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Abstract: Glioblastoma multiforme (GBM) accounts for almost half of all primary malignant brain
tumors in adults and has a poor prognosis. Here we demonstrated the oncolytic potential of the
L-16 vaccine strain of measles virus (MV) against primary human GBM cells and characterized the
genetic patterns that determine the sensitivity of primary human GBM cells to oncolytic therapy.
MV replicated in all GBM cells, and seven out of eight cell lines underwent complete or partial
oncolysis. RNA-Seq analysis identified about 1200 differentially expressed genes (FDR < 0.05) with
at least two-fold expression level change between MV-infected and uninfected cells. Among them,
the most significant upregulation was observed for interferon response, apoptosis and cytokine
signaling. One out of eight GBM cell lines was defective in type I interferon production and, thus, in
the post-interferon response, other cells lacked expression of different cellular defense factors. Thus,
none of the cell lines displayed induction of the total gene set necessary for effective inhibition of
MV replication. In the resistant cells, we detected aberrant expression of metalloproteinase genes,
particularly MMP3. Thus, such genes could be considered intriguing candidates for further study of
factors responsible for cell sensitivity and resistance to L-16 MV infection.

Keywords: oncolytic viruses; cancer immunotherapy; measles virus; glioblastoma multiforme

1. Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive type of adult
brain tumor, accounting for 55% of all brain tissue tumors [1]. The disease is invariably
fatal, despite the aggressive use of multimodality treatment, with a glioblastoma cancer
stem cell (CSC) population emerging as a major cause of tumor recurrence after treatment.
CSCs are multipotent cells, capable of self-renewal that rapidly acquire resistance to radio-
and chemo-therapeutic treatments [2]. They usually constitute 2–3% of the original glioma,
but their population grows rapidly upon stimulation by surgery and treatment [3]. The
current standard treatment for GBM is maximal surgery, followed by chemotherapy with
temozolomide and radiotherapy [4,5]. The overall survival rate for GBM is 15 months, and
the 5-year survival rate is 5–7% after the initial diagnosis. Still, nearly 90% of GBM patients
will die of the disease within two years of diagnosis [6]. The lack of an efficient anti-tumor
immune response and the micro-invasive nature of the glioma malignant cells have been
explained by a multitude of immune-suppressive mechanisms, proven in different models.
Therefore, new treatment strategies that target both the primary tumor mass and the highly
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resistant CSC population as well as immune suppression are imperative if GBM survival
rates are to improve.

Oncolytic viruses (OVs) have been developed as an approach for the treatment of
many cancers and are a particularly rational therapy choice in the treatment of tumors
resistant to standard therapies. OVs not only kill the tumor cells by direct lysis [7], but the
oncolytic process also provides critical danger signals in the form of virus-derived PAMPs
and endogenous DAMPs as a consequence of virus-induced immunogenic cell death
mechanisms, which initiate potent anti-tumor immune responses [8–10] to overcome the
immunosuppressive tumor microenvironment [11] and induce long-lasting tumor-specific
immunity. OVs have been explored as potentially new, non-cross-resistant therapeutics
for the treatment of brain tumors. Safety and efficacy of herpesvirus, adenovirus, vaccinia
virus, reovirus, parvovirus, poliovirus, measles virus, replicating retrovirus vector, and
Newcastle disease virus (NDV) are being investigated as monotherapies [12] or in combined
therapeutic regimes [13] in malignant glioma patients at different clinical phases.

The live attenuated measles virus (MV) vaccine strains have also been shown as
promising therapeutic agents against human malignancies [14]. Several phase I clinical
trials using the MV Edmonston-B strain have shown clinical benefits for the treatment
of ovarian cancer, GBM, mesothelioma, glioma, and breast cancer [15]. Recently, it was
reported that MV has significant anti-tumor activity against GBM and glioma stem cells
in vitro and in vivo, a sensitivity that is at least in part explained by the overexpression
of the MV receptor CD46 in brain tumor cell lines [16]. However, it is clear that elevated
CD46 expression only partly accounts for viral tropism, and the anti-viral state of the host
likely plays an important role in susceptibility to MV [17].

In the present study, the oncolytic properties of MV have been investigated in vitro
against primary GBM cells. In our study, we focused on the attenuated Russian vaccine
strain of MV, “Leningrad-16” (L-16), which has been recently evaluated as an OV against
human melanoma cells [18]. L-16 was isolated in rodent guinea-pig kidney cell culture
after 17 passages at 35–36 ◦C followed by four passages in the same cell culture at 30 ◦C
and 7 passages in Japanese quail embryo fibroblast cells at 35–36 ◦C. Such adaptation of
the L-16 strain has provided intensive viral reproduction. As Edmonston-B MV, L-16 has
an excellent safety record as a human vaccine strain [19].

To better characterize MV-induced immunological responses at a transcriptional level,
mRNA sequencing was performed to examine gene expression in infected primary GBM
cells. Possible predictive gene changes in GBM cells sensitive to L-16 MV-induced oncolysis
were determined.

2. Materials and Methods
2.1. Cell Cultures, Virus and Viral Propagation

Glioblastoma (GBM) cell lines Gbl7n, Gbl11n, Gbl12n, Gbl13n, Gbl16n, Gbl17n, Gbl24n,
and Gbl25n at early passages (6–7 passages) were established from primary tumor cells
in the N.N. Blokhin Russian Cancer Research Center from surgical resection or biopsies
of confirmed GBM cases and genetically characterized. All patients gave their informed
consent. The molecular–genetic profile of cell lines was performed using next-generation
sequencing [20]. The mutations found are summarized in Table 1. Immortalized human ep-
ithelial cells, hTERT-NKE (normal kidney epithelial cells), were obtained from the collection
of the N.N. Blokhin Russian Cancer Research Center.



Viruses 2022, 14, 2433 3 of 25

Table 1. Glioblastoma cell lines origin.

