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Abstract: Over 240 million people worldwide are chronically infected with Hepatitis B Virus (HBV), a
hepatotropic DNA virus with an evolutionary root of over 400 million years. Persistent HBV infection
exhibits distinct and diverse phases of disease, from minimal liver pathology to fulminant Hepatitis,
that vary in duration and severity among individuals. Although huge progress has been made in
HBV research which has yielded an effective prophylactic vaccine and potent antiviral therapy, our
understanding of its virology and immunobiology is still far from complete. For example, the recent
re-discovery of serum HBV RNA in chronic Hepatitis B (CHB) patients has led to the proposal
of noncanonical viral particles such as RNA virion and capsid-derived immune complex (Capsid-
Antibody-Complexes, CACs) that contradict long-established basic theory. Furthermore, the existence
of capsid-derived immune complex may hint at novel mechanism of HBV-induced liver disease. Here,
we summarize the past and recent literature on HBV-induced immune complex. We propose that
the release of capsid-derived particles by HBV has its deep evolutionary origin, and the associated
complement activation serves as an indispensable trigger for intrahepatic damage and a catalyst for
further cell-mediated immunopathology.
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1. Introduction

Among the viruses that cause liver diseases, HBV is responsible for the greatest burden
globally, with over 240 million people being chronic HBV surface antigen (HBsAg) carriers.
HBV-induced chronic liver inflammation leads to liver fibrosis, cirrhosis, and hepatocel-
lular carcinoma (HCC) [1]. HBV vaccination programs deployed in many countries have
greatly lowered the HBV seropositive rate, particularly in the youngest age groups [2].
Nevertheless, due to unequal socioeconomic status, the decrease in viral prevalence is
highly variable globally, with some areas still experiencing a rise. These facts highlight the
difficulty in eradicating this disease solely by vaccination [3,4].

Being a member of the hepadnaviridae family with a partially double-stranded circular
DNA genome, HBV infects humans and limited species of non-human primates [5]. The
canonical model of HBV holds that the complete virion, also called the Dane particle, is
composed of a viral genome covalently linked with viral polymerase, encapsidated by
core antigens, and enveloped by an outer layer of viral surface antigens [6,7]. In addition,
spherical or filamentous surface particles that are devoid of viral nucleic acid exist in a large
quantity that dwarfs that of Dane particles. Once the persistent infection is established, a
reservoir of covalently closed circular DNA (cccDNA) can be established as the genetic
template for the viral replication cycle and constantly replenished by intracellular recycling
of relaxed circular DNA. In the meantime, random integration of the linear viral genome
is pervasive and contributes to the persistent antigenemia of HBsAg and carcinogenesis
of HBV [8].
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HBV-specific adaptive immune response, i.e., potent CD8 and CD4 T cell response
and production of neutralizing antibody against HBsAg, was proven to be essential for
acute resolution of the disease and prevention of re-infection as evidenced by chimpanzee
studies [9,10]. Unfortunately, in chronic patients, HBV-specific CD8 T cells are depleted
in number and are dysfunctional in target killing [11]. The humoral response in chronic
disease is typified by a high titer of anti-HBcAg, however, this does not confer protection
and even causes antibody-mediated liver damage [12]. The presence of antibodies against
HBsAg is protective against further infection but is difficult to induce in CHB patients. The
contemporary theory holds that as a non-cytopathic virus, the liver pathology caused by
CHB is largely due to the inflammatory response that is primarily elicited by cell-based
immunopathy executed by cytotoxic T lymphocytes and Natural Killer cells etc. [11].

