Rapid Identification of SARS-CoV-2 Omicron BA.5 Spike Mutation F486V in Clinical Specimens Using a High-Resolution Melting-Based Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Preparation of Standard RNA Fragments: In Vitro T7 Transcription
2.3. RT-PCR Amplification: First PCR
2.4. HRM Analysis: Second PCR
2.5. Clinical Samples
3. Results
3.1. Development of HRM Analysis for F486V Mutation Detection
3.2. Validation of HRM Analysis for the G446/L452 and F486 Sites in Clinical Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. Author Correction: A new coronavirus associated with human respiratory disease in China. Nature 2020, 580, E7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021, 398, 2126–2128. [Google Scholar] [CrossRef]
- Petersen, E.; Ntoumi, F.; Hui, D.S.; Abubakar, A.; Kramer, L.D.; Obiero, C.; Tambyah, P.A.; Blumberg, L.; Yapi, R.; Al-Abri, S.; et al. Emergence of new SARS-CoV-2 Variant of Concern Omicron (B.1.1.529)—Highlights Africaʼs research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. Int. J. Infect. Dis. 2022, 114, 268–272. [Google Scholar] [CrossRef]
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef]
- Yamasoba, D.; Kimura, I.; Nasser, H.; Morioka, Y.; Nao, N.; Ito, J.; Uriu, K.; Tsuda, M.; Zahradnik, J.; Shirakawa, K.; et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 2022, 185, 2103–2115.e19. [Google Scholar] [CrossRef]
- Callaway, E. What Omicronʼs BA.4 and BA.5 variants mean for the pandemic. Nature 2022, 606, 848–849. [Google Scholar] [CrossRef]
- Ayadi, W.; Taktak, A.; Gargouri, S.; Smaoui, F.; Chtourou, A.; Skouri-Gargouri, H.; Derbel, R.; Sassi, A.H.; Gargouri, A.; Hammami, A.; et al. Development of a simple genotyping method based on indel mutations to rapidly screen SARS-CoV-2 circulating variants: Delta, Omicron BA.1 and BA.2. J. Virol. Methods 2022, 307, 114570. [Google Scholar] [CrossRef]
- Hirotsu, Y.; Maejima, M.; Shibusawa, M.; Natori, Y.; Nagakubo, Y.; Hosaka, K.; Sueki, H.; Mochizuki, H.; Tsutsui, T.; Kakizaki, Y.; et al. Classification of Omicron BA.1, BA.1.1, and BA.2 sublineages by TaqMan assay consistent with whole genome analysis data. Int. J. Infect. Dis. 2022, 122, 486–491. [Google Scholar] [CrossRef]
- Koshikawa, T.; Miyoshi, H. High-resolution melting analysis to discriminate between the SARS-CoV-2 Omicron variants BA.1 and BA.2. Biochem. Biophys. Rep. 2022, 31, 101306. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Liang, Y.; Zou, L.; Li, B.; Zhao, J.; Wang, H.; Sun, J.; Deng, X.; Tang, S. Combination of isothermal recombinase-aided amplification and CRISPR-Cas12a-mediated assay for rapid detection of major severe acute respiratory syndrome coronavirus 2 variants of concern. Front. Microbiol. 2022, 13, 945133. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef]
- Tegally, H.; Moir, M.; Everatt, J.; Giovanetti, M.; Scheepers, C.; Wilkinson, E.; Subramoney, K.; Makatini, Z.; Moyo, S.; Amoako, D.G.; et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat. Med. 2022, 28, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, A.; Agrawal, S.; Schoth, J.; Meinert-Berning, C.; Bastian, D.; Orschler, L.; Ciesek, S.; Teichgräber, B.; Wintgens, T.; Lackner, S.; et al. Early detection of SARS-CoV-2 Omicron BA.4 and BA.5 in German wastewater. Viruses 2022, 14, 1876. [Google Scholar] [CrossRef] [PubMed]
- Aoki, A.; Adachi, H.; Mori, Y.; Ito, M.; Sato, K.; Okuda, K.; Sakakibara, T.; Okamoto, Y.; Jinno, H. Discrimination of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 using a high-resolution melting-based assay: A pilot study. Microbiol. Spectr. 2022, 10, e01367-01322. [Google Scholar] [CrossRef] [PubMed]
- Aoki, A.; Adachi, H.; Mori, Y.; Ito, M.; Sato, K.; Okuda, K.; Sakakibara, T.; Okamoto, Y.; Jinno, H. A rapid screening assay for L452R and T478K spike mutations in SARS-CoV-2 Delta variant using high-resolution melting analysis. J. Toxicol. Sci. 2021, 46, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Zappa, M.; Verdecchia, P.; Angeli, F. Knowing the new Omicron BA.2.75 variant (‘Centaurus’): A simulation study. Eur. J. Intern. Med. 2022, 105, 107–108. [Google Scholar] [CrossRef]