Primary Cell Line Patient (Sex, Age) Diagnosis, WHO Grade Gene Mutation

Gbl 7n ♂56 Glioblastoma (GIV) - -

Gbl 11n ♀58 Glioblastoma (GIV), primary
multiple metachronous tumors PREX2 c.778_779ins

Gbl 12n ♂57 Glioblastoma (GIII-GIV), relapse AR
ATM

c.234_239dup
c.8734A > G

Gbl 13n ♂45 Glioblastoma, relapse
PTEN

MRE11
TP53

c.T821C
c.579_582del

c.C460T

Gbl 16n ♂47 Glioblastoma, relapse
TP53
PTEN
TAF1L

c.A419G
c.A588T
c.C2746T

Gbl 17n ♂68 Glioblastoma (GIV)

PTEN
ERBB3

PIK3CG
TOP1

c.1524_1525ins
c.C2150T
c.A766T

c.533_538del
Gbl 24n ♂49 Giant cell glioblastoma (GIV) PIM1 c. * 104A > G

Gbl 25n ♀70 Glioblastoma (GIV) PTEN
TP53

c.635-1G > A
c.C263T

(*) means nucleotide position in the three prime untranslated region (3’-UTR)

The L-16 vaccine strain of MV, obtained from the collection of the I.I. Mechnikov
Research Institute for Vaccines and Sera (titer 6.2–6.3 log10 CCID50/mL), was propagated
in Vero (CCL-81, ATCC, USA) and estimated by the end-point dilution CCID50 assays in
Vero cells.

All cell lines were maintained in T25 flasks (Corning, Amsterdam, Netherlands) in the
DMEM/F12 culture medium (Thermo Fisher Scientific, Munich, Germany) supplemented
with 10 % fetal bovine serum (FBS; Thermo Fisher Scientific, Munich, Germany), 1 mM
glutamine (Thermo Fisher Scientific, Munich, Germany) and 50 µg/mL gentamicin reagent
solution (Thermo Fisher Scientific, Munich, Germany) in a humidified atmosphere under
5 % CO2 at 37 ◦C. Cultures were passaged once confluent. Cells were split with TrypLE
Express (Thermo Fisher Scientific, Munich, Germany). To assess the cell viability, a cell
suspension was supplemented with 0.2% trypan blue (Thermo Fisher Scientific, Munich,
Germany), and cells were counted in a Goryaev chamber.

To perform infection of GBM cells, 80–90 % confluent cell monolayers were washed
once with 3 mL of Hanks’ Balanced Salt Solution (HBSS, Thermo Fisher Scientific, Munich,
Germany) prior to infection. Virus stock suspension was diluted in an FBS-free culture
medium and then used to infect cells at a multiplicity of infection (MOI) of 1.0 or 0.01
infectious units per cell; cells were incubated at 32± 1 ◦C in 5 % CO2 for 3 h. Mock-infected
control cultures were processed in parallel with MV inactivated by exposure to UV light
(20,000 µJ/sm2, 20 min on ice). Following virus adsorption, the inoculum was removed, the
cell monolayers were washed three times with HBSS and cultured in DMEM/F12 medium
supplemented with 2 % FBS in an atmosphere containing 5 % CO2 at 32 ± 1 ◦C for 5–7
days. To study the virus accumulation kinetics, supernatants were collected at the indicated
time points, clarified by centrifugation at 3370× g for 10 min to remove debris, and stored
at −70 ◦C until testing. RNA samples isolated from three independently MV-infected or
mock-infected cell cultures were used for each analysis. The amount of intracellular virus
was determined by dissolving the cell pellet in 500 µL fresh medium followed by three
subsequent freeze–thaw cycles and clarified by centrifugation as described above. Virus
titers were determined by the end-point dilution CCID50 assay on Vero cells in duplicate.

For high throughput analysis, 1.0 × 106 cells were infected with MV at a MOI of 1.0
or mock-infected. Cells were lysed with 300 µL RLT buffer (RNeasy kit, Qiagen, Hilden,
Germany) in duplicates at 36 h post infection and stored at –70 ◦C until use.
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2.2. Viral and Total RNA Extraction

Viral RNA was isolated from cell culture supernatants using the QIAamp Viral RNA
Mini Kit (Qiagen, Hilden, Germany) from 140 µL of the virus-containing supernatant,
while total RNA was isolated from cell lysates in RLT buffer using the RNeasy kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instruction. Total RNA was quantified
using a NanoDrop® ND-1000 spectrophotometer (NanoDrop ND-Thermo Fisher Scientific,
Munich, Germany). RNA quality and quantity were assessed using the 2100-Bioanalyzer
(Agilent Technologies, Waldronn, Germany). RIN index (RNA integrity index) was 9.5–10.

2.3. Quantitative Reverse Transcription PCR (RT-qPCR)

Viral RNA quantification was performed using real-time RT-qPCR as described previ-
ously [21]. Thermal cycling was performed in the DT-Prime5 (DNA-Technology, Moscow,
Russia) instrument. The cycling conditions included 95 ◦C for 120 s, 45 cycles of 58 ◦C for
50 s, and 95 ◦C for 20 s.

Each sample was tested in duplicate. The output of the RT-qPCR for each sample was
the threshold cycle (Ct) value measured by the second derivative maximum method of the
instrument software. In parallel with samples a 10-fold dilution series of reference MV with
known titers (expressed in log10 CCID50/mL) was run in duplicate to construct a 4-point
calibration curve. Thus, titers for the test samples were calculated in CCID50/mL relative
to reference preparations based on the standard curve and subsequently converted to the
log10CCID50/mL values.

2.4. RNA Sequencing

Libraries for sequencing were prepared using the TruSeqRNA Library Preparation
Kit v2 (Illumina, San Diego, CA, USA). About 1–2 µg of total isolated RNA was used for
each sample. The final size of the cDNA library fragments was 400–500 bp. To accurately
determine the concentration of the obtained cDNA, quantitative PCR was used, then a
mixture of cDNA libraries of different samples was prepared in equal proportions, and the
mixed libraries were validated. Sequencing was performed on the NextSeq500 (Illumina,
San Diego, CA, USA) platform in the pair-end read mode (2 × 150 bp). There were two
runs of NextSeq500: 12 samples per run. For each sample, about 30–50 million reads
were obtained.

The derived reads were checked up with FastQC 0.11.5, trimmed with Trimmomatic
0.39 and then mapped to the human reference genome GRCh38 (Ensembl version 102 an-
notation) using STAR 2.7.5a. Read counts per gene were estimated using the featureCounts
tool from the Subread 1.6.0 package. Additionally, we ensured the absence of 3′-bias with
the geneBody_coverage script from the RSeQC 3.0.1 toolkit. Differential gene expression
analysis was performed in an R environment using the edgeR 3.28 package. Gene Ontology,
KEGG, Reactome, and WikiPathways enrichment analyses were made up with clusterPro-
filer 3.14.3 and topGO 2.38 packages. Pathway visualization was performed with pathview
1.26. GO-centric profiles were created with in-house-developed scripts.

