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Abstract: The Japanese encephalitis virus (JEV) is the most common cause of neurodegenerative
disease in Southeast Asia and the Western Pacific region; approximately 1.15 billion people are
at risk, and thousands suffer from permanent neurological disorders across Asian countries, with
10–15 thousand people dying each year. JEV crosses the blood-brain barrier (BBB) and forms a
complex with receptors on the surface of neurons. GRP78, Src, TLR7, caveolin-1, and dopamine
receptor D2 are involved in JEV binding and entry into the neurons, and these receptors also play
a role in carcinogenic activity in cells. JEV binds to GRP78, a member of the HSP70 overexpressed
on malignant cells to enter neurons, indicating a higher chance of JEV infection in cancer patients.
However, JEV enters human brain microvascular endothelial cells via an endocytic pathway mediated
by caveolae and the ezrin protein and also targets dopamine-rich areas for infection of the midbrain
via altering dopamine levels. In addition, JEV complexed with CLEC5A receptor of macrophage
cells is involved in the breakdown of the BBB and central nervous system (CNS) inflammation.
CLEC5A-mediated infection is also responsible for the influx of cytokines into the CNS. In this review,
we discuss the neuronal and macrophage surface receptors involved in neuronal death.

Keywords: autoimmune encephalitis; BBB permeability; CNS; Japanese encephalitis virus;
neurodegeneration; proinflammatory mediators

1. Introduction

Japanese encephalitis virus (JEV) is a zoonotic, neurotropic virus belonging to the
family Flaviviridae. Japanese encephalitis (JE) is characterized by capacious inflammation
of the central nervous system (CNS) followed by the disruption of the blood-brain barrier
(BBB). JE was first recognized in horses and humans back in the 19th century. A high
rate of mortality and severe psychiatric and neurological sequelae among the surviving
population contribute to the dreadfulness of the disease. In South-East Asia and Western
Pacific countries, JE-mediated fatalities are a matter of serious concern regarding public
health [1]. JEV is transmitted in humans mainly through Culex mosquitoes. Interestingly,
the direct human-to-human transmission does not take place, while many domestic animals
and migratory birds play as host pools for JEV. The possibility of JEV spreading to new
geographical locations is immensely high with the increasing mosquito habitat as a result
of global warming.
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JEV is an enveloped virus containing ssRNA as its genomic material. The genome
codes for a single polyprotein that cleaves into three structural proteins. They, in turn,
act as precursors for membrane proteins and seven non-structural proteins (NSPs). The E
protein is the main target to neutralize antibodies, containing the cellular receptor binding
sites and the fusion peptide. Neuroinflammation, vasculitis, and neuronal degeneration are
commonly associated with JEV infection [2]. Occludin, a key member of the tight junction
complex of BBB, is very sensitive to inflammatory modulations and oxidative stress [3].
JEV also affects brain microvascular endothelial cells (BMECs), indirectly influencing the
downregulation of expressions of claudin 3 and 5. JEV can replicate within glial cells,
facilitating the release of soluble mediators that add to the damage to claudin 5 and zonula
occludens 1. Proinflammatory cytokines and/or chemokines also play significant roles in
altering BBB permeability during JE. Release of interleukin 6 (IL-6), vascular endothelial
growth factor (VEGF), and matrix metalloproteinases (MMPs) from astrocytes and pericytes
are triggered by JEV infection [4]. Clinically, JE-mediated mortalities can be linked with high
viral titers within the brain, elevated levels of inflammatory cytokines and chemokines, and
disruption of BBB [5]. However, the scientific community is yet to arrive at a unanimous
decision on whether BBB disruption is a prerequisite or a consequence of JEV infection.
The present article aims to evaluate and summarize the molecular mechanisms involved
with JEV infection, and its influence on CNS abnormalities, with an emphasis on neuronal
and macrophage surface receptors involved in neuronal death.

2. Epidemiology

In the 1870s, the first JE patient displayed neurological impairments as a result of
a flavivirus infection, which belongs to the Flaviviridae family [6,7]. The patient’s brain
sample exhibited neuronal degeneration and inflammation in the CNS. The JEV is pre-
dominantly transmitted by the Culex mosquitoes, mainly C. tritaeniorhynchus, C. vishnui,
and C. Seudovishnui, while Anopheles subpictus is a secondary vector for this virus [8]. The
majority of transmission to humans is thought to occur in places where domestic animals
act as reservoirs or amplifying hosts, and some migratory bird species have been identified
as reservoir hosts for the JEV [9]. Pigs are good zoonotic hosts, while cattle and horses are
thought to be the dead-end hosts for JEV. JEV has a significant fatality rate and affects more
than 24 nations in South-East Asia and the Western Pacific region [6]. JE affects more than
50,000–75,000 people globally, 30–50% of whom develop permanent neurological abnormal-
ities, and about 10,000–15,000 people die from the disease per year [10,11]. Neurological
disorders occur mainly due to the invasion of JEV into the CNS by crossing the BBB [9,12].
India is the nation that is most impacted by the JE, with a high fatality rate [13]. JEV was
identified in India in the 1950s through a serological survey, and the first outbreaks were
detected in West Bengal in 1973 [14]. In Northern India in 1978, Gorakhpur was the area
that was most impacted by the JE [15]. Since 2006, three vaccination campaigns have been
implemented in the epidemic zones of India: two use the inactivated Vero cell-derived
SA 14-14-2 and d 821564XY JE vaccines, and one uses the live attenuated LAV-SA 14-14-2
vaccine [13,16–18]. Between 2005 and 2010, 205 deaths were recorded, with 2040 active
cases of JE in Nepal [19]. Since the Terai district of Nepal was more severely affected than
the rest of the nation, the government of Nepal began widespread vaccination efforts with
a live attenuated virus (LAV-SA 14-14-2) in Terai provinces in 2001 [13]. Based on the
effectiveness of the immunization programs, scientists have divided 27 nations in the world
into eight groups (Table 1). Furthermore, the governments of a few out of these 27 nations
operate programs at various levels to lower the force of infection (FOI) of JEV. Some are
successful in reducing FOI by giving proper vaccination and treatments (Table 2).
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Table 1. Classification of eight groups of countries or regions affected by JEV on the basis of their vaccination program.