2. New Surprises in HBV Study

Despite decades of active research, the canonical model of HBV virology and immuno-
biology as described above has recently encountered a series of challenges. In terms of
viral particles, genome-free (empty) virions existing in large quantities in patient serum
were identified [13]. More interestingly, a population of circulating HBV RNA has been
rediscovered [14] that exists in quantities that are about 1/10 of HBV DNA {Butler, 2018
#151}. The factors that associate with the level of circulating HBV RNA are HBV genotype
(higher in genotype B while lower in genotype D), basal core promoter mutation (lower
HBV RNA) and ALT (positive correlation) [8,15]. The exact viral form that harbors HBV
RNA is still under debate [16–18]. It is proposed that viral pregenomic RNA (pgRNA) is
encapsidated and enveloped to form pgRNA virion [16]. Others reported HBV spliced
variants as major species of HBV RNA [19]. By performing an unbiased analysis of cell
culture supernatant and serum of CHB patients, we uncovered a much more complex
picture of HBV-RNA-containing viral particles [20]. We put forward a hypothesis that the
majority of the circulating RNA was enclosed in an alternative type, i.e., Capsid-Antibody-
Complexes (CACs). This theory is based on several lines of evidence as follows. First,
ultracentrifugation separation followed by northern blot analysis revealed that the bulk
of extracellular HBV RNA is within the secreted viral capsid which is widely known to
be actively released in hepatoma cell lines. The large majority of the RNA was heteroge-
neous in length as opposed to a uniform size distribution. Second, further investigation
in serum of CHB patients showed that high level of HBV RNA correlated with the de-
tection of immature viral DNA, mostly single-stranded DNA, which is known not to be
released by enveloped virions [21]. Third, native agarose gel analysis demonstrated that
these viral particles have a much slower electrophoretic migration pattern, distinct from
that of the mature virions and naked capsid in patient serum. Lastly, the involvement of
immunoglobulin is supported by the co-precipitation of viral RNA and DNA from serum
of CHB patients using Protein A/G beads. The immature nature of these particles, the
heterogeneous electrophoretic behavior and the participation of antibodies prompted us to
hypothesize that HBV nucleocapsids with varying levels of maturity could be released into
the circulation where they encounter a high titer of anti-core antibodies and form immune
complexes, hence Capsid-Antibody-Complexes (CACs) [20]. The exact mechanism leading
to the different egress pathways of virions and naked capsids is not well understood. As a
major determinant in the HBV release process, the large, middle and small surface antigen
is thought to be play a major role. Paradoxically, although the large surface antigen is
essential for complete virion secretion [22], its overexpression caused intracellular retention
of virions in the multivesicular bodies and heightened the release of naked capsid. Con-
versely, forced expression of M/S surface antigen promoted the secretion of virions and
decreased the release of naked capsid [23]. These results suggest that the relative ratio of
large, middle and small surface antigens modulate the molecular decision regarding the
release of enveloped or unenveloped viral particles in a non-linear fashion.
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3. Immune Complexes in Viral Infections

The hypothesis we proposed seemed to significantly deviate from the canonical the-
ories. Nevertheless, immune complex formation during viral infection is not at all a
new concept. Non-neutralizing antibodies induced after primary Dengue Virus infection
can inadvertently enhance secondary infection due to the accelerated internalization of
immune complex via Fcγ-receptor-mediated entry and cause serious complications of
dengue hemorrhagic fever [24,25]. In Hepatitis C Virus (HCV) infection, viral particles
and core proteins induce a subset of B cells to expand and synthesize a large amount of
IgM with rheumatoid factor activity. These IgM molecules bind to HCV particles and form
cold-precipitable, multimolecular immune complexes called cryoglobulins in 25 to 30% of
individuals. Cryoglobulin-induced illness, known as cryoglobulinemic vasculitis, includes a
variety of symptoms in the skin, kidney, musculoskeletal systems and nervous system [26].