2.5. Viability Assay

1.5 × 104 cells per well were seeded into 96-well culture plates for 12 h followed by
MV-infection using a virus-containing supernatant as described above at various MOI
values and incubated in an atmosphere containing 5% CO2 at 32 ◦C for 3–96 h. At various
times after infection, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT,
Promega, Madison, WI, USA) reagent was added at 5 µg/mL per well, and cells were
then incubated further for 3 h at 32 ± 1 ◦C in 5 % CO2. The reaction was stopped by
washing the cell monolayer and adding 60 µL dimethyl sulfoxide (DMSO, Sigma-Aldrich,
USA) solution to each well. Plates were shaken at 300 rpm for 10 min to provide for a
homogeneous dye distribution. The optical density (OD) was measured at wavelengths
of 570 and 630 nm using a microplate reader (Varioskan Flash, Thermo Fisher Scientific,
Munich, Germany). The OD for an infected cell culture in an indicating time point was
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expressed as a percentage of OD obtained for this cell culture at 3 h post-infection. Results
were described as mean values, which were measured in 12 replicates and repeated from
three independent experiments. The EC50 was defined as the inhibitory amount of virus
that reduced the absorbance of treated infected cells to 50% when compared with that of
mock-infected cells.

In parallel, at 48 h after virus inoculation, the Caspase-Glo® 3/7 reagent (Promega,
Madison, WI, USA) was added in 100 µL to each well according to the manufacturer’s
instruction. The luminescence of each sample was measured using Varioskan Flash mi-
croplate reader.

2.6. Flow Cytometry

A total of 1.0 × 105 cells were incubated with FITC-conjugated anti-human CD46
antibodies (MEM-258 clone, BioLegend, London, UK) or isotype control FITC-conjugated
mouse IgG1 (BioLegend, London, UK) in PBS containing 1.0% FBS and stained at 4 ◦C for
30 min. Then, cells were washed twice, resuspended in PBS containing 1.0% FBS and fixed
with 1 % paraformaldehyde (PFA, Sigma-Aldrich, Darmstadt, Germany) for 30 min at 4 ◦C.
Analysis by flow cytometry was performed using the EPICS XL (Beckman Coulter, Brea,
CA, USA) flow cytometer and the software SYSTEM II (Beckman Coulter, Brea, CA, USA).

2.7. ELISA

The level of TNFα, IL-6, IL-1β, and IL-10 was measured in cell culture supernatants
using the TNFα-IFA-BEST, IL6-IFA-BEST, IL1β-IFA-BEST, and IL10-IFA-BEST kits, respec-
tively, according to manufacturer’s instruction (Vector-best, Novosibirsk, Russia).

2.8. Statistical Analysis

The significance of the difference between experimental and control groups was
analyzed using a two-tailed Student’s t-test. Estimating effective doses, 50% effective
concentration (EC50), was conducted with asymptotic-based confidence intervals. Data
were expressed as mean ± standard deviation (SD). A p-value of <0.05 was considered
statically significant.

3. Results
3.1. Glioblastoma Cells Are Susceptible to the Oncolysis Induced by the MV L-16 Strain

The susceptibility of human GBM cells to virus-mediated oncolysis was tested in a
panel of eight cell lines derived from patients. To prove the origin of established cell lines,
GBM cells were preliminarily characterized by marker proteins of neuroectodermal stem
cells (Supplementary Figure S1) and mutation profiling (Table 1).

Eight human primary GBM cells (Gbl7n, Gbl11n, Gbl12n, Gbl13n, Gbl16n, Gbl17n,
Gbl24n, and Gbl25n) were infected with 10-fold serial dilutions of an L-16 strain of MV
and the infection was followed through 96 h to analyze elimination of tumor cells. Im-
mortalized human non-tumor kidney epithelial hTERT-NKE (NKE) cells were used as a
control to determine virus specificity for GBM cells. NKE cells were chosen due to the rapid
proliferative rate such as doubling time was comparable to that of the majority of GBM
cells used in this study.

The cytopathic effects (CPE) in MV infected GBM cells were visible at 48–72 h post-
infection (h.p.i.) representing the granulation in the cytoplasm, rounding and progressive
detachment of cells. The distinctive MV-induced CPE was detectable in all GBM cell lines
but not in non-tumor NKE cells. The CPE correlated with a used MOI, becoming more
obvious over time (Figure 1). It should be noted that the Gbl12n cell line, with much slower
CPE development induced by MV infection (as these cells were not resistant to mumps
virus induced oncolysis), differs from other used GBM cell lines with much slower growth
(longer doubling time).
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to be susceptible to MV oncolysis at MOIs of 1.0 to 0.001 (p < 0.001), with a Gbl25n being 
the most susceptible even at a MOI of 0.00001. Thus, at 96 hrs after infection of Gbl7n; 
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Figure 1. Cytopathic effect of MV (strain L-16) on Gbl7n, Gbl11n, Gbl13n, Gbl16n, Gbl17n, Gbl24n,
and Gbl25n cells. The figure shows photographs of cell lines at 48 h.p.i. at an MOI 1.0; control cells
were incubated with UV-inactivated virus. Magnification 10×.

Cell survival was assessed by measuring the mitochondrial activity using the MTT
assay and expressed in percentage for an indicated time point during 96 h experiment
(Figure 2). The GBM cell lines showed a broad range of sensitivities to MV-induced
oncolysis. Four out of eight GBM cell lines, Gbl7n; Gbl11n; Gbl16n; and Gbl25n, were
shown to be susceptible to MV oncolysis at MOIs of 1.0 to 0.001 (p < 0.001), with a Gbl25n
being the most susceptible even at a MOI of 0.00001. Thus, at 96 h after infection of Gbl7n;
Gbl11n; Gbl16n; and Gbl25n cell lines, a proportion of reminding viable cells composed
from 15.4; 18.2; 14.3; and 12.0 % at a MOI of 1.0 to 43.6; 41.4; 29.0; and 16.6 % at a MOI of
0.001, respectively, relative to the corresponding uninfected cell line. Three GBM cell lines,
Gbl13n; Gbl17n; and Gbl24n, were relatively susceptible at MOI of 1.0 to 0.001 (p < 0.01): a
proportion of reminding viable cells composed of 21.9; 30.5; and 44.5 % at a MOI of 1.0 and
62.7, 67.9, and 59.9 % at a MOI of 0.001, respectively. Consistent with the lack of visible CPE
development, the cytotoxic effect of the MV-infection was least pronounced for Gbl12n
and did not reach statistical significance (p > 0.05); the pattern of reminding viable cells in
the dose–response curve for the Gbl12n was similar to the NKE cells used as the control
(Figure 2) line and composed of 70.3 and 79.3 % at a MOI of 1.0 and 83.6 and 93.4 % at a
MOI of 0.01, respectively, at 96 h post infection.
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Figure 2. Oncolytic activity of MV strain L-16 against human GBM cell lines at 72 and 96 h.p.i. The
viability of each cell line infected with MV at an MOI indicated on horizontal axes was measured
using an MTT assay; cells treated with UV-inactivated MV were used as control. The data shown
are mean results from three independent experiments. Horizontal axis represents the % of viability
of treated cells at indicated time points; cell viability at 3 h.p.i. is taken as 100%. Bars demonstrate
standard deviation (SD); calculated p-values (MV infected NKE versus MV infected GBM cells) are
shown. Average CV composed from 0.41% to 15.63%.

