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Abstract: The unprecedented growth of publicly available SARS-CoV-2 genome sequence data has
increased the demand for effective and accessible SARS-CoV-2 data analysis and visualization tools.
The majority of the currently available tools either require computational expertise to deploy them
or limit user input to preselected subsets of SARS-CoV-2 genomes. To address these limitations, we
developed ViralVar, a publicly available, point-and-click webtool that gives users the freedom to
investigate and visualize user-selected subsets of SARS-CoV-2 genomes obtained from the GISAID
public database. ViralVar has two primary features that enable: (1) the visualization of the spatiotem-
poral dynamics of SARS-CoV-2 lineages and (2) a structural/functional analysis of genomic mutations.
As proof-of-principle, ViralVar was used to explore the evolution of the SARS-CoV-2 pandemic in the
USA in pediatric, adult, and elderly populations (n > 1.7 million genomes). Whereas the spatiotempo-
ral dynamics of the variants did not differ between these age groups, several USA-specific sublineages
arose relative to the rest of the world. Our development and utilization of ViralVar to provide insights
on the evolution of SARS-CoV-2 in the USA demonstrates the importance of developing accessible
tools to facilitate and accelerate the large-scale surveillance of circulating pathogens.
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1. Introduction

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the continued
mutation and diversification of the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has resulted in the repeated emergence of new “variants of concern” (VOCs) with
increased infectivity, transmissibility, and/or immune evasion properties [1–5]. Each VOC
has been defined by a distinct set of protein mutations (missense or nonsynonymous substi-
tutions, in-frame insertions, and deletions) that confer unique functional properties [1,6–12].
For example, the Alpha (B.1.1.7*) VOC was defined using a set of nine Spike mutations
(N501Y, A570D, D614G, P681H, T716I, S982A, D1118H, 69-70∆, 144∆) that increased infec-
tivity [13], transmissibility [14], and resistance to monoclonal antibody therapeutics [15].
Especially within the Spike open reading frame, a greater proportion of missense compared
to synonymous mutations is indicative of strong positive selection for Spike proteins with
altered structure and function [16,17]. Continued SARS-CoV-2 genomic surveillance is
essential to identify new emergent variants with novel phenotypic properties that may
alter best practices in public health and clinical care.
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The remarkable global scientific response to the COVID-19 pandemic has led to the
generation of vast amounts of publicly available SARS-CoV-2 whole-genome sequence
data. Worldwide, most genome sequences are deposited in the GISAID public database
(gisaid.org) [18], and more than 13 million viral sequences from around the world have been
deposited as of 12 September 2022. This massive and ongoing SARS-CoV-2 sequencing
effort has provided a unique opportunity to study the virus’s evolution in exquisite detail.
However, at the same time, the volume and diversity of available sequences exacerbates
the complexity of the data analysis and calls for effective tools to allow researchers with
little or no computational expertise to perform detailed analyses of relevant genomic data.

In part to address this problem, several web-based tools have been developed to
facilitate the study of SARS-CoV-2 spatiotemporal dynamics, mutational frequency, and/or
three-dimensional (3D) protein structures [19–22]. Though useful for gaining broad in-
sights, these applications are often limited to the analysis of predetermined datasets
with minimal user control, such as COVIDCG [23], outbreak info [24], covariants [25],
2019nCoVR [26], CoV-GLUE [27], and COG-UK [28]. However, even tools that allow
the processing of user-defined data often accept a limited number of sequencing data
such as covdb (limit = 100) [29], coronApp [30] (limit ~100 MB or ~3500), and VirusViz
(limit = 50) [31]. In addition to the lack of options for large-scale data analysis, these tools
have limited analytical features for the multilevel analysis and visualization of SARS-CoV-2
lineages and their mutations (e.g., spatiotemporal visualization of lineages, linear or 3D
visualizations of mutations in the context of proteins and genomes).

Other tools and databases have been developed to study SARS-CoV-2 protein struc-
tures. One of these applications is SARS-CoV-2 3D [32] which provides tools for 3D
structure predictions and energy calculations to evaluate targets and design new potential
therapeutics. CoV3D [33] is a repository for 3D protein structures of SARS-CoV-2 and host
antibodies. Neither tool provides information on mutational changes in the context of the
3D structures. Other webservers such as the GISAID [18], covariants [25], and COG-UK [28]
provide limited 3D structural visualizations for only fixed sets of mutations (mostly clade-
defining) and only for the Spike protein. To the best of our knowledge, there are currently
two webservers that enable the visualization of mutations in the context of 3D protein struc-
tures for all SARS-CoV-2 proteins: Coronavirus3D [19] and COVID-3D [21]. However, both
servers have a fixed list of SARS-CoV-2 genomes/mutations in their databases and lack the
option to visualize mutations based on user-provided genomes. Although COVID-3D [21]
provides an option for the user to input variants, this is limited to only one protein at a
time and thus requires multiple file uploads to visualize genomic mutations in the context
of more than one protein. Moreover, both servers lack the capacity to examine mutational
patterns at selected time points in the pandemic, in selected geographical regions, and/or
among specific lineages.