Immune complexes were also reported very early on after the identification of HBV.
In 1969, using a complement fixation assay, Shulman and Barker reported a high rate
of “anticomplementary activity” in individuals infected with HBV [27]. Using electron
microscopy, Almeida and Waterson further provided visual evidence of large aggregates in
chronic active and fulminant Hepatitis [28]. They suggested the existence of the immune
complex of “Australia antigen”, either in the condition of antigen excess or in the condition
of antibody excess depending on the phase of the infection. One year after these reports,
Gocke et al. reported significant prevalence (four in eleven cases) of Australia antigen
in biopsy-proven polyarteritis nodosa. The deposition of the antigen on muscle tissues
of the patient, as evidenced by immunofluorescence, supports the pathogenetic role of
HBsAg-derived immune complex [29]. Similarly, Combes et al. reported the membranous
glomerulonephritis associated with HBsAg antigenemia [30]. In a comprehensive retrospec-
tive study, Trepo et al. analyzed 55 cases with histologically confirmed polyarteritis and
found that 69% of them had either HBsAg or anti-HBs. However, no correlation was found
between immune complexes and liver disease suggesting that HBsAg immune complex
was not pathogenic for the liver [31]. A more recent clinical study provided evidence that
remission of polyarteritis nodosa is primarily related to control of HBV replication. No
specific genetic variations in the HBV genome predispose to this disease [32].

4. Capsid-Derived Immune Complex: Revival of an Old Concept

While the existence of HBsAg-derived immune complex has been a consensus, the
proposition of the widespread existence of capsid-derived immune complex in CHB pa-
tients has long been seen as unorthodox. Nevertheless, traces of evidence were also found
in the literature. In 1979, De Vos et al. performed a comprehensive electron microscopy
study on eighteen liver biopsies of HBsAg positive patients. In addition to the widespread
HBsAg dots in the cisternae of the endoplasmic reticulum (ER) and naked capsid in the
nucleus and nuclear pore, “core particles surrounded by a narrow cloud of semi electron
dense material” were occasionally found in the space of Disse with appearance distinct
from that of the Dane particle, which was observed as single core particle surrounded
by a clear halo and a dark ring resided in the cisternae of the ER [33]. Similarly, Yamada
et al. provided another electron microscopy observation. They found that in addition to the
budding of core particles into the cisternae of ER, they were also often found adjacent to
the cell membrane, suggestive of a direct budding from the surface of the cell [34]. In 1982,
Trevisan et al. reported that after elution of the immunoglobulin from liver biopsy samples
of HBV patients, the released IgG showed specificity against HBV core antigen instead
of surface antigen [35]. Indeed, the enhancement of complement-mediated cytotoxicity
after the addition of core-specific antibody was observed in ex vivo cultures of hepatocytes
collected from CHB patients, and the magnitude of cytotoxicity seemed to be related to the
severity of liver disease of the patients from who biopsies were taken [36].

Although the above observations hinted at the formation of CACs in vivo, the idea
of direct release of core particles was still under debate at the time. Perhaps the most
convincing evidence came from studies conducted by Moller et al. who investigated
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the longitudinal serological manifestations in HBV patients with concomitant immun-
odeficiency which resulted in a delayed production of antibody to core protein [37,38].
Remarkably, in a careful longitudinal observation of an acute Hepatitis B patient with
acquired immunodeficiency syndrome (AIDS), they detected free, uncomplex HBcAg using
radioimmunoassay and autoradiography and the appearance of free HBcAg preceded the
elevation of serum ALT suggesting that it was not released by cell lysis [37]. Following
up on this patient, using electron microscopy, they further demonstrated that the viral
particles purified from patients with negative anti-HBc formed aggregates with exogenous
monoclonal HBc antibody while the same procedure did not produce an aggregate in
samples with positive anti-HBc [38]. These results unambiguously proved the release of
core particles into circulation in a special condition of delayed anti-core production. In a
common case of HBV infection, such events will be complicated by the rapid neutralization
by anti-core antibody resulting in a heterogeneous population with varying molecular mass
and in vivo kinetics of disposal.