Using obtained cell viability dose–response curves, the EC50 dilution of MV for each
cell line was calculated with high statistical reliability (R2 > 0.97), indicating EC50 dilution
of input MV as 2.60; 2.18; 1.37; and 0.56 log10 CCID50/mL for Gbl7n; Gbl11n; Gbl16n;
and Gbl25n cell lines, respectively; 4.11; 4.36; and 4.7 log10 CCID50/mL—Gbl13n; Gbl17n;
and Gbl24n cell lines, respectively; while for Gbl12n and NKE cell lines it was >6.2 log10
CCID50/mL.
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Analysis of the activity of proapoptotic caspases in MV-infected cells revealed a
significant increase in the activity of caspase 3 and 7 (p < 0.05) in all GBM cell lines at
48 h.p.i., including Gbl12n (Figure 3). To control the induction of caspases’ activity, human
fetal fibroblasts, MRC-5, were used as these cells are permissive to vaccine strains of the
MV, including L-16. As expected, activation of caspases three and seven were observed
for these control cells. These results demonstrate that caspases activate in all GBM cells in
response to MV infection. The highest values of the caspases’ activity were observed in
Gbl7n, Gbl11n, Gbl16n, and Gbl25n cells, while in Gbl13n, Gbl17n, and Gbl24n the caspases’
activation was lower, with Gbl12n showing minimal caspases’ activation which, in turn,
showed resistance to MV-induced CPE and oncolysis. Thus, the caspase-3 and -7 activation
profiles correlated with MTT results.
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Figure 3. Caspase-3 and -7 activity induction in MV infected GBM cells and MRC-5 control cells.
GBM or MRC-5 cells were infected with MV at a MOI of 1.0, and the level of caspases’ activity was
measured and expressed as a percentage of the difference between mock-infected and MV-infected
GBM cells. The data shown are mean results from three independent experiments. Bars demonstrate
SD, calculated p-values (mock-infected versus MV-infected) are shown.

3.2. MV L-16 Strain Replicates in Human Glioblastoma Cells

Since it has been shown that different GBM cells varied in viral oncolysis observed,
the cells were infected with MV at a MOI of 0.1 and both intracellular MV replication
and extracellular viral RNA accumulation were measured by real-time RT-qPCR. It was
observed that overall the efficiency of viral RNA replication in all cell lines tested correlated
with the kinetics of reduction of cell viability. Viral RNAs accumulated within 96 h of
cultivating period both in the supernatants (Figure 4) and lysates (Figure 5) of infected
cell lines. In supernatants, the MV titer significantly increased up to 72 h.p.i. for Gbl11n,
Gbl17n, and Gbl25n cells after which plateau levels were reached. For Gbl13n and Gbl16n
cell lines, titers continued to grow during the course of the experiment reaching the highest
values at 96 h.p.i. Titers in supernatants of infected Gbl12n cells remained almost constant
during the observation period and no virus replication was observed for control NKE cells.
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Figure 4. MV RNA accumulates in supernatants of infected GBM cells. GBM and NKE cells were
infected with MV at a MOI of 0.1 and viral RNA released to the supernatants was quantified. Data
shown represent the mean of three independent experiments and expressed in CCID50/mL calculated
relative to the calibrator sample with known titer. Error bands indicate SD.
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Figure 5. MV RNAs accumulate in infected GBM cells. GBM and NKE cells were infected with MV
at a MOI of 0.1 and virus RNAs were quantified in cell lysates using the RT-qPCR method. The
data shown are representative of three independent experiments. Vertical axes show fold change
FC; average values of threshold cycles (Ct) for MV intracellular RNA obtained for each sample
normalized to average Ct values for house-keeping genes: GAPDH and ACTB, measured for the
same sample in parallel (∆Ct)). The calculation was performed relatively to normalized Ct values for
the respective mock-infected cell culture 3 h.p.i. (∆∆Ct). Data represent the FC values between the
level of MV RNA expression for MV-infected (∆∆Ct(+)) and mock-infected (∆∆Ct(−)) cell lines for
each time point. Error bands indicate SD.

Similar trends were observed for amounts of viral RNA in cell lysates: RNA amounts
hugely increased during the course of infection for all used GBM cell lines, except for the
Gbl12n cell line where only a minimal increase was observed. It should also be noted that
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the lowest values of the virus titer and viral RNA concentration were observed for the
Gbl12n and Gbl24n cell cultures.

Taken together, obtained data indicates that all our GBM cell lines were permissive
for MV infection. This contrasts to the NKE cell line for which a decrease of viral RNA
concentration both in supernatants and cell lysates was observed indicating that these cells
are resistant to MV infection.

To investigate if GBM cells are synchronously infected, specifically if cell popula-
tions are infected to the same level across all GBM cell used, the infectious virus yield
from infected GBM cells were examined using the end-point dilution CCID50 assay at
18 and 72 h.p.i. Similar rates of primary infection were observed for Gbl11n, Gbl13n, and
Gbl16n cells infected with different MOIs, 1749.48 CCID50/mL, 1106.63 CCID50/mL, and
1231.73 CCID50/mL, respectively. The MV infection of Gbl12n, Gbl24n, and Gbl25n cells
produced slightly lower viral titers, 906.77 CCID50/mL, 645.65 CCID50/mL, and 561.68
CCID50/mL, respectively; while Gbl7n cells showed the highest titer at 18 h.p.i., 3633.75
CCID50/mL, and Gbl17n cells—the lowest, 346.52 CCID50/mL, (Figure 6). Titer growth
at 72 h.p.i. showed that MV effectively replicates in GBM cells, except for Gbl12n. The
highest titers at this time point were reached for Gbl7n, Gbl11n, and Gbl25n cells—5.93,
5.11 and 5.27 log10CCID50/mL respectively, while the lowest titers were observed for
Gbl12n, Gbl17n, and Gbl24n cells, 3.05, 3.56 and 4.34 log10CCID50/mL respectively, in
agreement with MV RNA replication patterns.
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Figure 6. GBM cell-associated MV titers at 18 and 72 h p.i. GBM and NKE cells were infected with
MV at a MOI of 0.1 and virus titers were determined by the end-point dilution CCID50 assay on Vero
cells in duplicate. Error bands indicate SD. Vertical axes expressed in logarithmic scale.