S. No. Groups Rate of Infection and Vaccination
Programmes Countries or Regions Incidences/ 100,000 Case Frequency Ratio

(Child: Adult) References

1 A Vaccination programs of high quality in
high-incidence areas Japan, the Republic of Korea, China Taiwan 0.003 07:01 [20–22]

2 B Areas with extremely low incidence and no
immunization programs Australia, Pakistan, Russia, Singapore 0.003 07:01 [23,24]

3 C Areas with extremely low incidence and no
immunization programs China 3.3 03:01 [25,26]

4 D Vaccination programs are weak or non-existent
in high-incidence regions.

Cambodia, Indonesia, Laos, Malaysia,
Myanmar, Philippines, Timor-Leste 10.6 07:01 [27,28]

5 E Areas with a medium incidence but no
immunization programs Malaysia, Papua New Guinea 5.3 NA [29]

6 F Vaccination programs are being expanded in
high-incidence regions. India, Nepal 2.8 05:04 [22,30]

7 G Vaccination programs are inadequate or
non-existent in low-incidence areas.

Bangladesh, Bhutan, Brunei, Nepal (lower
incidence stratum) 1 04:01 [31,32]

8 H Areas with a medium to a high frequency of
disease and growing immunization programs

India (medium incidence stratum),
Malaysia (Sarawak), the Republic of Korea,

Sri Lanka, Thailand, Vietnam
1.5 07:01 [24,33,34]

Table 2. The country or region-wise outbreak, diagnosis, treatment, incidence, and programs run by the government: A global scenario of JE.

Countries or
Regions

First
Reported Outbreaks Diagnosis Treatments JE Incidence Rate Programmes Run by the

Governments References

Australia 1995 2 in 1995, 2 in 1998,
and 1 in 2022

Viral antigen detection, JEV-specific
antibody detection, reverse passive
hemagglutination, staphylococcal

co-agglutination tests, ELISA, qPCR,
RT-PCR, RT-LAMP

MBDV, Fever relief
medicines, plenty of fluid 3 cases

69 million dollar program to
control JEV infection,

including mosquito control,
vaccination and sentinel pig

surveillance programs

[35]

Bangladesh 1977 22 patients with
7 deaths in 1977

Viral antigen detection, JEV-specific
antibody detection, ELISA,

qPCR, RT-PCR

Fever and pain relief
medicines, plenty of fluid 0.6–2.7 cases/lakh - [9,36]

Bhutan - - ELISA, PCR Fever and pain relief
medicines, fluid - Integrated national

vaccination program [8]
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Table 2. Cont.

Countries or
Regions

First
Reported Outbreaks Diagnosis Treatments JE Incidence Rate Programmes Run by the

Governments References

Brunei - - ELISA, PCR Fever and pain relief
medicine, plenty of fluid - - [13]

Cambodia 1947 - ELISA, PCR
LAV-SA14-14-2 vaccine,

fever and pain relief
medicines, plenty of fluid

11.1 cases/lakh National vaccination
program [13]

China 1940s
1960–1970 with

morbidity
>10 cases/lakh

Viral antigen detection, JEV-specific
antibody detection, reverse passive
hemagglutination, staphylococcal

co-agglutination tests, ELISA, qPCR,
RT-PCR, RT-LAMP

LAV-SA14-14-2 vaccine,
MBDV, fever and pain relief

medicines, plenty of fluid
0.1–0.9 cases/lakh Expanded program on

immunization to reduce JE [37]

Guam 1947 46 reported cases - Fever relief medicines,
plenty of fluid - - [13]

India 1950 5700 cases with
1315 deaths in 2005

Viral antigen detection, JEV-specific
antibody detection, reverse passive
hemagglutination, staphylococcal

co-agglutination tests, ELISA, qPCR,
RT-PCR, RT-LAMP

LAV-SA14-14-2 vaccine,
fever and pain relief

medicines, plenty of fluid
15 cases/lakh Government immunization

program [38]

Indonesia 1974 - JEV-specific antibody detection, ELISA,
PCR, RT-PCR

Fever and pain relief
medicines, plenty of fluid 8.2 cases/lakh No vaccination program [9,39]

Japan 1933 Mainly before 1960

Viral antigen detection, JEV-specific
antibody detection, reverse passive
hemagglutination, staphylococcal

co-agglutination tests, ELISA, qPCR,
RT-PCR

VCDV-Bejing-I vaccine, pain
and fever relief medicines <10 cases Vaccination program [9]

Laos 1989 - JEV-specific antibody detection in the
CSF

Fever and pain relief
medicines, fluids - JEV vaccination in 2013 [40]

Malaysia 1952 154 cases with 42 deaths
in 1999

Viral antigen detection, JEV-specific
antibody detection, ELISA, qPCR

MBDV, fever relief
medicines 4.3 cases/lakh

JE vaccination was
introduced in July 2001, and

the vaccination was only
practiced in Sarawak and

formalin-activated
mouse-derived JE vaccine

(Biken, Japan) is
used in Malaysia

[41]
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Table 2. Cont.

Countries or
Regions

First
Reported Outbreaks Diagnosis Treatments JE Incidence Rate Programmes Run by the

Governments References

Myanmar 1968
5 cases with 4 deaths in

1947 and 43 with
32 deaths in 1948

Viral antigen detection, JEV-specific
antibody detection, ELISA,

qPCR, RT-PCR

Fever and pain relief
medicines, plenty of fluid - National vaccination

program [9,13]

Nepal 1978 2040 cases with
205 deaths in 2005 JEV-specific antibody detection, ELISA LASV-SA14-14-2 vaccine,

fever relief medicines 1.3 cases/lakh
National JE prevention and

control program in
Kathmandu valley

[31]

Pakistan 1980s - JEV-specific antibody detection Fever relief medicines - No vaccination programs [9]

Papua New Guinea 1995 - JEV-specific antibody detection,
ELISA, PCR Fever relief medicines - - [42]

Philippines 1950s - - - - - [13]

Saipan, USA 1990 1990 JEV-specific antibody detection in
CSF, ELISA Fever relief medicines - no vaccination programs [43]

Singapore 1952 -

Viral antigen detection, JEV-specific
antibody detection, reverse passive
hemagglutination, staphylococcal

co-agglutination tests, ELISA,
qPCR, RT-PCR

Fever relief medicines <5 cases Vaccination programs
reduce JE case [9,13]

Republic of Korea 1946 - JEV-specific antibody detection in
serum and CSF, ELISA, PRNT, PCR

MBDV, fever relief
medicines

0.01–0.08 cases/lakh
and <10 cases/year

Successful vaccination
program for three decades

in the Republic of Korea
[44]

Sri Lanka 1968 - ELISA, PCR Fever relief medicines <100 cases JE vaccination program [9,13]

China Taiwan 1938
1960–1970 with

morbidity
~12.4 cases/lakh

Viral antigen detection, JEV-specific
antibody detection, ELISA,

qPCR, RT-PCR

MBDV, Fever relief
medicines, plenty of fluid 0.03/lakh

Taiwan National Infectious
Disease Statistics
System–Japanese

Encephalitis, Self-reporting
through the toll-free 1922

hotline or local public
health authority.