It should be noted, however, that following the publications by Moller et al.,
Possehl et al. [39] conducted a similar investigation in HBV infected individuals who
failed to develop anti-HBc. Using an ELISA assay specifically for core antigen (sensi-
tivity 0.3 ng/mL), they did not detect free capsid in these individuals while stripping the
surface antigen detected significant signal (as high as 20 ng/mL). Due to the very different
patients and analytical methods used in the Moller and Possehl study, it is impractical to
dismiss either side’s conclusion. It remains possible that the naked capsid consists of a
low percentage (less than 1%), of the whole core-containing viral population in Possehl’s
experimental condition. More recently, Hong et al. conducted a comprehensive analysis
of the core and precore proteins in the supernatant of HBV-infected primary hepatocyte,
HBV transgenic and humanized chimeric mice [40]. They detected a minute amount of
capsid using ultracentrifugation followed by native gel agarose electrophoresis, which was
interpreted as a result of cell lysis. Regardless of its origin, this nevertheless proved its exis-
tence, which may trigger a positive feedback amplification precipitated by CACs-induced
inflammation in CHB as discussed below.

5. Passive or Active Release of HBV Capsid?

Ever since the concept of CACs formation in vivo was put forward, significant doubts
over whether they are actively released or passively formed due to liver damage have
been constantly raised. Although it is virtually impossible to dismiss the possibility of
passive release just as one cannot completely dismiss the accidental release, via cell lysis, of
a trace amount of Dane particle in a large population of virions, there are multiple pieces
of evidence supporting the natural route of capsid release. Recent advancements in the
evolutionary origin of HBV provided a unique perspective. By systematically analyzing
the Sequence Read Archives deposited by numerous studies (>25,000 experiments) Lauber
et al. recovered 17 complete genome sequences of HBV-related virus in teleost fishes. They
found that 13 of the 17 genomes constitute a group dubbed “nackednavirueses” with all
the key elements of hepadnaviruses except the preS/S ORF [41]. Revitalization of these
genomes in cell culture reveals that they are replication-competent exogenous viruses with
characteristic polymerase-primed replication initiation and are capable of producing non-
enveloped extracellular progeny particles. Phylogenetic reconstruction of these genomes
with all other HBV-related viruses indicates that the enveloped and non-enveloped viruses
separated over 400 million years ago, before the rise of the tetrapod. A crucial implication
of this study is that the release of naked capsids in human infection “might be a mere
vestigial feature retained from their distant past as non-enveloped viruses” [41].

Despite the backing of the evolutionary clue, proving the active secretion of naked
capsids in HBV-infected individuals is much trickier due to the intertwined nature of
virological and immunological parameters in clinical observations leaving interpretation
of causal relationship difficult. However, a longitudinal analysis of HBV infection in indi-
viduals with delayed anti-HBc development provided crucial insights [37]. Moller et al.
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followed the serological manifestations of a case of acute Hepatitis B with a transition to
chronicity due to HIV co-infection. Strikingly, free HBcAg in serum was detected during the
early acute phase prior to the rise of ALT which was followed by the delayed appearance
of anti-HBc. This unequivocally shows that liver damage is not the prerequisite for the
release of naked capsids. Nevertheless, it is plausible that the initial secretion of capsids,
which form CACs in circulation, may lead to subsequent liver damage due to the intrinsic
proinflammatory nature of immune complex. The CACs-prompted secondary inflamma-
tory responses may further facilitate the passive release of naked capsids through a positive
feedback loop mechanism known in autoimmune diseases, i.e., the early release of minute
amount of autoantigens leads to chronic inflammation followed by further release of more
antigens as a result of tissue damage [42]. If the level of serum HBV RNA were assumed
to be a surrogate marker for CACs, then a significant correlation between HBV RNA and
ALT level in a large group of 1409 untreated adults with chronic Hepatitis B [8] may be
interpreted as supporting evidence. Furthermore, we have developed a novel assay directly
quantifying serum CACs levels and preliminary data has shown its close association with
serum ALT and intrahepatic inflammation (manuscript in preparation).