Together, these data indicate that differences in viral replication in GBM cells are not
caused by differences in viral entry but rather are due to subsequent inhibition of MV
replication.

3.3. Human Glioblastoma Cells Express the MV Receptor

Although there are several receptors required for the attachment of MV to host cells,
previous studies have identified CD46 as playing a key role for the MV L-16 [18]. Fur-
thermore, CD46 molecules playing the role of the receptor for attenuated strains of MV
are known to be upregulated on the surface of tumor cells [22]. As the presence of CD46
molecules may affect the efficiency of MV-induced oncolysis, the expression level of CD46
on the surface of GBM and NKE cell lines was measured by flow cytometry. The expression
of CD46 was detected on a surface of approximately 30 % to 96 % of GBM cells and nearly
all NKE cells (Figure 7). However, the level of CD46 expression determining by relative
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mean fluorescence intensity was 1.5–3.5 times higher for GBM cells compared to NKE cells,
except for Gbl17n cells with the lowest CD46 expression and Gbl24n cells with comparable
CD46 expression. Thus, no significant correlation between different sensitivity of cell lines
toward MV oncolysis and expression of CD46 was observed (compare Figures 2 and 7)
suggesting that CD46 expression was necessary but did not play a role as a key factor
of MV selectivity to GBM cells. Thus, other factors should be implicated in the different
sensitivity of GBM cell lines to MV oncolysis.
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Figure 7. Expression of the CD46 receptor at the surface of glioblastoma cells and NKE as measured
by flow cytometry. A total of 1.0 × 105 cells were incubated with a FITC-conjugated anti-human
CD46 antibodies and analyzed using the EPICS XL (Beckman Coulter) flow cytometer for expression
levels of CD46 by determining mean fluorescence intensity (MFI) normalized to isotype control
using the SYSTEM II software (Beckman Coulter). Data shown are mean results from three separate
experiments; bars demonstrate SD. Shaded histograms represent isotype control staining; solid line
histograms represent CD46 staining.
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3.4. Transcriptome Analysis in MV-Infected Glioblastoma Cells Reveals Type I Interferon
Pathway Activation

As other studies have previously reported that many cancer cells are defective in type
I interferon (IFN) signaling [23], the whole transcriptome analysis was performed for GBM
cell lines. In order to insure a relatively high number of infected GBM cells and avoid
asynchronous infection due to spreading viral progeny, cells were infected at a MOI of 1.0
and analysis of host cell transcription was performed at 36 h.p.i. to avoid multiple viral
life cycles.

First, the obtained data on MV-infected and mock-infected GBM cells were compared
to each other and between different GBM cell lines to study the responses to MV infections
and to determine the relative modulation of cellular transcription induced by MV infection.
When comparing pools of MV-infected and non-infected GBM cells, a total of 1196 genes
demonstrated statistically significant differential expression (FDR < 0.05) with at least a
two-fold expression level change. Most of them (859 genes) were upregulated, and only 337
were downregulated in MV-infected cells. As seen in Figure 8, genes that are upregulated
in MV-infected cells have very high expression levels (see the “CPM rank” column in
Figure 8).

Multidimensional scaling (MDS) analysis based on correlation of gene expression
among samples (distance was calculated as “1—Pearson correlation coefficient” for log-
transformed gene expression values, i.e., CPMs) for top-500 variable genes ensured that
the biological variability of individual cell lines did not overcome the differences between
groups (MV-infected, mock-infected control) to compare, which was completely described
with dimension 2 (see MDS plot on Figure 9). Hierarchical clustering revealed the similarity
among the commonly changed genes. Gbl12n and Gbl24n cells, mock-infected as well
as infected, were clustering relatively close. Another clustering group was composed of
Gbl7n and Gbl11n cells. Furthermore, all PTEN-mutated cells: Gbl13n, Gbl16n, Gbl17n,
and Gbl25n, mock-infected as well as MV-infected, were clustering together on the one side
of the MDS plot. Among this group of TP53-mutated cells, Gbl13n, Gbl16n, and Gbl25n
were sub-clustering relatively closer. In all GBM cells, MV infection shortened the distance
between groups.
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Figure 8. Top 25 upregulated (A) and downregulated (B) genes in MV-infected GBM cells compared
to the mock-infected control ones. CPM tank (%)—position of a gene (0 . . . 100) in a list of all genes
sorted by average expression level (read counts per million). LogFC—binary logarithm of expression
level fold change. QLF—quasi-likelihood F-test. Mann–Wh.—non-parametric Mann–Whitney U-test.
Control, MV-infected—mini heatmaps illustrating per-sample gene expression profiles normalized to
the average value (geometric mean) across all samples, per each gene (blue-to-red color logarithmic
scale; from 16-fold downregulated to 16-fold upregulated relative to the average values).
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Figure 9. Multidimensional scaling (MDS) plot describing differences in gene expression profiles
between MV-infected (orange) and control (blue) GBM cell lines. K—mock-infected GBM cells;
L—MV-infected GBM cells. The numbers in brackets denotes the percentage of variance explained.
Thus, the split on the basis of virus infection falls on the 2nd dimension. The 1st dimension split cell
lines on the basis of the presence of mutations in the PTEN gene (or both the PTEN and TP53 genes).
Thus, cell lines carrying mutations in these genes (Gbl13n, Gbl16n, Gbl17n, and Gbl25n) appeared on
the right.
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In general, the cellular response to infection in different cell lines (including sensitive
and resistant ones) was very similar in a variety of biological processes and pathways.
Overall, the main difference was revealed in the amplitude of these changes. Cardinal
differences in gene expression profiles between cell lines were noted only in individual
cellular pathways.

