||
Response to prior HCC treatment | ||||||||||
(mRECIST) | CR | 20 | (20.6%) | 19 | (21.6%) | 1 | (11.1%) | |||
PR | 20 | (20.6%) | 19 | (21.6%) | 1 | (11.1%) | ||||
SD | 42 | (43.3%) | 39 | (44.3%) | 3 | (33.3%) | ||||
PD | 14 | (15.5%) | 11 | (12.5%) | 4 | (44.5%) | ||||
Post-DAA HCC treatment ** | ||||||||||
LRT | 89 | (91.7%) | 82 | (93.2%) | 7 | (77.8%) | ||||
TKI | 48 | (49.5%) | 43 | (48.9%) | 5 | (55.6%) | ||||
ICI | 10 | (10.3%) | 10 | (11.4%) | 0 |
Univariable Analysis | |||
---|---|---|---|
Variables | OR | (95% CI) | p-Value |
Age ≤ 65 years old (vs. >65) | 0.96 | (0.91–1.05) | 0.509 |
Gender male (vs. female) | 1.81 | (0.35–9.25) | 0.576 |
Child–Pugh stage B (vs. A) | 2.43 | (0.55–10.83) | 0.243 |
ALBI grade 2/3 (vs. 1) | 2.66 | (0.52–13.54) | 0.238 |
FIB4 > 3.25 (vs. ≤3.25) | 1.55 | (0.30–7.95) | 0.600 |
HCV GT1 (vs. other GTs) | 0.44 | (0.11–1.79) | 0.252 |
HCV GT2 (vs. other GTs) | 0.91 | (0.18–4.73) | 0.912 |
Non-pangenotypic DAA (vs. pangenotypic DAA) | 1.32 | (0.31–5.63) | 0.707 |
AFP > 400 (vs. ≤400 ng/mL) | 3.17 | (0.70–14.38) | 0.136 |
BCLC stage C (vs. B) | 1.11 | (0.21–5.81) | 0.900 |
Beyond up-to-7 criteria (vs. within) | 2.18 | (0.55–8.73) | 0.268 |
PR + SD + PD (vs. CR) | 2.19 | (0.26–18.67) | 0.470 |
SD + PD (vs. CR + PR) | 2.66 | (0.52–13.54) | 0.238 |
PD (PD vs. CR + PR + SD) | 5.59 | (1.30–24.06) | 0.021 |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | (95% CI) | p-Value | HR | (95% CI) | p-Value |
SVR (vs. no SVR) | 5.32 | (2.01–14.09) | 0.008 | 8.42 | (2.93–24.19) | 0.001 |
Age ≤ 65 (vs. >65 years old) | 1.11 | (0.52–2.38) | 0.781 | |||
Gender male (vs. female) | 0.83 | (0.38–1.80) | 0.640 | |||
Child–Pugh stage B (vs. A) | 0.36 | (0.15–0.83) | 0.017 | 0.33 | (0.14–0.80) | 0.014 |
ALBI grade 2/3 (vs. 1) | 0.61 | (0.29–1.26) | 0.185 | |||
FIB4 > 3.25 (vs. ≤3.25) | 0.79 | (0.35–1.78) | 0.579 | |||
HCV GT1 (vs. other GTs) | 1.09 | (0.48–2.45) | 0.832 | |||
HCV GT2 (vs. other GTs) | 1.16 | (0.49–2.72) | 0.722 | |||
PangenotypicDAA (vs. other DAA) | 1.06 | (0.25– 4.52) | 0.367 | |||
AFP > 400 (vs. ≤400 ng/mL) | 0.53 | (0.21–1.31) | 0.175 | |||
BCLC stage C (vs. B) | 0.29 | (0.12–0.70) | 0.006 | 0.23 | (0.09–0.58) | 0.020 |
Beyond up-to-7 criteria (vs. within) | 0.51 | (0.25–1.07) | 0.007 | |||
Pre-DAA LRT (vs. noLRT) | 2.71 | (0.91–6.62) | 0.282 | |||
Pre-DAA TKI(vs. noTKI) | 0.81 | (0.19–3.47) | 0.784 | |||
Pre-DAA ICI (vs. noICI) | 0.39 | (0.05–3.01) | 0.367 | |||
PR + SD + PD (vs. CR) | 0.21 | (0.06–0.71) | 0.012 | 0.20 | (0.05–0.68) | 0.010 |
SD/PD (vs. CR + PR) | 0.51 | (0.24–1.08) | 0.081 | |||
PD (vs. CR + PR + SD) | 0.68 | (0.26–1.78) | 0.441 | |||
Post-DAA LRT(vs. noLRT) | 2.40 | (0.72–8.02) | 0.152 | |||
Post-DAA TKI (vs. noTKI) | 0.52 | (0.25–1.05) | 0.070 | |||
Post-DAA ICI (vs. noICI) | 0.87 | (0.26–2.89) | 0.825 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-W.; Chen, L.-S.; Yang, S.-S.; Huang, Y.-H.; Lee, T.-Y. Direct-Acting Antiviral Therapy for Hepatitis C Virus in Patients with BCLC Stage B/C Hepatocellular Carcinoma. Viruses 2022, 14, 2316. https://doi.org/10.3390/v14112316
Lee S-W, Chen L-S, Yang S-S, Huang Y-H, Lee T-Y. Direct-Acting Antiviral Therapy for Hepatitis C Virus in Patients with BCLC Stage B/C Hepatocellular Carcinoma. Viruses. 2022; 14(11):2316. https://doi.org/10.3390/v14112316
Chicago/Turabian StyleLee, Shou-Wu, Li-Shu Chen, Sheng-Shun Yang, Yi-Hsiang Huang, and Teng-Yu Lee. 2022. "Direct-Acting Antiviral Therapy for Hepatitis C Virus in Patients with BCLC Stage B/C Hepatocellular Carcinoma" Viruses 14, no. 11: 2316. https://doi.org/10.3390/v14112316
APA StyleLee, S. -W., Chen, L. -S., Yang, S. -S., Huang, Y. -H., & Lee, T. -Y. (2022). Direct-Acting Antiviral Therapy for Hepatitis C Virus in Patients with BCLC Stage B/C Hepatocellular Carcinoma. Viruses, 14(11), 2316. https://doi.org/10.3390/v14112316