[45]

Thailand 1961 - RT-PCR MBD vaccine, fever relief
medicines 300 cases/year vaccination program [9,13]

Vietnam 1960 - - MBDV, fever relief
medicines 1–8 cases/lakh vaccination program

(from 1997) [9,13]

CSF, cerebrospinal fluid; ELISA, enzyme-linked immunoassay; PCR, polymerase chain reaction; PRNT, plaque reduction neutralization test; qPCR, quantitative PCR; RT-LAMP, reverse
transcription loop-mediated isothermal amplification, RT-PCR, reverse transcription PCR.
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3. Pathophysiology of JE in CNS

The breaching of BBB is one of the most distinctive pathophysiologies of JEV. In
addition to causing neuronal cell death, JEV propagation in astrocytes and microglia causes
an upregulation of proinflammatory cytokines. JE is directly related to the inflammation
and vasculitis of the brain and is associated with the invasion of the virus into the brain.
JEV can infect BMECs, astrocytes, microglia, and pericytes, among other cell types found
in the BBB. However, BMEC infection does not affect cell viability proposing that the
BBB penetration by the JEV is not associated with JEV-mediated cell death. JEV infection
actually suppresses tight junction protein expression and alters adherent localization, thus
disrupting the tight junctions between the BMECs [46–48]. JEV can replicate in astrocytes
and pericytes and simultaneously endorse soluble mediator release that damages tight
junction proteins, especially zonula occludens 1 and claudin 5. JEV infection-mediated
release of IL-6, VEGF, MMP2, and MMP9 triggers astrocytes and pericytes, playing key
roles in enhancing endothelial permeability [48]. JEV infection also causes microglial
activation resulting in the release of tumor necrosis factor α (TNF-α), IL-1β, IL-6, monocyte
chemoattractant protein-1 (MCP-1), chemokine (C-C motif) ligand 5 (CCL5), CXC motif
chemokine ligand 10 (CXCL10), and inducible nitric oxide synthase, which may be related
to endothelial barrier damage [46,47]. The breakdown of the BBB caused by JEV infection
appears to be more of a side effect than a direct cause of viral proliferation in BMECs [49].
Thus, elevated levels of inflammatory cytokines and chemokines, high viral titers in the
brain, and fatalities caused by JE can all be connected.

JEV infection increases the production of proinflammatory cytokines, chemokines and
signal transducers associated with the interferon γ (IFN-γ) pathways [46]. Factors responsi-
ble for the analog of the JEV infection in the CNS are poorly understood. Mice affected with
JEV show a high amount of cytokine and chemokine production in the brain [50]. However,
JEV immune splenocyte transfer could protect mice from extraneural JEV infection [50].
Profiling of genes using high throughput screening (HTS) authorizes the identification
of the critical genes that play an important role in the JEV infection and modulation of
the pathways and also reveals the cellular and molecular pathways associated with this
infection [51,52]. Twenty-three out of 173 genes of human glioblastoma cells infected by
the West Nile virus (another flavivirus) have been identified to play important roles in
cellular neurodegeneration via microarray analysis [53]. Thus, indications are quite clear
that flavivirus infection does lead to neurodegeneration. Neurovirulence genes from West
Nile virus-infected mice were found to be engaged in a variety of signaling cascades,
including protein degradation, T cell and MHC class I and II antigen presentation, and
apoptosis [54]. Apoptosis, triggered during the replication of JEV, leads to the death of neu-
ronal and non-neuronal cells [55]. In human and mouse neuroblastoma cells, the energizing
of tumor necrosis factor 1 (TNFR1) and signaling through tumor necrosis factor associated
death domain (TRADD) prompt downstream apoptotic cascades during JEV infection [55].
Lipocalin ApoD, which is associated with brain injury and is also expressed in response to
JEV, was one of the CNS-specific proteins discovered to have increased expression in mice
brains infected with West Nile virus strains.

Dimeric NS1 is a multifunctional glycoprotein that participates in JEV replication’s
complex building and replication by interacting with other JEV non-structural proteins as
well as many host proteins such as RPL18, RPL18a, vimentin, and hnRNP K. In contrast, it
appears that the hexameric form of NSP1 primarily modulates the host immune system in
order to favor JEV replication [56]. Furthermore, an extended variant of the NS1 protein,
NS1′ (~53 kDa), has been shown to decrease IFN type I activity, a critical component of the
host’s innate and adaptive immune response to viral infections [57]. NS2A is necessary
for virion assembly in addition to replication because it transports the newly synthesized
(+) sense single-stranded RNA from the replication complex to the assembly complex. It
has also been shown that NS2A plays an important role in JEV infection by reducing host
cell antiviral responses, where NS2A decreases protein kinase-induced cell death [58]. JEV
relies on NS1′ to survive inside the host cell via modulating the host immune response,
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and a single mutation in NS2A precludes NS1′ production [59]. As a result, as a regulator
of NS1′, the NS2A protein is critical in JEV infection and pathogenesis. In a contrasting
development, experimental techniques based on reverse genetics developed a synthesis
route for NS1′ via A66G alteration in the NS2A gene of the JEV SA14-14-2 strain contributed
to the recovery of the GC-rich pseudoknot and the creation of the NS1′, which in turn
may potentially act as a biomarker for virulent virus infection [60]. By causing the AXL
membrane protein to be degraded by the ubiquitin-proteasome pathway, the NS2B-NS3
protein complex induces cellular apoptosis. Since they are essential for JEV replication and
post-translational processing of the polyprotein, NS2B and NS3 are suitable therapeutic
targets [61]. NS5 is essential for JEV replication because of the polymerase activity of its
RNA-dependent-RNA-polymerase (RdRp) domain and the 5′-capping enzymatic activity
of its methyltransferase domain. There are three subdomains of the NS5 RdRp domain:
palm, thumb, and finger. The palm subdomain, which is composed of conserved aspartic
acid residues, serves as the active site for the binding of RNA, metal ions, nucleotides, and
other molecules, as well as for the transfer of phosphate groups. The finger subdomain
creates a tunnel to guide the template RNA to the active site, while the thumb subdomain
is necessary to assemble an RNA synthesis complex and control RNA synthesis. NS5
is a potential target for the creation of therapeutic moieties due to its crucial function
in JEV replication. JEV infection also triggers intracellular Ca2+ overload, which in turn
correlates with abnormalities of mitochondrial membrane potential and protein kinase B
(Akt)/mammalian target of rapamycin (mTOR) and Janus tyrosine kinase (JAK)/signal
transducer and activator of transcription 1 (STAT1) signaling pathways. Ubiquitin also
plays a vital role in that fundamental cellular functions like endocytosis, protein breakdown,
and immunological signaling are regulated by ubiquitin.