Next, we performed GO terms, KEGG, Reactome, and WikiPathways enrichment
analyses for lists of the top 50, 100, 200, and 500 differentially expressed genes (DEGs)
(Figures 10 and 11, and summarized in Figure 12). As expected, we found a variety of
immune system-related processes enriched with upregulated genes: immune response (IR),
including IR to a virus, innate IR, production of interferon-α/β/γ (incl. DDX58/IFIH1-
mediated), and response to interferons, RIG-I, TLR, and NF-κB (incl. TRAF6-mediated)
pathways, cytokine production and response to cytokines, cellular response to a virus,
inflammatory response, production of TNF and response to TNFs, viral replication. The
spectrum of enriched pathways for downregulated DEGs was less focused. Downregula-
tion has been established for genes involved in dozens of metabolic processes, endocytosis,
regulation of transcription, and mRNA splicing.
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Figure 10. Relative gene expression profiles for genes participating in KEGG pathways that are
mostly affected by MV infection, as well as several additional pathways. In each cell, there are shown
sorted gene expression fold changes, from most upregulated (red) to downregulated (blue). Gene
expression values are log2-transformed. In each cell, vertical axis limits are a four-fold increase (red)
to a four-fold expression level decrease (blue). The cell borders demonstrate gene set enrichment
p-value.
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The GO terms involved in cellular defense mechanisms to the virus were the most en-
riched in all infected cells. IFNB1, IFNL1, IFNL2, IFNL3, RSAD2, OASL, IFIT1, IFIT2, IFIT3,
HERC5, MX1, OAS1, IFITM1, IFIH1, DDX58, MMP12, ADAR, and other IFN and immune re-
sponse genes were among the most upregulated genes participating in GO term GO:0051607
(defense response to the virus). Furthermore, constitutive activation of the type I IFN sig-
naling was the second most differentially activated pathway (GO:0060337). Among the
total identified 73 IFN response genes in the genome, the same genes cited above were the
most upregulated. Downregulated genes included RNASEL, ABCE1, PTPN11, MAVS, and
CNOT7. Negative regulation of viral genome replication (GO:0045071) was also highlighted
including the most upregulated genes such as IFIT5, EIF2AK2, APOBEC3G, APOBEC3F,
and others. Downregulated genes included PRKN, EIF2AK4, RNASEL, APOBEC3C, BANF1,
and MAVS (Supplementary Table S1).

However, cell lines responded to MV-infection with several notable differences. We
observed that Gbl7n, Gbl11n, Gbl13n, Gbl16n, Gbl17n, Gbl24n, and Gbl25n lacked expres-
sion of several key factors of immune defense against MV-infection: Gbl25n—IFNB1 and,
thus, a wild spectrum of ISGs; Gbl11n—IFNL2 and IFNL3 (and also exhibited a low level
of IFNB1 expression); Gbl24n—MX2; Gbl13n—CGAS and TLR3; Gbl17n—TLR2, PLCG2
and IRF5; Gbl7n—TRIM29 and RAET1L; Gbl16n—EDA2R and CYBA; while Gbl12n (which
was the most resistant to oncolysis by MV-infection) did not express sphingosine kinase 1
receptor 3 necessary to MV replication [24] (Figure 13).
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Figure 13. Mini heatmap (blue-to-red color logarithmic scale; from 16-fold downregulated to 16-fold
upregulated relative to the average values) illustrating gene expression level in MV-infected GBM
cells normalized to the average value (geometric mean). CPM tank (%)—position of a gene (0 . . . 100)
in a list of all genes sorted by average expression level (read counts per million). LogFC—binary
logarithm of expression level fold change.

Then, to identify factors that determine susceptibility to MV, the correlation between
gene expression patterns in uninfected cells and the efficiency of MV infection was per-
formed by ranking cells according to the rate of primary infection as presented in Figure 6
(range of columns at 18 h.p.i.). The analysis of a list of all genes sorted by expression level
in ranked cell lines by MV entry allowed us to identify genes with the highest coefficient of
correlation (r) that could determine and predict sensitivity to the virus (Figure 14). Such
potential genes were ADAMTS12, MME, JAK1, MMPs, ABCE1, SPHK1, and others that
could facilitate MV entry.
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Figure 14. 20 most remarkable genes whose expression in uninfected cells is associated with the
efficiency of subsequent MV infection. * LogFC—binary logarithm of expression level fold change.
Fold change is calculated by the slope of the line approximating the dependence of the expression of
a particular gene on the MV infection efficiency across different cell lines. In the “ideal” case, when
all the points of this dependence lie on the straight line, fold change is calculated as the ratio of the
expression level in the cell line with the highest infection efficiency (Gbl7n) to the expression level in
the cell line with the lowest efficiency (Gbl17n). QLF—quasi-likelihood F-test. Relative Expression
level —mini heatmaps illustrating per-sample gene expression profiles normalized to the average
value (geometric mean) across all samples, per each gene (blue-to-red color logarithmic scale; from
16-fold downregulated to 16-fold upregulated relative to the average values).

In order to identify candidate genes that may control the susceptibility of GBM cells
to MV L-16 infection and oncolysis, transcriptional profiles between sensitive cells and
resistant cell lines were compared. The GO terms analysis of sensitive cells and resistant
Gbl12n cell lines allowed us to identify ADGRF5 as the most upregulated gene and MMP3
as the most downregulated differentially affected gene (Figure 15). Furthermore, a closer
look at the MMP’s expression profile revealed that the most abundant transcripts in infected
GBM cells were MMP1, MMP2, MMP3, and MMP14, while the MMP3 expression level
correlated with sensitivity to MV-induced oncolysis in all cell line tested (particularly
in Gbl12n it was not detected) highlighting the potential role of MMPs in productive
replication of MV L-16 (Figure 16).

Altogether, these results prove that GBM cell lines respond to MV-infection by changes
in their transcriptomic response and response to virus infection is also observed in cells
that failed to produce IFN-I, such as Gbl25n cells.

We observed diversity among GBM cells in regard to their ability to express and
respond to type I IFN pathway induction indicating the difference in the response to MV
infection by all GBM cell lines tested. However, none of these cell lines displayed induction
of the total gene set necessary for effective and complete inhibition of virus replication.
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3.5. GBM Cells Release Inflammatory Cytokines after Infection with MV L-16

Cytokines may play a critical role in contributing to the complexity and lethality of
GBM. Cytokines expressed by GBM cells may have a wide variety of influences including
tumor cell invasion, proliferation, migration, neoangiogenesis, and immune cell infiltration.
While some cytokines may support tumor growth, others may inhibit it, and some may
have dual functions.