Here, we present a new, web-based software application “ViralVar” that incorporates
user-selected genome data to visualize and study lineages over time by depicting the
distribution of mutations at both the nucleotide and protein levels as well as providing the
context of variants in the 3D structure of SARS-CoV-2 proteins. Protein visualizations pro-
vide detailed information on the functional protein domains and predicted B-cell epitopes.
Additionally, ViralVar provides a currently unique feature among similar applications that
allows for the binomial testing of protein mutations to identify potential over- and under-
mutated proteins, k-means clustering of genomes based on protein mutations to expedite
large-scale surveillance of new mutations, and the visualization of changes in the muta-
tional patterns of the virus over selected date ranges, within defined geographical regions,
and/or within or among lineages. A practical demonstration of the application of ViralVar
is given here by examining the relative dynamics of the evolution of SARS-CoV-2 in the
USA, using a total of 1,739,797 sequenced genomes collected in the USA between January
2020 and May 2022. The ViralVar webserver is freely available at http://viralvar.org/.

http://viralvar.org/
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2. Methods
2.1. General Software Workflow

The ViralVar webtool is implemented in the R programming language using Shiny,
an open-source R package for developing interactive web applications. Shiny implements
layout features available in Bootstrap, an HTML 4.01/shiny-css 1.7.1/shiny-javascript 1.7.1
framework. To add more advanced content to ViralVar, the user interface was customized
with HTML and Shiny’s HTML tag attributes, as well as custom cascading style sheets
(CSS) and other R packages listed in the context of the relevant sections below. Briefly,
SARS-CoV-2 genomic data retrieved from the GISAID [18] were used as input for Viral-
Var. The webapp is divided into two modules (Figure 1). In the first module, “Lineage
Dynamics”, data are processed to depict the spatiotemporal dynamics of SARS-CoV-2
lineages and clades in the form of stacked bars, area plots, and pie charts. The second
module “Mutational Analysis” visualizes mutation distributions along the SARS-CoV-2
genome and proteins (linear and 3D) and generates statistical analyses to identify over-
and under-mutated proteins. Users can interact with the server to explore and compare the
temporal dynamics of the lineages and mutations between the different sets of genomes
and/or VOCs. Each module provides various control options, allowing users to customize
analyses and view and export figures according to their requirements. The output files of
ViralVar are either high-resolution figures (PDF, PNG) or tables (tsv).
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Figure 1. General workflow of ViralVar and its two main modules. Input data reflecting SARS-CoV-2
sequences of interest can be downloaded directly from the GISAID public repository. In the “Lineage
Dynamics” module, the spatiotemporal dynamics of SARS-CoV-2 lineages and clades are represented
in the form of stacked bars, area plots, and pie charts over user-selected timeframes and geographical
areas. In the “Mutational Analysis” module, mutations are depicted in the context of the SARS-CoV-2
genome and relevant proteins (both primary sequence and 3D structural representations). This
module also provides options to perform statistical analyses to identify over- and under mutated
proteins over user-selected time periods and perform genome clustering within user- selected subsets.
More details are available in the ViralVar User Manual.
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2.2. Data Input

The GISAID is one of the largest global resources for sharing SARS-CoV-2 genome
sequences and associated clinical and demographic information [18]. GISAID data are
accessible to users through free registration via the GISAID website (https://gisaid.
org/) accessed on 31 May 2022. The database provides genome consensus sequences,
reference-based multiple sequence genome alignments, and lists of mutations for each
genome with the associated lineage or clade designations in tabular format. Data to be
downloaded from the database can be readily filtered to focus on dates of collection,
specific geographical regions, or selected lineages or clades. ViralVar accepts input data
from the GISAID in a tabular format that includes three sets of information for each
genome: (1) PANGO lineage (users can opt to manually add Nextclade designations),
(2) sample collection date, and (3) a list of protein mutations (denoted as “AA Substitu-
tions” in the GISAID data; required for “Mutational Analysis”). Detailed guidance on
retrieving GISAID data in the proper format for input into ViralVar is provided on the
“Home” tab of ViralVar. A limited set of 3892 SARS-CoV-2 sequences collected through
the Northwestern Medicine Healthcare (NMH) system in Chicago, IL, between February
2020 and May 2022, are included in the ViralVar webtool for example purposes and can
be viewed by checking the “Visualize Example Data” checkbox in each module. The
GISAID IDs are provided in Table S1.