4. Overview of the JEV Genome

The linear (+) ssRNA genome of the JEV, an enveloped virus, is surrounded by several
copies of the capsid protein. The viral nucleic acid and capsid protein combine to produce
a nucleocapsid enveloped by a lipid bilayer obtained from the host. The genomic RNA has
a methylation cap at its 5′ end but no poly-A tail at its 3′ end. A single open reading frame
(ORF) is sandwiched between two brief non-coding regions (NCR) at the 5′ and 3′ ends of
the genomic RNA, which is around 11 kb in length. The ORF encodes a 3400 amino acid
polyprotein that is cleaved by both viral and host proteases to generate three proteins, viz.
the C protein, the M/prM protein, and the E protein and seven NSPs, i.e., NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5 [62]. All mosquito-borne flaviviruses include highly conserved
NCRs, which create secondary structures to facilitate viral replication, transcription, and
translation. The 5′ NCR contains functional RNA components like promoters, enhancers,
and potential cyclization sequences essential for the interaction between the genomic RNA’s
distantly placed 5′ and 3′ NCRs [63]. During viral infection, the NS5 protein binds with
circularized RNA and begins RNA replication at the 3′-NCR. The JEV NS2B-NS3 protease is
notable for performing proteolytic cleavages between NS2A and NS2B, NS2B and NS3, NS3
and NS4A, and NS4B and NS5. Proteolytic cleavages between C and prM, prM and E, E and
NS1, and NS4A and NS4B are carried out by the host protease signalase in the polyprotein.
The N-terminal region of the JEV NS3 protein, which also functions as a binding site for
the cofactor protein NS2B, contains protease activity. Additionally, the helicase activity of
NS3’s C-terminal domain causes the double-stranded RNA to unwind negatively during
viral RNA replication. Because its N-terminal domain (methylase domain) has methylase
activity needed for the 5′ capping of naive viral RNA and its C-terminal domain (RdRp),
NS5 is also a crucial protein.

The five genetically distinct lineages of the Japanese encephalitis virus, which diverged
in the sequence of GV, GIV, GIII, GII, and GI, have evolved in nature. By nucleotide
sequencing of the C/PrM and E genes, five JEV genotypes have been identified. The
earliest JEV lineage is formed by genotypes IV and V, while genotypes I, II, and III are the
most common, accounting for 98% of the strains isolated between 1935 and 2009 [10,64].
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Mutations in NS2B/NS3 increase the infectivity of GI JEV in amplifying hosts. JEV GI has
supplanted GIII as the prevalent genotype in typical Asian epidemic locations, but GIII
has moved from Asia to Europe and Africa, causing domestic JE cases in Africa. GII and
GV, which were endemic in Malaysia, also showed significant geographical shifts. GII
traveled southward, resulting in the frequency of JE in Australia, while GV resurfaced after
decades of silence in China and the Republic of Korea. Along with these developments,
JE emerged as an emergent infectious disease in certain non-traditional epidemic areas.
JEV regional changes represent a significant hazard to human health, resulting in massive
disease burdens.

5. Molecular Targets Associated with JEV Infection

JEV is a flavivirus with a genome of about 11 kb ssRNA. Cell type-specific interactions
of viral proteins with host machinery critically influence the nature of pathogenic outbursts.
NS5 augments proinflammatory responses by disrupting host lipid metabolism, leading to
elevated neurovirulence and neuroinvasiveness [65]. Researchers have identified (Figure 1)
a few surface receptors mainly responsible for the entry of JEV into the nerve cells, namely
C-type lectin domain family 5 member A (CLEC5A), Glucose regulated protein 78 (GRP78),
Caveolin-1, D2-receptor (D2R), toll-like receptors (TLRs), and Src protein [46].
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Figure 1. Interleukins (IL-6, Il-8, and IL-1) breakdown tight junction existing between endothelial
cells of the blood-brain barrier of JEV-infected patients and target proteins present on the surface of
ER of neurons and other surfaces of neurons, as shown in a systematic figure.

5.1. CLEC5A

CLEC5A, present on the surface of myeloid cells, monocytes, macrophages, osteoclasts,
dendritic cells, and neutrophils, is an integral membrane protein without any signaling mo-
tif, with a small cytosolic end (tail) justifying the requirement of an adapter protein DAP12
for exerting physiological activity [66,67]. DAP12 completes the signaling for CLEC5A via
spleen tyrosine kinase SYK (SYK pathway) [68]. Numerous cytokines, e.g., TNF-α, IL-1,
IL-6, IL-8 and IL-17A, and chemokines like MIP-1, RANTES, CXCL10 and macrophage-
derived chemokine are produced when CLEC5A is activated. Additionally, it increases



Viruses 2022, 14, 2686 9 of 25

innate immune response [68,69]. CLEC5A acts as the gateway for the entry of many viruses
like Dengue virus, Influenza virus (H5N1), and JEV within the cell [70]. The inhibition
of CLEC5A prevents autoimmune inflammation, attenuating proinflammatory cytokines
and suppressing cell infiltration in joints [66,67]. JEV directly interacts with CLEC5A and
promotes DAP12 phosphorylation in macrophages. JEV stimulates macrophages, caus-
ing them to release proinflammatory cytokines and chemokines, which are significantly
reduced in CLEC5A −/−macrophages infected with JEV.

5.2. GRP78

GRP78 is a member of the HSP70 family found on the surface of the endoplasmic
reticulum (ER) of all nucleated cells [71]. GRP78 consists of 654 amino acids, responsible for
accurate protein folding and assembly and inhibition of transport of misfolded ones [72].
In the ER lumen, GRP78 is well recognized for attaching to hydrophobic patches on nascent
polypeptides and for its role in signaling the unfolded protein [73]. Out of the two domains
of GRP78, the amino-terminal contains the ATP binding domain (ABD) and/or nucleotide-
binding domain (NBD), and the carboxyl-terminal contains the substrate binding domain
(SBD) [72]. JEV binds to GRP78 to gain entry into the host cell, whereby the recombinant JEV
envelope protein domain III interacts with GRP78. GRP78 is overexpressed on the surface
of cancerous cells, enhancing the chances of JEV infection in cancer patients. Antibodies
against GRP78 greatly reduced the entry of JEV into cells [74]. Small interfering RNA
(siRNA)-mediated GRP78 depletion markedly inhibited JEV entry to mouse Neuro2a
cells [75].

5.3. Caveolin-1

JEV penetrates primary human BMECs via an endocytic route mediated by caveo-
lae [76]. Caveolin-1 contains 82–101 amino acids with an α-helix juxtaposed to the mem-
brane. Caveolin-1 has two primary functional sites, i.e., a scaffolding domain and tyrosine
14 (Y14) [77]. Another protein, ezrin, is a host protein essential for the caveolae-mediated
endocytic pathway. In one study, scientists observed that ezrin-mediated actin cytoskele-
ton polymerization is essential for JEV internalization in human BMECs [76]. JEV enters
human neuronal cells through caveolin-1-mediated endocytosis, which is dependent on
the two-step regulation of actin cytoskeleton remodeling triggered by Rac1 and RhoA [78].
Rac1 activation first aided in caveolin-associated viral internalization besides promoting
the phosphorylation of caveolin-1. RhoA is activated specifically as a result of virus at-
tachment via activating the EGFR-PI3K signaling pathway. JEV infection is inhibited by
siRNAs targeting caveolin-1, a key component of caveolae membranes involved in receptor-
independent endocytosis. Herein, other targets for JEV inhibition include genes encoding
the endosomal sorting complex required for transport (ESCRT) machinery vacuolar protein
sorting 4 homolog A (VPS4A) and hepatocyte growth factor-regulated tyrosine kinase
substrate (HGS), membrane fusion genes synaptotagmin 1 and N-ethylmaleimide sensitive
factor, vesicle fusing ATPase (for N-methylmaleimide sensitive factor), actin polymerization
genes VIL2, ACTR2, ACTR3, ARPC3, ARPC4, RAC1 and WASp actin nucleation promoting
factor, and vesicle and endosomal transport genes COPA, GAF1, RAB4B, RAB5A, RAB5B
and RAB11B [76].