- Sheward, D.J.; Kim, C.; Fischbach, J.; Muschiol, S.; Ehling, R.A.; Björkström, N.K.; Hedestam, G.B.K.; Reddy, S.T.; Albert, J.; Peacock, T.P.; et al. Evasion of neutralising antibodies by omicron sublineage BA.2.75. Lancet Infect. Dis. 2022, 22, 1421–1422. [Google Scholar] [CrossRef]
- Scarpa, F.; Sanna, D.; Azzena, I.; Giovanetti, M.; Benvenuto, D.; Angeletti, S.; Ceccarelli, G.; Pascarella, S.; Casu, M.; Fiori, P.L.; et al. On the SARS-CoV-2 BA.2.75 variant: A genetic and structural point of view. J. Med. Virol. 2022; in press. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; Kandi, V.; Mishra, S.; Sarangi, A.K.; Pradhan, M.K.; Mohapatra, P.K.; Behera, A.; Dhama, K. Emerging novel sub-lineage BA.2.75: The next dominant omicron variant? Int. J. Surg. 2022, 104, 106835. [Google Scholar] [CrossRef]
- Desingu, P.A.; Nagarajan, K. The emergence of Omicron lineages BA.4 and BA.5, and the global spreading trend. J. Med. Virol. 2022, 94, 5077–5079. [Google Scholar] [CrossRef] [PubMed]
Pangolin | RBD Amino Acid Substitutions |
---|---|
BA.1 | G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H |
BA.2 | G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H |
BA.4/5 | G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, F486V, S477N, T478K, E484A, Q498R, N501Y, Y505H |
Primer | Sequence |
---|---|
RT-PCR amplification | |
Fwd primer | 5′-TTACAGGCTGCGTTATAG-3′ |
Rev primer | 5′-ACAAACAGTTGCTGGTGCAT-3′ |
HRM analysis | |
G446-L452 Fwd primer | 5′-GGCTGCGTTATAGCTTGGAATTCTAACAATCTT-3′ |
G446-L452 Rev primer | 5′-TCAAAAGGTTTGAGATTAGACTTCC-3′ |
F486 Fwd primer | 5′-ACACCTTGTAATGGTGTTGAAGGT-3′ |
F486 Rev primer | 5′-AGTGGGTTGGAAACCATATGATTGTAA-3′ |
BA.1 | BA.2 | BA.5 | ||||||
---|---|---|---|---|---|---|---|---|
Pangolin | No. of Samples | Ct Mean Value (Range) | Pangolin | No. of Samples | Ct Mean Value (Range) | Pangolin | No. of Samples | Ct Mean Value (Range) |
BA.1 | 11 | 25.2 (22.2–29.9) | BA.2 | 10 | 23.0 (18.0–27.45) | BA.5 | 3 | 23.2 (16.9–27.9) |
BA.1.1 | 5 | 24.2 (23.0–26.8) | BA.2.3 | 14 | 25.7 (20.1–34.9) | BA.5.1 | 2 | 22.2 (22.1–22.3) |
BA.1.1.2 | 8 | 24.6 (20.0–29.9) | BA.2.3.1 | 7 | 23.9 (18.8–28.4) | BA.5.2 | 12 | 25.0 (19.2–29.1) |
B.1.1.529 | 16 | 27.4 (21.1–32.6) | BA.2.3.13 | 1 | 20.8 | BA.5.2.1 | 14 | 23.8 (14.3–29.1) |
BA.2.10 | 4 | 24.7 (22.9–28.7) | BA.5.3.1 | 1 | 22.1 | |||
BA.2.10.2 | 1 | 23.6 | BE.1.1 | 2 | 21.3 (17.9–24.8) | |||
BA.2.24 | 2 | 21.4 (18.4–24.5) | BF.5 | 6 | 24.1 (22.3–24.9) | |||
BA.2.29 | 1 | 28.8 |
G446S Detection | L452R Detection | F486V Detection | |
---|---|---|---|
Sensitivity a | 100% (40/40) | 95.0% (38/40) | 100% (40/40) |
Specificity b | 100% (80/80) | 100% (80/80) | 100% (80/80) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoki, A.; Adachi, H.; Mori, Y.; Ito, M.; Sato, K.; Kinoshita, M.; Kuriki, M.; Okuda, K.; Sakakibara, T.; Okamoto, Y.; et al. Rapid Identification of SARS-CoV-2 Omicron BA.5 Spike Mutation F486V in Clinical Specimens Using a High-Resolution Melting-Based Assay. Viruses 2022, 14, 2401. https://doi.org/10.3390/v14112401
Aoki A, Adachi H, Mori Y, Ito M, Sato K, Kinoshita M, Kuriki M, Okuda K, Sakakibara T, Okamoto Y, et al. Rapid Identification of SARS-CoV-2 Omicron BA.5 Spike Mutation F486V in Clinical Specimens Using a High-Resolution Melting-Based Assay. Viruses. 2022; 14(11):2401. https://doi.org/10.3390/v14112401
Chicago/Turabian StyleAoki, Akira, Hirokazu Adachi, Yoko Mori, Miyabi Ito, Katsuhiko Sato, Masayoshi Kinoshita, Masahiro Kuriki, Kenji Okuda, Toru Sakakibara, Yoshinori Okamoto, and et al. 2022. "Rapid Identification of SARS-CoV-2 Omicron BA.5 Spike Mutation F486V in Clinical Specimens Using a High-Resolution Melting-Based Assay" Viruses 14, no. 11: 2401. https://doi.org/10.3390/v14112401
APA StyleAoki, A., Adachi, H., Mori, Y., Ito, M., Sato, K., Kinoshita, M., Kuriki, M., Okuda, K., Sakakibara, T., Okamoto, Y., & Jinno, H. (2022). Rapid Identification of SARS-CoV-2 Omicron BA.5 Spike Mutation F486V in Clinical Specimens Using a High-Resolution Melting-Based Assay. Viruses, 14(11), 2401. https://doi.org/10.3390/v14112401