2.3. Lineage Dynamics

The “Lineage Dynamics” module of ViralVar serves to provide tools for visualizing
changing trends in SARS-CoV-2 lineages/clades over time using temporal abundances
and geographical distributions. ViralVar uses the R package ggplot2 [34] to generate
visualizations reflecting the trend of changes in the absolute and relative abundances of
SARS-CoV-2 lineages over time in the input data set. After data input, the data are displayed
in a tabular format in the “Data Overview” tab. Note that for this module, only collection
date and PANGO lineage information are required. The “Area Charts” and “Bar Charts”
tabs illustrate the dynamics of lineage distributions over user-specified date ranges. The
“Geographical map” tab shows lineage distributions overlaid as pie charts on user-selected
geographical maps for the world, the USA, or individual USA states and territories again
over a user-specified date range. Geographical maps are drawn using the R package maps
and scatterpie. The phylogenetic nomenclature option allows users to customize output
data to use PANGO lineage, Nextclade clade, or World Health Organization-defined VOC
nomenclature. Tables and customizable figures are downloadable in a portable document
format (PDF).

2.4. Mutational Analysis

The “Mutational Analysis” module of ViralVar provides users with a suite of
tools to visualize the genomic and structural context of SARS-CoV-2 mutations. The R
package ggplot2 [34] is used to generate and annotate density plots. After data input,
the data are displayed in tabular format in the “Data Overview” tab. Note that for this
module, collection date, PANGO lineage, and amino acid (AA) substitution information
are required. The “Genome Distribution” tab depicts mutation density among uploaded
sequences across the SARS-CoV-2 genome. Briefly, the number of distinct mutation
events at each genomic position or protein residue is determined relative to a reference
sequence (NCBI: NC_045512.2) [35] and reported over a sliding 100 nucleotide window.
Position counts are calculated separately for insertions, deletions, and substitutions.
This method does not consider virus counts in its calculation (i.e., the number of
uploaded genomes with a particular mutation) such that each mutation event is counted
only once. This avoids potential biases in reporting mutational frequency due to unequal
amplification or sequencing across the genome as well as bias sampling [16]. In the
“Protein Distribution” tab, the frequencies of genomes (virus counts) with mutations at
specific protein residues are visualized using the R package ggplot2 [34] and plotly R

https://gisaid.org/
https://gisaid.org/
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package (interactive visualization). Separate plots can be generated for all SARS-CoV-2
proteins, both structural and nonstructural. Protein domain boundaries are indicated as
described in the literature [16,17]. The IEDB server (Bepipred Linear Epitope Prediction
2.0 at http://www.iedb.org/) [36] (accessed on 31 October 2021) was used to predict
B-cell epitopes, which are indicated above the protein schematic. In the “3D Protein
Structure” tab, the R library package r3dmol is used to visualize mutations in the context
of 3D protein structures. The 3D coordinates were obtained from the Protein Data Bank
(PDB) with PDB accession numbers provided for each structure [37]. For proteins
with no available 3D structure, models, as predicted by AlphaFold, were used when
available [38]. Alternatively, the positions of transmembrane helices for proteins with
no available 3D structures were identified using the TMHMM 2.0 algorithm [39]. Lists
of the top mutations along with their frequencies for each protein can be downloaded
in the form of tab delimited tables. The 3D protein illustrations can be downloaded as
portable network graphics (PNG) files. Each of the above tabs includes a date slider to
allow users to restrict data to a specific date range and a “Select VOC/VOI” option to
limit output to a specified VOC or VOI.

The above mutational analysis tabs are further complemented by two tabs for
statistical analysis and k-means clustering. In the “Statistical Analysis” tab, ViralVar
utilizes the binomial test to identify individual proteins within the uploaded dataset
that have significantly different mutation frequencies. The method has been previously
applied to identify significantly under- and over-mutated SARS-CoV-2 proteins [16,17].
Briefly, the arguments for the binomial test are the observed number of distinct protein
mutations in a certain protein (the “number of successes”), the total number of distinct
protein mutations in all SARS-CoV-2 proteins (the “number of trials”), and the length
of a given protein divided by the length of all SARS-CoV-2 proteins (the “expected
probability of success”). An example of binomial calculations is provided below. For
more details, please refer to [16].

To simplify the calculations in this method, we hypothesize that each protein mu-
tation is an independent event and that all SARS-CoV-2 proteins and all residues have
the same probability of being mutated. Therefore, this method applies the binomial test
to assess the null hypothesis: that protein mutations are distributed randomly across all
SARS-CoV-2 proteins.