5.4. D2R

JEV specifically targets brain areas rich in dopaminergic neurons, such as the thalamus
and midbrain [79]. Evidence suggests that JEV utilizes dopaminergic signaling to promote
infection via modulating dopamine levels [80]. Dopaminergic D2R has a greater affinity for
dopamine than the D1 receptor (D1R) [81]. D2R agonists boost JEV infection by activating
phospholipase C (PLC) to increase surface expression via integrin β-3 and the upregulation
of vimentin [79]. Dopamine, on the other hand, is the primary catecholamine neurotrans-
mitter that regulates a wide range of biological functions such as cognition, endocrine
regulation, and voluntary movement. Furthermore, the phosphorylation of tyrosine hy-
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droxylase (TH) regulates dopamine biosynthesis and converts tyrosine to L-DOPA [82].
Experimentally, BE(2)-C neuroblastoma cells with high TH activity for dopamine synthesis
were selected to investigate the level of dopamine during JEV binding to D2R [83,84]. The
results showed that JEV modulates the level of dopamine during infection, with higher
secretion in the early hours (3–6 h post-infection) and lower secretion in the late hours
(24–36 h post-infection). In addition, D2R antagonists (prochlorperazine, haloperidol, and
risperidone) were found to reduce JEV-NS3 protein expression [85]. JEV infection and JEV-
NS3 synthesis are accelerated by activating D2R (agonist: quinpirole hydrochloride) [79,86].
Furthermore, PLC activation by D2R stimulation via Gq hydrolyzes PIP2 to IP3 and is
responsible for the activation of Ca2+ release from intracellular reserves (Figure 2). Accord-
ing to research findings, the levels of cAMP in mock and JEV-infected BE(2)-C cells were
comparable, but the PLC non-cytotoxic inhibitor inhibited JEV-NS3 expression as a result
of targeting D2R-PLC signaling [87,88].
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Figure 2. The graphic depicts the phosphorylation of several proteins at various levels of signaling to
activate BDNF from MeCP2 inside the nucleus to activate the TrkB receptor for the activation of PIP3
to mTORC2 and PDK1 proteins, followed by Gsk to reach the target for function.

5.5. TLRs

It has been observed that viral replication occurs within astrocytes and microglia
cells, producing proinflammatory cytokines that induce indirect neuronal death [89,90].
JEV-specific T cells and virus-neutralizing IgG and IgM antibodies play an important
role in viral clearance from the CNS and peripheral lymphoid organs [91]. Neurons and
other CNS cells actively respond to viral infection by producing type I IFN [92]. There
is also growing evidence that the type 1 IFN pathway can be triggered by recognizing
TLRs. Retinoic acid-inducible gene I and melanoma differentiation-associated protein 5
detect RNA in the cytosol and send signals via the adaptor protein mitochondrial antiviral-
signaling protein [93]. TLRs that are surface-bound or endosomal identify ssRNA, dsRNA,
and signals via myeloid differentiation primary response 88 (Myd88) and Toll-interleukin
receptor-domain-containing adapter-inducing interferon-β (TRIF) molecules, showing
that TLR signaling is involved in flavivirus-mediated immune responses. Following JEV
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infection, TLR4 and TLR3 play distinct signaling roles [94–96]. TLR3-deficient mice were
extremely vulnerable to JE [90]. TLR3−/− mice had higher levels of proinflammatory
cytokines and BBB permeability. TLR4 knockout mice showed increased resistance to JEV
infection [97]. The loss of TLR4 caused powerful type I IFN responses in dendritic cells
and macrophages via greater stimulation of antiviral IFN-stimulated genes via distinct
activation of IFN regulating factor 3 and nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) [97]. TLR7 and TLR8 identify ssRNA, and the recognition may
vary depending on the species. TLR7 and TLR8 in mice and humans identify SS GU-rich
RNA as a natural ligand. The stimulation of TLR7 and TLR8 activates TRIF and MyD88-
dependent signaling pathways, which in turn stimulate the production of proinflammatory
cytokines, chemokines, and type 1 IFNs [98]. TLR8 overexpression in TLR7−/−mice has
no effect on mice survival as TLR8 compensates for another TLR [99]. The antiviral and
anticancer activity was demonstrated by targeting the TLR-MyD88 dependent pathway,
which produces the proinflammatory cytokine IFN and TLR7 agonist has antitumor action
in cell line [98].

5.6. Src Protein

Tyrosine-protein kinase proto-oncogene Src is a non-receptor tyrosine kinase protein
encoded by the SRC gene. It is a 60 kD phosphoprotein having around 533 amino acid
residues, transmitting signals to control a multitude of cellular functions, including prolif-
eration, differentiation, motility, and adhesion. Researchers suggest that NS5 and NS3 can
be phosphorylated and associated with the Src family kinase activity [100]. In response to
JEV infection, microglia releases proinflammatory cytokines via the Src/Ras/extracellular
signal-regulated kinase (ERK) pathway [100]. On infection with JEV, the synthesis of Src
also increases, which autophosphorylates itself and other signaling proteins such as rat
sarcoma (Ras), rapidly accelerated fibrosarcoma (Raf), and ERK [101]. Protein tyrosine
phosphorylation events play important roles in physiological signaling processes such as
inflammation. Both inhibitors of the Src family, protein tyrosine kinase (PTK) and Ras,
are found to inhibit JEV-induced ERK activation [100]. Inhibitors of PTK, Ras, and ERK
substantially inhibited JEV-induced proinflammatory cytokine production and neurotox-
icity. Caveolin-1 could be phosphorylated by Src in the presence of ezrin, which in turn
mediates actin rearrangement as a crucial step for JEV entry [76]. The Src protein is a part
of the tyrosine phosphorylation pathway, which plays an important role in the JEV-induced
expressions of proinflammatory cytokines. During early JEV infection, lipid rafts operate
as signaling platforms for Src tyrosine kinases, resulting in phosphoinositide 3′-kinase/Akt
signaling activation [102]. These lipid rafts support the linking bridge in transducing TNF-
α and IL-1β. JEV activates the Src/Ras/Raf/ERK/NF-κB signaling axis in the neuron/glial
co-culture system in a reactive oxygen species (ROS)-dependent manner [61]. ROS and K+

efflux are found to induce NLRP3 inflammasome signaling in JEV-infected cultured mouse
microglia and mouse brains, leading to the development of an inflammasome complex,
caspase-1 activation, and the synthesis of mature cytokines [103]. The neurotoxic microglia
activating phenotype and subsequent inflammatory responses are strongly linked with
C-C chemokine receptor type 2 (CCR2) expression generated by JEV on the surface of
microglia [59]. As a result of this Src protein’s role in numerous cellular processes, we can
create an antiviral treatment strategy by possibly suppressing it [104,105].