As shown above, the GO term analysis revealed that biological processes involved in
cytokine production, regulation, and processing are enriched in MV-infected GBM cells.
To verify the up-regulation of the cytokine production on the protein level, supernatants
collected from cells infected with varying MOI of MV were analyzed by ELISA for the
presence of pro- and anti-inflammatory cytokines—TNFα, IL-1β, IL-6, and IL-10at 48 h p.i.
(Figure 17).
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Figure 17. Products of pro- and anti-inflammatory cytokines by GBM cells. The supernatants of
MV-infected and mock-infected cells were collected 48 h p.i. The levels of TNFα, IL-1β, IL-10, and
IL6 were determined by the ELISA. Columns represent the average values of three independent
experiments; error bands indicate SD.

Among nine cell lines tested, Gbl13n, Gbl16n, Gbl17n, and Gbl25n cells produced a
tumor necrosis factor, TNFα, at a significant level in response to MV infection, while no
constitutive production was detected. TNFα is known to have dual effects on the tumor
microenvironment. The antitumor effects of TNFα include its ability to stimulate T-cell
growth and enhance monocyte, granulocyte, and natural killer cell cytotoxicity, at the same
time TNFα secretion leads to the promotion of glioma formation and development through
angiogenesis [25]. All GBM cells, except for Gbl17n, responded to MV-infection with IL-1β
production, although the level of production displayed large variation: the level in Gbl7n,
Gbl11n, Gbl13n, Gbl16n, and Gbl25n cells were 10-fold higher than in Gbl12n, and Gbl24n.
Consistent with data from transcriptome analysis Gbl7n, Gbl11n, Gbl13n, Gbl17n, and
Gbl25n cells also largely expressed IL-6 pro-inflammatory cytokine in response to MV,
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while the infection exerted significantly lower levels of IL-6 production in Gbl12n, Gbl16n,
and Gbl24n cells. In addition, a constitutive IL-6 production in Gbl7n, Gbl11n, and Gbl13n
was also observed. Finally, for Gbl13n and Gbl25n cell lines, the high levels of production
of anti-inflammatory cytokine IL-10, a well-known regulator of the activity of NF-κB and
the JAK-STAT signaling pathway, were detected. Interestingly, the infection of the Gbl12n
cells reduced IL-10 release relative to uninfected cells. In contrast to GBM cells, no cytokine
production was observed in NKE cells in response to MV-infection.

Taken together, all analyzed GBM cells responded to the MV infection with cytokine
production. The cytokine production correlated with the corresponding gene expression
level. However, as for the transcriptome analysis, no common pattern of cytokine produc-
tion in GBM cells was revealed.

4. Discussion

GBM is the deadliest form of brain cancer, with a median survival of less than 2 years
despite surgical resection, radiation, and chemotherapy. GBM’s rapid progression, re-
sistance to therapy, and inexorable recurrence have been attributed to several factors,
including its rapid growth rate, its molecular heterogeneity, its propensity to infiltrate vital
brain structures, the regenerative capacity of treatment-resistant CSMs, and challenges
in achieving high concentrations of chemotherapeutic agents in the central nervous sys-
tem [26]. Immunotherapy is being actively pursued for GBM because of its potential to
overcome the challenges. OVs can overcome the immunosuppressive microenvironment of
tumors due to durable responses elicited by the introduction of high-quality neoantigens.
Thus, live attenuated MV vaccine strains have recently been shown as promising therapeu-
tic agents against human malignant cells. Previous studies using the Edmonston-B strain
of MV have evidenced clinical benefits for the treatment of GBM [27].

In this study, the oncolytic potential of the Russian vaccine strain of MV, L-16, was
investigated against human GBM cells. Eight primary GBM cell lines were established
and preliminarily characterized: half of these carried mutations in the TP53 gene, while
three (Gbl13n, Gbl16n, and Gbl25n) carried mutations both in TP53 and PTEN genes. These
defects are typical for GMB cells as tumor suppressor genes, such as genes encoding for p53,
p21, p16, and PTEN are commonly mutated in GBMs [28]. A previous study described that
human GBM stem cells with patient-specific p53 mutants and p53-Ser15 phosphorylation
are selective targets for parvovirus [29]. Another study assessed the viral permissiveness
of myeloma cells to the oncolytic MV in relation to TP53 status. It was shown that the
p53 pathway regulated CD46 expression and viral infection in primary myeloma cells,
highlighting an increased sensitivity in p53-deficient cells. However, the correlation was
not strict, suggesting that additional regulations are involved in viral sensitivity [30]. We
demonstrated that almost all these established GBM cell lines, p53-deficient as well as
p53-competent, were susceptible to productive infection by MV; the only exception was
Gbl12n, which was considered largely resistant to MV infection. It should be noted that the
same cell line was characterized by a slow proliferating rate while other GBM cell lines had
doubling times comparable with the control cell line.

Despite the different history of cell culture adaptation of wild-type MVs, the L-16 strain,
similar to the MV Edmonston-B strain, preferentially uses CD46 as an attachment receptor.
Furthermore, the hyperexpression of the CD46 on the surface of tumor cells allows the MV
to selectively infect and lyse the tumor [22]. All GBM cell lines tested expressed CD46, as did
non-tumor cell lines. Though some variation of CD46 expression was observed, our data
indicate that the CD46 receptor expression is an important but not essential mechanism,
and other factors should contribute to the varied effects observed upon MV infection.
Thus, tumor-related abnormalities in the regulation of mRNA translation suppressing
IFN-induced inhibition of cell proliferation and apoptotic signaling could also facilitate
selective replication of viruses in tumor cells [31].

In other studies, the presence of an intact type I IFN-response pathway in patient tumor
samples was shown to correlate strongly with the suppression of MV replication in these
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cells. The type-I IFN gene expression level observed in the healthy cells and primary tumor
cells resistant to virus-mediated oncolysis indicated that the cell that retained functional
antiviral type-I IFN pathways are capable of suppressing the replication of MV. In contrast,
cells sensitive to MV infection have been found to be defective in these pathways [32–35].
Thus, in this study, post-entry events in GBM cells in response to viral infection with MV
strain L-16 were analyzed by RNA-sequencing in an attempt to determine genes mediating
the sensitivity of GBM cells to oncolytic MV.