P(MP, MT) =
(

MT
MP

)
P(p)MP(1− (P(p))MT−MP

MT = the total number of protein mutations observed for all proteins (for example,
325 mutations in user input data)

MP = the number of protein mutations in the target protein (for example, 66 mutations
in Spike in user input data)

P(p) = length protein/length proteome (e.g., length Spike/total length = 1273/
9930 = ~0.13)

P(MP, MT) =
(

325
66

)
0.1366(1− (0.13)325−66 = 0.00046

Based on the null hypothesis, we expect only 42 mutations in Spike, given that 66 out of
the total 325 mutations identified in SARS-CoV-2 proteins are located in Spike, the length of
the Spike protein is of 1273 amino acids, and the entire SARS-CoV-2 proteome is 9930 long.
However, the binomial test p-value (0.00046) suggests rejection of the null hypothesis and
indicates a significantly higher number of mutations in the Spike proteins compared to
the background (entire proteome). ViralVar conducts the above calculation for user input
data; therefore, MP, MT, and P(p) will be different for each input dataset. An option to
exclude clade signature mutations is provided to avoid bias in the binomial test across
highly divergent clades. ViralVar also provides control options to customize binomial test

http://www.iedb.org/
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parameters, including the option to adjust the p-values for multiple comparisons. As above,
the tab includes a date slider to allow users to restrict data to a specific date range and a
“Select VOC/VOI” option to limit output to a specified VOC or VOI. A results table of the
analysis can be downloaded as a tsv file.

In the “Genome Clustering” tab, ViralVar employs k-means clustering to facilitate
rapid investigation of emerging clusters of genomes with specific protein mutation. As
the selection of mutations in SARS-CoV-2 evolution has been shown to be largely im-
pacted by positive selection, driven by changes in SARS-CoV-2 protein structures and
functions [16,17], targeting protein mutations could cluster genomes relative to the phe-
notype. For instance, a common feature of SARS-CoV-2 genomes with the N501Y spike
mutation (e.g., Alpha, Beta and Gamma strains) was enhanced infectivity and transmissi-
bility over the previous variants [14].

The clustering of genomes based on pairwise distance-based methods is computa-
tionally intensive and might take days to run depending on the computational resources.
The runtime for the first step of these approaches (the calculation of distance matrices for
all pairs of genomes) increases exponentially with the increase in the number of genomes
(Figure S3). In contrast, k-means clustering of SARS-CoV-2 genomes has been proposed
in the recent literature as a rapid method to investigate emerging variants and tackle the
computational challenges in large-data analysis [40,41]. Due to its simplicity and being
computationally inexpensive, the k-means clustering of genomes, based on mutations in
specific proteins, can be quickly and repeatedly run on large-scale genomic datasets (such
as ~11.1 M SARS-CoV-2 genomes).

ViralVar uses k-means to group genomes-based on protein mutations. To avoid
the effects of spurious mutations (e.g., due to sequencing or assembly errors), the
clustering of the genomes is calculated only from protein mutations with a default
minimum mutation frequency (MMF) of >0.005, although this cutoff is user-adjustable.
To determine the optimal number of clusters, ViralVar repeats k-means clustering for
numbers of clusters (determined based on the number of variables in the input file) and
calculates the average silhouette width (ASW) index using the R package NbClust [42].
In the calculation of the ASW, ViralVar uses unique genomes (duplicated genomes with
identical mutational patterns are removed) to make calculations less computationally
expensive. However, the final clustering is applied to all of the genomes in the input
data to produce counts of the genomes in each cluster. As with the previously described
functions, VOC/VOI and date range are selectable. The protein selection option allows
for targeting mutations along a protein of interest. Tables and customizable figures in a
PDF format are downloadable.

2.5. Applying ViralVar to Assess Dynamics of SARS-CoV-2 Evolution

The following was retrieved from the GISAID for the collection dates between
1 January 2020 and 15 May 2022 (downloaded 31 May 2022): a total of 1,739,797 SARS-
CoV-2 high-quality complete genome assemblies (the GISAID criteria, including N
content <5%) from the USA for which patient age, collection date (day/month/year),
and geographic location available. To study the dynamics of the SARS-CoV-2 evolution
using ViralVar, sequenced samples were classified into three populations by age: chil-
dren (0–18 years), adults (18–64 years), and elderly (65+ years) (Table 1). The list of the
GISAID identifiers that compose each group is provided in Table S1. Sequence data for
each age group were uploaded separately and analyzed using ViralVar. Mutation distri-
butions were also compared between the SARS-CoV-2 genomes collected and sequenced
for different age groups in the USA. Additionally, to show the application of ViralVar to
smaller sample sets (i.e., from regions with lower rates of genome sequencing relative to
the USA), we targeted 248 SARS-CoV-2 genome sequences collected in Nigeria between
15 December 2020 and 15 January 2021 and 90 sequences collected from Cape Town,
South Africa between 15 December 2020 and 15 January 2021. The list of the GISAID
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identifiers is provided in Table S1. Each of the Cape Town and Nigeria samples were
processed using ViralVar.