6. Autoimmunity in JEV Infection

Although the specific mechanism of neuronal death in JE is yet to be clearly dis-
closed, studies suggest that MMPs have a role in neuronal cell death [106,107]. A study
suggested that JEV infection increases the expression of MMPs (MMP2, 7, and 9) and
TIMPs (TIMP1 and 3) and may contribute to the severity of the disease [106]. Evidence
also shows that MMP9 expression is elevated during JEV infection in rat brain astrocytes
via the formation of ROS during JEV infection [106]. MMP2, TIMP2, and TIMP3 concen-
trations were found to be higher in the CSF and serum of JEV-infected children compared
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to controls [107,108]. Furthermore, increased blood concentrations of MMP9 and MMP7
have been observed in JEV patients when compared to healthy controls. MMPs are also
associated with glaucoma affecting the optic nerve, retinal ganglionic cells and connected
structures for vision [109,110]. Another autoimmune condition that affects youngsters is
autoimmune encephalitis. Following JEV infection of the CNS, antigen exposure may
cause autoimmune encephalitis, and deep cervical lymph nodes are emptied of neuronal
surface antigens, activating antigen-specific memory B lymphocytes and stimulating the
formation of autoantibodies [111]. However, memory B cells can also go to the brain
and be restimulated, where they undergo antigen-driven affinity maturation, clonal ex-
pansion, and differentiation into antibody-producing plasma cells [110,112]. In a study,
researchers found that the CSF of patients was negative for JEV RNA but positive for
anti-neuronal surface antibodies, anti-NMDAR antibodies and anti-γ-aminobutyric acid B
receptor antibodies, and there were no significant differences between the patients who
acquired autoimmune encephalitis in terms of gender, CSF protein level, CSF WBC count,
complications, or brain magnetic resonance imaging (MRI) abnormalities [110]. In mice,
clinical signs appear within the first week of infection and include aberrant locomotion
and hind-limb paralysis [113,114]. Demyelination caused by JEV adds to the complications
regarding nerve impulse conduction [113].

7. Roles of Different ILs

ILs are the proinflammatory cytokines responsible for inflammation via chemically
active agents. They are involved in mitogenesis, angiogenesis inhibition, inflammation,
chemotaxis, neutrophils degranulation, leukocyte activation, and calcium homeostasis.

7.1. IL-6

IL-6 plays a crucial role in altering the permeability of BBB to facilitate JEV entry. Il-6
digests the BBB’s tight junctions leading to CNS inflammation [115,116]. The amount of
IL-6 in the CNS rises during JEV infection, but it is inversely related to the quantity of IgM
and IgG antibodies. During JEV infection, the amount of IgG varies between primary and
secondary viral infection, being higher in the case of secondary infection [117]. Endothelial
zonula occludens 1 (ZO1) degradation was aided by soluble bioactive IL-6 produced from
JEV-infected pericytes, resulting in barrier disruption [118]. Endothelial changes were
accompanied by IL-6-induced Ubiquitin-proteosome-dependent activation mechanism for
deterioration [117].

7.2. IL-8

IL-8 binds to the G-protein coupled receptors CXCR1 and CXCR2. CXCR2 is also a
high-affinity receptor for GRO β, GRO α, GRO γ, and NAP [119]. In a study evaluating the
relationship between IL-8, neutrophils, and macrophages, IL-8 content was reported to be
higher in the CSF of patients with severe JEV infections than in recovered patients [120]. In
the same study, acute JEV patients exhibited higher neutrophil count in CSF, which shows
the direct relationship between IL-8 and neutrophils [120]. Another similar study reported
the rise of IL-8 and IL-6 in the CNS and peripheral nervous system (PNS) of patients with
neurological disorders owing to flavivirus infections [121]. Clearly, the production of IL-8
increases with the increase in the severity of JEV infection.

7.3. IL-10

IL-10 plays an important role in the protection of the brain from lethal JEV infection,
in addition to regulating immune cell functions. It acts as an immune regulator to protect
from tissue damage by an excessive adaptive immune response and proinflammatory
mediators. IL-10 amplifies the production of CD8+ T cells, along with energizing B cell
differentiation and immunoglobulin secretion. The chief source for the production of IL-10
are thymocytes, B cells, macrophages and keratinocytes. While the T helper 2 (Th2) cells,
LY-1+ (CD5+) are responsible for the production of IL-10 in mice, and CD4+ T cells, T cell
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clones, B cell lymphomas and mast cells are responsible for IL-10 production in humans. In
an experiment, the expression of the type II class of IFN (IFN-γ) and signal transducers
STAT-1 and STAT-2 were downregulated due to the transfer of JEV immune-splenocyte [50].
JEV-mediated decrease in the generation of IL-10 can be linked with microglial activation
and neuronal death [122,123].

7.4. Other ILs

JEV’s early neuroinvasion is mediated by IL-1α by interfering with the integrity
of the BBB. IL-1α release by JEV-infected peritoneal macrophages has been observed to
play crucial roles in augmenting JE-associated pathophysiology in the brain of AXL−/−
mice [124]. JEV infection causes microglial activation, which results in the generation of
proinflammatory cytokines. HSP60 regulates JEV-induced IL-1β production by activated
microglia [125]. JEV infection increases the production of IL-18 and IL-1β in microglia and
astrocytes. Replicating JEV activates the inflammasome, which then activates caspase-1
and stimulates the generation of IL-1β and IL-18 [103,126]. IL-1β and IL-18 differentially
regulate astrocytes and microglia to release cytokines and chemokines. Interestingly, JEV
infection is associated with the suppression of anti-inflammatory cytokine production in
the brain. Saxena and colleagues [127] reported that IL-4 and IL-10 expression were both
reduced during the progression of JEV infection. IL-4 and IL-10, being anti-inflammatory
cytokines, are inversely correlated with neuronal death.

8. Therapeutic Insights: Possibilities against JEV Infection in CNS

Despite the fast progress of medical sciences, there is no specific treatment approved for
treating JE. Prevention of JEV has achieved some success through vaccination. Structural
proteins and NSPs might be promising targets in target-specific treatment approaches.
Neuronal receptors can also aid in the same. Several naturally occurring small molecules
have exhibited promise against JE.