Transcriptome analysis by RNA-sequencing provides a valuable tool to comprehen-
sively examine and identify pathways that are affected by virus infection. Analyzing
gene expression in response to MV infection in GBM cells by transcriptome analysis, we
also demonstrated that, despite the induction of IFN-β gene expression and interferon-
stimulated genes (ISGs), GBM cell lines were still permissive for MV infection, albeit their
sensitivity to MV induced oncolysis was different.

Furthermore, the significantly differentially expressed genes between treated and
untreated GBM cells were subjected to pathway enrichment analyses. The significant
groups with numerous genes for the GO biological processes annotation were identified,
such as defense response to a virus, constitutive activation of the type-I IFN singling,
negative regulation of viral genome replication, and other processes. Comparing up- and
downregulated genes in the infected and uninfected GBM cells using GO term analysis
allows us to identify differences in biological processes and pathways between sensitive
and resistant cells providing new insights into the molecular mechanisms involved. Overall,
our data showed that glioblastoma cells varied in regard to their ability to produce and
respond to type I IFN.

Previous transcriptional profiling analysis following MV infection of primary hu-
man GBM cells, as well as control cell lines, revealed that MV induces a robust IFN-
stimulated gene response. Furthermore, these studies allowed us to identify defects in IFN
response responsible for the sensitivity of these cells to MV infection, such as IFITM1 and
RSAD2 [34–37], as well as the correlation of effective paramyxoviral reproduction with a
high abundance of ABCE1 [38]. Other studies reported the frequent homozygous deletions
of type-I IFN genes (IFN-β and IFN-α) responsible for cancer cell sensitivity to oncolytic
MV [39]. However, in our study, we observed a completely reversed landscape of transcript
expression: mRNAs of IFITM1, RSAD2, and IFNB1 genes were well presented almost in
all GBM cells studied, except for Gbl25n defective for type I IFNs and subsequent ISGs
(Supplementary Table S2). These differences could rely on the use of distinct remote strains
of MV.

To identify factors that determine susceptibility to MV the correlation between the
efficiency of MV infection and gene expression patterns in uninfected cells was performed
by ranking these cells according to the rate of primary infection. The analysis of the list
of genes in ranked cells by MV entry allowed us to identify genes that could potentially
determine and predict sensitivity to the virus. Among such genes were MME, ABCE1,
MMP11, MMP9, MMP1, JAK1, SPHK1, and others playing role in MV infection as reported
above. Interestingly, MME, MMP2, MMP3, MMP7, MMP12, ADAM9, and ADAM12 were
known to be upregulated in radioresistant GBMs, while sphingosine kinase 1 (SPHK1)
phosphorylates sphingosine to produce sphingosine-1-phosphate, which promotes GBM
invasiveness [40] and, on the other hand, overexpression of sphingosine kinase 1 enhances
MV replication [41]. Additionally, such a study allowed us to reveal the importance of
ABCE1 in MV entry. Together, we hypothesize that multiple factors differentially expressed
in non-tumor and tumor cells could contribute to efficient MV replication in GBM cells.

Furthermore, the GO terms analysis of sensitive cells and resistant Gbl12n cell lines
allowed us to identify the MMP3 gene as the most significantly differentially regulated
gene. MMP3 is a generally upregulated gene; however, in Gbl12n cells, its expression
was absent in response to MV infection. In previous studies, it was shown that the fusion
protein of MV can be selectively activated by tumor-secreted MMPs [42]. As mentioned
above, tumor cells can be characterized by the expression of specific proteins, such as CD46
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molecules, and their invasive growth is facilitated by tumor-specific proteases. MMPs are
overexpressed in a wide variety of human tumors to facilitate the invasive growth of the
tumor by degrading the extracellular matrix surrounding the tumor nodules. Multiple
MMP family members, such as collagenase 1 (MMP-1), gelatinase A (MMP-2), gelatinase
B (MMP-9), matrilysin (MMP-7), and membrane-type (MT)-MMPs, have been correlated
with tumor progression such as the formation of metastasis and bad prognosis [43,44].
There is ample evidence suggesting a correlation between specific MMPs and glioma
progression [45]. Thus, oncolytic MV takes advantage of these properties by rendering
proteolytic activation of the fusion protein by specific tumor-associated proteases. A
previous study underlined the clinical potency of the MMP activation concept, particularly
MMP-2, as a strategy to generate safer oncolytic viruses for the treatment of primary and
secondary liver cancers [46] and GBM without loss of potency [47]. However, different
strains may require different tumor-associated MMPs for MV activation.

Thus, our data demonstrate innate variations in IFN response antiviral defense mech-
anisms within tumors that can have a statistically and biologically significant impact on
MV replication. Therefore, our pilot study indicating the effective elimination of primary
GBM cells by L-16 of MV in vitro could contribute to the development of approaches for
the treatment of GBM based on the L-16 strain as a platform for further engineering and
could complement the currently available approaches to drug therapy due to the selectivity
of viral infection and spreading in tumor tissue with minimal toxic effects on surrounding
normal cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112433/s1, Table S1: GO Terms (BP) topGO enrichment; Table
S2: DE results, Log.rel.CPM profiles-Resist vs Sensit [L16]; Figure S1: Immunofluorescence analysis
of Gbl11n (upper panels), Gbl13n (middle panels), and Gbl24n (lower panels) cells. a—staining for
nestin, b—nuclei counterstained with DAPI, c—merge. Scale bar—10 µM. 7 × 104 cells were seeded
into a cell culture dish (d = 10 cm) with glass slides in 1 mL of medium and incubated in at 37 ◦C
with 5% CO2 overnight. Thereafter the culture medium was discarded and cells were washed twice
with ice-cold PBS. Then 1 mL pre-cooled paraformaldehyde (4%) was added to the glass slides and
kept for 10 min at 4 ◦C to fix the cells. Next, cells were permeabilized by treatment with 0.25% Triton
X-100 for 5–10 min at room temperature. In the next stage, nestin antibody (Abcam, UK) was diluted
in PBS at a 1:50 dilution rate and added dropwise to the cells. The glass slides were then incubated
for 1h in dark at room temperature, then washed three times with PBS. Next, secondary antibody
was added after being diluted with PBS at a 1:600 dilution rate, incubated for 45 min in dark at room
temperature. Glass slides were placed on a microscope slide and sealed with elvanol. The sealed
samples were kept overnight in dark at room temperature, and then their images were taken using a
fluorescence microscope (Zeiss Axioplan 2, Switzerland). The immunofluorescence intensity for all
groups was measured using ImageJ software.
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