Table 1. Details of SARS-CoV-2 data used in this study. Data retrieved from GISAID and each of the
three data subsets were separately analyzed using ViralVar.

Sequences Mean Age Median Age

Children (<18) 282,106 10.22 10.5
Adults (18–65) 1,287,058 38.92 37.5
Elderly (>65) 170,633 74.42 72.5

3. Results and Discussion
3.1. Spatiotemporal Dynamics of SARS-CoV-2 VOCs in the USA

The United States has experienced one of the world’s highest COVID-19 burdens
during the pandemic, with a total of 86.4 M confirmed cases and 1.01 M deaths as of 31 May
2022. Whereas some reports detailing the evolution of the COVID-19 pandemic in select
cities and states are available [43,44], there are few comprehensive reports at a national
level. To demonstrate the capabilities of ViralVar, we downloaded all high-quality whole
genome sequence data available in the GISAID on specimens collected in the USA between
1 January 2020 and 15 May 2022 (n = 1,739,797 SARS-CoV-2 sequences total). These data
were sorted by age (children, adults, elderly) and uploaded into the ViralVar webtool
for analysis.

The temporal dynamics of the VOCs across age groups in the USA were visualized
using the “Area Chart” tab in the “Lineage Dynamics” module of ViralVar (Figure 2A). The
results indicate that the dynamics of the VOCs were relatively similar for all age groups.
The SARS-CoV-2 lineage B.1.1.7, designated by the WHO as “Alpha”, was the first named
VOC and likely emerged in the United Kingdom (UK) in September 2020. Alpha rapidly
displaced other circulating lineages in the USA and became one of the top circulating VOCs
in the world in early 2021 [45]. The emergence of Alpha in the USA can be tracked back
to November 2020 (Figure 2B), coincident with a spike of new cases and deaths between
November 2020 and March 2021 (Figure S1). Using the date range feature to focus on
dynamics during these months, Alpha emerges as the dominant variant at the tail-end of
the surge in cases, suggesting that it was not responsible for the rise in cases but rather took
over after the contraction in cases of the previous variant (Figure 2B).

Utilizing the “Geographical Map” feature in the “Lineage Dynamics” module, the
distribution of VOCs collected between January 2020 and May 2022 was visualized for each
age group by state (Figure 3A). The lineage distributions were similar across states between
all age groups, with the Omicron and Delta VOCs making up the majority of cases, followed
by Alpha (Figures 3A and S2). In narrower timeframes, however, distinct spatiotemporal
trends become more obvious. Using the date control feature, we adjusted this analysis
to examine cases between November 2020 and March 2021 (Figure 3B). Whereas Alpha
lineages made up the majority of cases in most states over this time period, region-specific
trends emerged. For example, the Epsilon VOI was responsible for a substantial number of
cases in southwestern states, whereas the Iota VOI was more prevalent in the northeast.
Illinois specifically reported a substantial number of cases of the Gamma VOC that were
not reflected in the neighboring states. These region-specific trends were consistent across
age groups (Figure 3B).
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Figure 2. Area plots reflecting (different colors represent variants of concern see legend for details)
the relative abundance of variants of concern and variants of interest collected in the USA over
time. (A) Frequency of indicated VOCs and VOIs over time in specimens collected between
January 2020 and May 2022 in the USA (n = 1,739,797 sequences from GISAID as of 31 May 2022).
(B) Frequency of indicated VOCs and VOIs over time in specimens collected between November
2020 and March 2021. Specimens were divided into three age groups: children (up to 18 years),
adults (18–64 years), and the elderly (65 years or more). The number of sequences per age group
is indicated above each plot. Each subset of genomes was processed separately using the ViralVar
“Lineage Dynamics” module.