A multi-target approach to inhibit JEV infection in the population seems a good
approach to alleviate JE. Scientists have applied this approach to countering JEV infection
by blocking proteins, both structural and non-structural ones, to inhibit the replication
machinery. In addition, the blockade of neuronal receptors to inhibit virus entry into the
neurons prevents neurological disorders and sequelae [128]. JEV binds to different neuronal
receptors, ultimately resulting in neuronal death. Thus, targeting these receptors with
viral NSPs participating in replication, such as RdRp, and NS3 protease, would inhibit
virus spread and simultaneously stop the cytokine storm [66,129]. This way, JEV-mediated
autoimmune disorders would also come to a halt. Active sites for the inhibition of targets in
the CNS and viral proteins (Table 3) contain amino acid residues taking part in the binding
of ligands for the blockade of these proteins.
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Table 3. In vitro, in vivo, and in silico targets for inhibiting JEV infection, targeting replication, host binding, autoimmunity, and cytokine generation, together with
their active pocket residues and native ligands from crystal structures.

S. No. Name of Targets PDB ID Ligands Amino Acid Residues of Active Sites Resolution of Crystal
Structures References

1 CLEC5A 2YHF NA - 1.9 Å [130]

2 GRP78 5F1X ATP Thr37, Thr38, Tyr39, Gly227, Gly228,
Thr229, Glu293, Lys296, Ser300, Gly364, 1.9 Å [131]

3 TLR7 6LW1 RIJUCCOLHSAZPO-
GOTSBHOMSA-N

Asn265, Tyr264, Phe349, Glu352, Leu353,
Gln354, Val355, Val381, Thr406, Phe408,

Phe507, Ser530, Gln531
2.8 Å [132]

4 D2R 7DFP DKGZKTPJOSAWFA-
UHFFFAOYSA-N

Val91, Leu94, Val111, Asp114, Val115,
Cys118, Cys182, Ile184, Trp386, Phe390,

Thr412, Tyr416,
3.1 Å [133]

5 Src 1FBZ SPSGYTWOIGAABK-
DQEYMECFSA-N Arg12, Arg32, Glu35, Ser36, His58, Lys60 2.4 Å [134]

6 Caveolin-1 7SC0 NA - 3.4 Å [135]

7 Capsid 5OW2 KRKNYBCHXYNGOX-
UHFFFAOYSA-K Pro43, Val44, 1.98 Å [136]

8 Envelop 5MV1 NA - 2.25 Å [137]

9 NS1 5O36 QAOWNCQODCNURD-
UHFFFAOYSA-L Arg347, Gln349 2.6 Å [138]

10 NS3 2Z83 NA - - [139]

11 NS5(RdRp) 4HDH ZKHQWZAMYRWXGA-
KQYNXXCUSA-N

Arg460, Arg474, Asp668, Ser715, Arg734,
Arg742, Ser799, Trp800, 2.28 Å [140]

12 NS3/NS4A 5WX1 NA - 2.35 Å [140]

13 NS2b-NS3 4R8T VEXZGXHMUGYJMC-
UHFFFAOYSA-M Gly151 2.133 Å [141]
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Some molecules with reported therapeutic potential against JEV are represented
in Table 4. Nature-derived compounds such as arctigenin, a phenylpropanoid diben-
zylbutyrolactone lignan, and rosmarinic acid, a phenolic compound, render protection
against JEV of the GP78 strain by markedly decreasing JEV-induced neuronal apoptosis,
microglial activation, caspase activity and induction of proinflammatory mediators in the
brain [142,143]. Kaempferol and baicalin, two flavonoids, demonstrated antiviral activity
against JEV. Kaempferol acts by inhibiting the replication of JEV, whereas baicalein exhibits
extracellular virucidal activity [144,145]. The United States Food and Drug Administra-
tion (FDA)-approved Na+/K+-ATPase inhibitors, ouabain and digoxin, have displayed
antiviral activities through several mechanisms. These glycosides act via inhibiting the
Na+/K+-ATPase pump, leading to alterations in the intracellular concentrations of Na+, K+,
and Ca2+, destabilizing the balance of several cellular biosynthetic signaling and vesicular
sorting pathways, thus halting JEV infection at the replication stage [146,147]. Ouabain
exerts therapeutic effects on JEV infection further by decreasing viral loads and alleviat-
ing pathological injuries in the brain, which significantly improves the rate of survival
of patients [147]. Ouabain may also block JEV infection by inducing the cellular stress
response [148]. Again, the breakdown of BBB by JEV infection might allow otherwise
impermeable ouabain to enter into the brain, bind the murine ATPase α2 and α3, and
inhibit viral replication in neurons. Mandipine might block the entry, replication, and
budding of JEV by downregulating intracellular Ca2+ [149]. Genistein and herbimycin
A reduce the effect of neurotoxicity induced by JEV and suppress the cachectin (TNF-α)
and leukocytic pyrogen (IL-1β) prompted by JEV at the transcriptional level [100,149].
IFN-induced protein with tetratricopeptide repeats 1 (IFIT1) was found to inhibit the repli-
cation of JEV by binding to the 5′ -triphosphate RNA and, most preferably, to the 5′ capped
2′-O unmethylated mRNA. NS2A was degraded by tripartite-motif-containing protein
52 (TRIM52) within a proteosome-dependent process through E3 ubiquitin synthetase
activity [150]. Overexpression of TRIM52 in BHK-21 cells directly displays E3 Ubiquitin
ligase activity and activation of the host’s innate immune system [151]. TRIM52 and nita-
zoxanide are antiviral compounds reported to possess anti-JEV activity by inhibiting the
replication machinery, validated through both in vitro and in vivo methods, suggesting
them as potential therapeutic options in the treatment of JE [151–153]. A number of nature-
derived drugs, namely Kulactone, Nimbolide, gedunin, ohchinin acetate, echinacoside,
echinacin, rutin, and cynaroside have been predicted to inhibit RdRp in silico methods,
can be validated through in vivo methods [129,154]. JEV expressing GFP reporter gene
have been successfully utilized to identify five hit drugs, i.e., lonafarnib, cetylpyridinium
chloride, cetrimonium bromide, nitroxoline and hexachlorophene via high throughput
screening [128,153].
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Table 4. Preclinically validated molecules inhibiting JEV infections.