3.2. Mutational Analysis of Alpha Variant Sublineages in the USA

We subset the USA data explained earlier (n = 1,739,797 SARS-CoV-2 sequences) to
only include genomes assigned to the Alpha lineage (n = 140,100). Additionally, genomes
assigned to the Alpha lineage collected from the entire world (n = 906,114 excluding the
USA) were retrieved from the GISAID as of 31 May 2022. Using the ViralVar “Mutational
Analysis” module, the mutation profile for the Alpha VOC in the USA was compared
to specimens from other countries. All ages were grouped together for this analysis due
to the relatively small sample size of the under 18 and over 65 populations compared to
adults in this dataset. Using the “Protein Distribution” tab, we visualized the mutational
frequency in the Alpha VOC sequences at sites across Spike and NSP12 in both the USA
and in the rest of the world (Figure 4). Whereas the defining mutations of the Alpha
VOC were universally present, a distinct subset of mutations were more prevalent in the
USA, specifically the Spike mutation K1191N and the NSP12 mutation P227L. To further
investigate these mutations, all genomes containing Spike K1191N (n = 51,713) and NSP12
P227L (n = 190,869) mutations were retrieved from the GISAID and uploaded into ViralVar.
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A majority of genomes with the Spike K1191N mutation were in the Alpha variant genomes
(80.4%, 41,558 of 51,713 genomes), of which the vast majority came from the USA (93.5%,
38,837 of 41,558 genomes) (Figure 5A, top). Similarly, 169,314 genomes with the NSP12
P227L mutation were classified as Alpha variants (88.7%), of which 104,435 genomes were
collected in the USA (61.6%) (Figure 5A, bottom).
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Figure 3. Distribution of SARS-CoV-2 variants of concern and interest by US state. Pie charts represent
the proportion of SARS-CoV-2 VOIs and VOCs in each US state as reported to GISAID (as of 31 May
2022) (A) between January 2020 and May 2022 and (B) between November 2020 and March 2021.
Specimens were divided into three age groups: children (up to 18 years), adults (18–64 years), and
the elderly (65 years or more). The number of sequences per age group is indicated above each plot.
The size of pie charts represents the relative frequency of sequenced data in each state. Each subset of
genomes was visualized separately using the ViralVar “Geographical Map” feature.
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Figure 4. Absolute frequency of mutations in SARS-CoV-2 Spike and NSP12 among Alpha VOCs.
SARS-CoV-2 genome data for all sequences assigned to an Alpha variant lineage (B.1.1.7 and Q.*)
from the USA (n = 140,100) and rest of the world (n = 906,114, the USA cases excluded) were retrieved
from GISAID as of 31 May 2022. Plots represent the absolute frequency of mutations at each amino
acid position across Spike (top) and NSP12 (bottom) in sequences from the USA (left) and rest of
the world (right). Deletions (red), insertions (blue), and substitutions (green) are plotted in different
colors at each position. Boundaries for protein domains of Spike and NSP12 proteins were obtained
from [16,17]. Predicted B-cell epitopes are highlighted above in teal, as predicted by [36]. Each subset
of genomes was visualized separately using the ViralVar “Protein Distribution” feature.

The Spike K1191N and NSP12 P227L appear to be recurrent mutations that have
emerged in several other VOCs (i.e., Delta, Omicron, and Gamma); however, there is a
lack of evidence regarding their role in virus infectivity, transmissibility, and/or clinical
outcomes. To gain insight into their possible functional roles, we examined the protein
context of each mutation using the “3D Protein Structure” feature in ViralVar (Figure 5B).
The NSP12 P227L mutation is located in the Nidovirus RdRp-associated nucleotidyl trans-
ferase (NiRAN) domain. Although it is surface-exposed, it is far from the RNA binding or
enzymatic active site. That being said, a nearby mutation in the NiRAN domain, N198S, has
been recently reported as a potential antiviral resistance mutation to the NSP12-targeting
drug, remdesivir [46]. Given the high level of conservation among coronavirus RNA-
dependent RNA polymerases (RdRps) [47] and the recurring, but infrequent, prevalence of
this mutation, it may also be that the P227L mutation confers some selective benefit but
at a fitness cost to the virus [46]. The Spike mutation K1191N is located in the S2 subunit
in the heptad repeat 2 (HR2) subdomain of the Spike protein, which is involved in host
cell membrane fusion and viral entry (Figure 5B) [48]. Other Spike protein mutations in
the HR2 subdomain, such as V1176F, have been shown to augment the stability of Spike
and have been associated with increased disease severity and mortality [49–51]. More
studies are required to determine the functional consequences of both Spike K1191N and
NSP12 P227L.
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Figure 5. Analysis of Alpha VOC mutations predominantly found in USA specimens. (A) Relative
frequency of Alpha VOC SARS-CoV-2 genomes harboring Spike K1191N (top) or NSP12 P227L
(bottom) mutations. Calculations are based on GISAID data as of 31 May 2022. (B) Spike K1191N
(top) or NSP12 P227L (bottom) mutations highlighted on available protein structures using the
ViralVar “3D Protein Structure” feature. The Spike receptor-binding domain (RBD) and N-terminal
domain (NTD) are colored in light blue and pink, respectively (D-I-TASSER model). NSP12 is
colored in light blue with the NiRAN domain highlighted in pink (PDB: 6XEZ). (C) Euclidean
distance-based k-means clustering of Alpha VOC SARS-CoV-2 genomes based on Spike and NSP12
mutations was performed using the “Genome Clustering” feature. Heatmaps represent the percent
of genomes with a specific mutation within each cluster. Only protein mutations present in more
than two thirds (70%) of genomes are shown here. (D) Time-resolved phylogenetic tree built by
Nextstrain (https://nextstrain.org/ncov/gisaid/north-america/) accessed 14 October 2021 using a
North America-focused subsampling between December 2020 and August 2021 (n = 399 sequences)
visualized using R package ggtree. Yellow and hot pink branches and tips highlight genomes
containing the Spike K1191N and NSP12 P227L mutations, respectively.

3.3. ViralVar K-Means Clustering Feature Identifies Subclusters of the Alpha Variant in the USA

To better understand the genomic context of these mutations, we used the “Clustering
Analysis” feature in ViralVar to identify co-occurring groups of mutations. K-means
clustering based on Euclidean distance was applied to all of the Alpha VOC sequences
collected in the USA, using a minimum mutation frequency cutoff of 0.005 and with a focus
on the Spike and NSP12 proteins. The clustering of the Alpha genomes based on Spike
mutations resulted in three distinct clusters (Figure 5C), two of which were defined by
the presence (cluster 3) or absence (cluster 1) of K1191N. A third cluster showed a minor
presence of K1191N but concurrently lacked the S982A and/or T716I mutations (cluster 2).
The clustering of the Alpha genomes based on NSP12 mutations identified two distinct
clusters distinguished solely by the P227L mutation (Figure 5C). To determine if these

https://nextstrain.org/ncov/gisaid/north-america/
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clusters can also be identified using phylogenetic analysis, we examined these mutations
using the Nextstrain webserver (Figure 5D). The time-resolved phylogenetic trees from
Nextstrain suggest that the Spike K1191N mutation is monophyletic, whereas the P227L
mutation arose in at least two distinct branches (Figure 5D). The k-means clustering is
largely in accordance with the phylogenetic analysis but suggests that additional mutational
information, including synonymous mutations and those that occur outside of the open
reading frame of interest, capture additional information not accounted for in this approach.

One of the limitations of the phylogenetic tree-based analysis, clustering, and visual-
ization of SARS-CoV-2 genomes and investigating protein mutations is the computational
cost that multiplies with the number of available genomes. The majority of studies using
phylogenetic trees to study SARS-CoV-2 variants of concern (VOCs), therefore, must rely on
subsampling approaches [52,53]. The k-means-based clustering of SARS-CoV-2 genomes
based on Euclidean distance is one way to overcome this challenge as the method calculates
the distance of each datapoint to the centroid using pairwise distances instead, decreasing
the computational cost of analyzing the additional sequences (Figure S3). Furthermore, the
k-means clustering of genomes based on protein mutations can be leveraged to the group
genomes in a way directly related to the phenotype [54,55]. The congruence between the
approach taken by ViralVar (Figure 5C) and the phylogenetic analysis results (Figure 5D)
support the potential use of k-means clustering for the rapid analysis of large genomic
datasets to facilitate tracking emerging protein mutations using a generic clustering method.
This method could also be readily adapted and applied to other viruses. That being said,
this approach is not suitable for making specific evolutionary inferences and so can be
considered complementary to traditional phylogenetic-tree-based methods and useful for
initial analyses and hypothesis generation.

3.4. Significant Nonrandom Distribution of Mutations in SARS-CoV-2 Proteins

To explore the different mutational profiles in genomes collected from different age
groups in the USA, we used the “Genome Distribution” feature of ViralVar to visualize
the mutations in all of the collected specimens from the USA split by age group (Figure 6).
Overall, the analyses of the mutation profiles of the SARS-CoV-2 genomes were relatively
similar for the three age groups in the USA samples (Figure 6). Compared to structural and
accessory proteins, nonstructural proteins seem to undergo a higher mutational constraint
(Figure 6 and Table S2), consistent with the previous reports [16]. The slight variability in
the mutational patterns between different data subsets could be partly attributed to the
differences in the population size and sampling dates between regions and age groups.

One of the most noteworthy differences when comparing the results from the first
year of the pandemic [16] and results obtained in this study is the increased frequency
of protein indel events, especially the accumulation of insertions in the Spike NTD. This
trend was consistent for samples collected across all age groups, though distinct deletion
events appeared more prevalent in elderly populations (for example, in the NSP15 open
reading frame, Figure 6). The increased frequency of recurrent indels and their nonrandom
distribution is believed to be an adaptive response mechanism to elevated global herd
immunity, resulting from vaccination, infection, or both [17,56,57]. Spike NTD indels could
alter neutralizing epitopes in the region and are thought to result in reduced antibody
protection against VOCs that harbor these indels [56].
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Figure 6. Genomic distribution of SARS-CoV-2 mutations for three age groups. Each plot depicts
the number of distinct protein mutations in a 100 nucleotide sliding window across the SARS-CoV-2
genome in specimens collected between January 2020 and May 2022 in the USA (n = 1,739,797
sequences from GISAID as of 31 May 2022). Sequences were divided into six groups based on the
age of patients (children (up to 18 years), adults (18–64 years), and elderly (65 years or more)). The
total number of sequences used per age group is indicated. Each subset of genomes was processed
separately using the ViralVar “Lineage Dynamics” module.