S. No. Nature-Derived Compounds Mechanisms References

1 Arctigenin Decreases JEV-induced neuronal apoptosis, microglial activation, and caspase activity. [142]

2 Baicalein Extracellular virucidal activity. [145]

3 Cilnidipine Inhibits JEV in high-throughput screening assay (HTS) with EC50 of 6.52 µM. [155]

4 Cinaroside Inhibits non-structural protein (RdRp) in silico. [129]

5 Digoxin Reported to act as an inhibitor of the Na+/K+-ATPase pump. [146]

6 Echinacin Inhibits RdRp in silico. [129]

7 Echinacoside Inhibits RdRp in silico. [129]

8 FGIM-1-27 Inhibits JEV in high-throughput screening assay (HTS) with EC50 s of 3.21 µM. [155]

9 Gedunin Inhibits RdRp in silico. [154]

10 Genistein Reduces the effect of neurotoxicity induced by JEV and suppresses the cachectin (TNF-α) and leukocytic pyrogen
(IL-1β) prompted by JEV at the transcriptional level. [149]

11 Herbimycin A Reduces the effect of neurotoxicity induced by JEV and suppresses the cachectin (TNF-α) and leukocytic pyrogen
(IL-1β) prompted by JEV at the transcriptional level. [149]

12 IFIT 1 Inhibits JEV replication by binding to the 5′ -triphosphate RNA and, most preferably, to the 5′ capped 2′-O
unmethylated mRNA. [150]

13 Kaempferol-3-glucoside Inhibits RdRp in silico. [129]

14 Kulactone Inhibits RdRp in silico. [154]

15 Manidipine Inhibits intracellular Ca2+, which is required for JEV entry, replication, and budding. [149]

16 Mycophenolic acid
Reported antiviral activity of an immune suppressant as an anti-JEV drug via plaque reduction neutralization assay,
virus yield reduction assay, and cytopathic effect inhibition assay, accompanied by an IC50 of 3.1 µg/mL through

in vivo and in vitro experiments.
[156]

17 Niclosamide Inhibits JEV with EC50 of 5.80 µM [155]

18 Nimbolide Inhibits RdRp in silico. [154]

19 Nitazoxanide Inhibits the replication machinery, validated through both in vivo as well as in vitro methods, which suggests this
compound is a potential agent for JE treatment. [152,157]

20 Ohchinin acetate Inhibits non-structural protein (RdRp) in silico. [154]

21 Ouabain Reported against the Na+/K+-ATPase as an inhibitor during the replication of the JEV in the BALB/C mouse model [147]
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Table 4. Cont.

S. No. Nature-Derived Compounds Mechanisms References

22 PP2 Reduces the effect of neurotoxicity induced by JEV and suppresses the Cachectin (TNF-α) and leukocytic pyrogen
(IL-1β) prompted by JEV at the transcriptional level. [149]

23 Quercetagetin 7-glucoside Inhibits RdRp in silico. [129]

24 Rosmarinic acid Reduces induction of proinflammatory mediators, neuronal apoptosis, microglial activation, and caspase activation. [143]

25 Rutin Inhibits RdRp in silico. [129]

26 TRIM52
NS2A was degraded by TRIM 52 within a proteosome-dependent process through E3 Ubiquitin synthetase activity.

Overexpression of TRIM52 in BHK-21 cells directly shows E3 Ubiquitin ligase activity and activation of the host
innate immune system.

[151]



Viruses 2022, 14, 2686 18 of 25

Several other molecules also exhibit promising potential in modulating different molec-
ular mechanisms. IFN-stimulating genes can be utilized to form an antiviral microenviron-
ment by activating the innate immune response to fight against JEV [158]. Aloe-emodin is
well-known for this purpose to induce IFNs [159]. Ribavirin also displays rays of hope by
downregulating the synthesis of guanine nucleotides; however, it poses problems regarding
non-specificity [160]. Minocycline can reduce oxidative stress by inhibiting the generation of
free oxygen radicals [161]. Curcumin can lead to dysregulation of the ubiquitin-proteasome
system to minimize the generation of new viral particles [162]. Luteolin can be a potential
antiviral drug to treat JEV as it can inhibit the synthesis of E proteins [163]. Apoptozole
might be beneficial against JEV since it can hinder the functionality of HSP70 proteins [164].
Viral NS2B-NS3 protease can be inhibited by erythrosine B [165]. Activation and/or upreg-
ulation of ERK and MAPK pathways by dehydroepiandrosterone can be highly beneficial
in the management of JEV infection [166]. Gene silencing using siRNA holds immense
promise against viral infection, viz. domain II of E protein, the coding region of NS5, and
the coding sequences of E, M, and NSPs have been successfully silenced experimentally
against JEV infection [167]. Again, the E protein domain III binding peptide can be used
to inhibit the binding of E protein with the cellular receptor/s [168]. Belladonna acts
against JEV by reducing the activities of caspases 3 and 8 and inhibiting the activation of
microglia [169]. Amphotericin B has also depicted promise while repurposing by inhibiting
the synthesis of viral proteins [170]. Despite so much promise at the preclinical stages, the
clinical translation of a safe and effective treatment regimen against JEV is still awaited.
A significant issue encountered in many of these strategies is that they were effective
when delivered prior to or immediately following infection [171]. In general, it takes a
long time for symptoms to appear in a clinical setting, depending on incubation duration,
immunological response, and other factors. Treatment is usually initiated after the disease
has progressed for some time. As a result, antiviral medicines that are both preventive
and therapeutic against JEV are required. Although in vitro and in silico investigations can
provide information regarding a drug’s potential antiviral nature as well as evidence of its
cytotoxicity profile, a significant disadvantage connected with these study results is the
variable translation of the effects in human trials. Attempts to simulate a natural infection
in laboratory animals may not predict the intended results in humans accurately.

9. Conclusions

Understanding the mechanisms of JEV infection in the CNS is critical for proper
management of the same. Certain proinflammatory cytokines and chemokines alter BBB
permeability by suppressing the expressions of tight junction proteins, thus making entry
of JEV into CNS easier. However, CNS infection begins prior to BBB dysfunction, in
line with the characteristics of other flaviviruses. Upregulation of Th1 inflammatory
mediators plays havoc in the infection of CNS by JEV. Infected neurons start producing
CXCL10, which is further enhanced by the upregulation of IFN-γ. Activated glial cells
also produce CXCL10 and CCL5 to promote the migration of monocytes and NK cells
into the CNS. Proinflammatory mediators, e.g., IL-6, TNF-α, CCL2, and CCL5, induce
irreversible damage to neuronal cells. Interestingly, caveolin-1, GRP78, D2R, TLR7, and
Src signaling pathways are important not only during cancer formation but also during
JEV-mediated neurodegeneration.

Proinflammatory chemokines and/or cytokines in the CNS, but not JEV itself, promote
BBB malfunction during infection. JEV invades within CNS without prior disruption of
BBB and infects neurons. Infected neurons, in turn, produce chemokines that can induce
the activation of glial cells. In the sequence of things, activated glial cells further upregulate
the production of certain cytokines and chemokines. All these mediators act in tandem to
reduce the expressions of tight junction proteins in BBB, thereby damaging the integrity
of the same. Additionally, these mediators compromise the barrier function by inducing
increased expression of adhesion molecules on BBB endothelial cells, allowing for increased
infiltration of inflammatory cells from the periphery into CNS. Inflammatory infiltrates
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can again bring on neuroinflammation and neuronal injury. Current knowledge on how
signaling pathways drive the etiology of a panel of neurological disorders is not very clear,
in the sense that much remains to be known and decoded in terms of JEV infection signaling
pathway components and disease-causal linkages. Further mechanistic understanding of
neurological abnormalities will be useful in the creation of tailored therapeutics against
JEV infection.
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