Using the “Statistical Analysis” feature of ViralVar, we further identified significant
accumulations of mutations in mostly the structural proteins of SARS-CoV-2 with two
exceptions for the nonstructural proteins (NSP1 and NSP2). Of note, a higher concentra-
tion of mutations was observed in NSP1 (average odds ratio = 1.46, q-value = 0 across
all age groups), NSP2 (average odds ratio = 1.3, q-value = 0 across all age groups), N
(average odds ratio = 1.6, q-value = 0 across all age groups), NS6 (average odds ratio = 1.6,
q-value = 0 across all age groups), NS7a (average odds ratio = 3.1, q-value = 0 across all age
groups), NS7b (average odds ratio = 1.8, q-value = 0 across all age groups), NS8 (average
odds ratio = 3.1, q-value = 0 across all age groups), and Spike (average odds ratio = 1.4,
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q-value = 0 across all age groups) (Table S2). All these proteins are involved in interactions
with the host immune system [58–60]. Recurrent NSP1 substitutions and indels have been
found to accumulate on the protein surface and near epitope regions [17] and are thought
to adversely affect the host’s immune response and vaccine efficiency [61,62]. For instance,
NSP1 ∆79-89 induces a lower IFN-I response in the infected Calu-3 cells [62], highlighting
the biological importance of mutations in NSP1 and other nonstructural proteins. The
significantly higher concentration of mutations in the specific proteins involved in host
immune interactions, the emergence of new types of protein mutations (in-frame indels),
and the expansion of mutations to new proteins or protein regions suggest the virus is
evolving to combat the host immune system. Taken together, nonrandom distribution
of the mutations in different SARS-CoV-2 proteins suggests proteins undergo different
evolutionary pressures driven partly by the host immune system.

3.5. ViralVar Potential in Identifying Novel Variants in Small and Local Cohorts

Using ViralVar, we explored the evolution of 90 SARS-CoV-2 genome sequences
collected in Cape Town, South Africa between 1 October 2020 and 30 November 2020
and 248 sequences collected in Nigeria between 15 December 2020 and 15 January 2021.
Our analysis suggests the presence of two clusters based on the Spike protein mutations
in the Cape Town samples (Figure S4A). Cluster 1 samples were all assigned to the Beta
VOC (B.1.351) (Figure S4B) which was first described in South Africa [1]. We identified
three distinct clusters of genomes based on Spike mutations in the Nigeria sample cohort
(Figure S4C). The second cluster in this analysis corresponds to the Eta variant (B.1.525)
(Figure S4D) which was identified as a variant local to West Africa [63]. These analyses
show the potential of ViralVar for the analysis and tracking of mutations in small and
regionally collected datasets.

4. Conclusions

The emergence of new variants of SARS-CoV-2 with higher transmissibility and en-
hanced immune evasion highlights the need for ongoing SARS-CoV-2 genomic surveillance.
This work has been greatly facilitated by public sequence repositories such as the GISAID
which contained available data for more than 11.1 M genome sequences as of 31 May 2022.
At the same time, this vast amount of genomic data has increased the demand for more
flexible and multilevel analysis platforms to help study the virus evolution. To complement
and expand upon previously developed analysis tools, we created ViralVar, a webtool for
visualizing and researching SARS-CoV-2 lineages and mutational patterns over time. We
have shown that ViralVar can be deployed as a point-and-click tool to rapidly investigate
the spatiotemporal evolution of large numbers of SARS-CoV-2 genomes. Overall, our
findings utilizing ViralVar offer important insights into pathogen evolution dynamics and
spread in the USA. This study demonstrates that ViralVar can be successfully used to study
the evolution of SARS-CoV-2 and help in improving global COVID-19 mitigation plans as
the pandemic continues to evolve.

As part of a larger project for facilitating the study of virus evolution and mutational
patterns, the development of ViralVar will continue for the study of other viruses. Addi-
tional future work includes the addition of multiple data input options (i.e., consensus
sequences or multiple sequence alignments) to facilitate users in analyzing their own
data. The continued enrichment of the list of the structural and functional properties
of SARS-CoV-2 and other viral proteins in ViralVar will also take place on a regular ba-
sis. The ViralVar databases will be updated at regular intervals based upon information
provided for other viruses and updates in public databases for protein structural and
functional properties. ViralVar complements current tools for studying the massive number
of SARS-CoV-2 genomes and can provide a user-friendly platform for the multilevel study
of SARS-CoV-2 evolution.
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