6. Possible Mechanism for CACs-Elicited Liver Pathology

Considering the intrinsic stimulatory nature of the immune complex, the notion that
CACs may cause intrahepatic inflammation is hardly surprising. Nevertheless, the detailed
mechanism leading to this outcome is largely undefined. The fragmented experimental
evidence gathered so far may provide clues as follows (Figure 1).
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6.1. Complement-Mediated Direct Lysis

As early as 1981, researchers had found that core specific IgG were bound to liver
cell membranes in chronic Hepatitis [35]. Subsequent ex vivo studies showed that the
addition of anti-HBc supplemented with complement in primary culture of hepatocytes
isolated from chronic active patients resulted in enhanced cytotoxicity [36]. These data
suggest that core particles may be present on the hepatocyte cell membrane and can
bind to its antibodies leading to complement fixation and subsequent cell lysis. A more
recent investigation revealed the humoral immune response against HBV core antigen
may be responsible for the pathogenesis of HBV-induced acute liver failure. The authors
suggest that when abundantly expressed, HBcAg is available on hepatocyte surface, and
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uninfected bystander hepatocytes may also bind to core antigen released from dying
cells. They also demonstrated the potent lysis of hepatocytes by anti-core antibody and
complement-mediated cell lysis [43].

6.2. Antibody-Dependent Cellular Cytotoxicity (ADCC)

Another feature of antibody-binding and complement engagement on target tissues is
the accompanied cellular immune responses. NK cells armed with anti-core antibodies may
execute the cell lysis. Indeed, hypercytolytic activity of NK cells correlates with liver injury
in chronic Hepatitis B [44]. Whether the anti-core antibody is necessary for this activity
remains to be tested.

6.3. Complement-Mediated Chemotaxis and Leukocyte Infiltration

Another possible mechanism is the recruitment of proinflammatory leukocytes by the
by-products (e.g., C3a, C5a) of the complement activation cascade which exhibit chemotac-
tic or vasoactive properties. It is worth noting that the role of portal myofibroblasts, which
are mostly believed to be differentiated from hepatic stellate cells [45], in amplifying the
leukocyte infiltration should not be overlooked. In particular, the complement activation
and its subsequent deposition on myofibroblasts might serve as an important trigger for
their activation which has been shown in a similar scenario in chronic kidney disease [46].
In addition to their ability to alter the extracellular matrix in the portal tract, activated my-
ofibroblasts are highly chemotactic for lymphocytes which further promote their adhesion
and invasion into the liver lobules [47].

6.4. Antigen Presentation Mediated by Core-Specific B Cells

An unexpected role of B cells and plasma cells in the pathogenesis of HBV-induced
acute liver failure was revealed by a detailed histological, transcriptomic analysis of liver
tissues [43,48]. Massive intrahepatic accumulation of cells expressing CD20 and IRF4 was
documented in these tissues. The further sequencing of antibody variable regions demon-
strated that the overwhelming B cell response was targeting the core antigen. It is conceiv-
able that these cells are recruited to liver lobules via their surface B cell receptors having
high affinity to HBV capsid and serving as intrahepatic antigen presentation cells [49] and
promote subsequent antigen-specific CD4 and CD8 T cell response. Whether this mecha-
nism also operates in immune-active chronic Hepatitis B remains to be demonstrated.

6.5. Epitope Spreading and the Nurturing of Autoimmunity

Finally, the accumulation of CACs within the liver lobule might also foster the produc-
tion of autoantibodies such as anti-asialoglycoprotein receptors [50], which were repeatedly
found in chronic active Hepatitis B [50–52]. Indeed, antibody to asialoglycoprotein receptor
was induced after inoculation of woodchuck Hepatitis virus [53] and triggered complement-
mediated hepatocytolysis [54]. A mechanism called “epitope spreading” whereby au-
toreactive CD4 T cells are activated within a proinflammatory intrahepatic milieu might
encourage the production of autoantibodies by otherwise anergic B cells [42].

7. Conclusions and Future Directions

Despite its discovery for over half a century, the study of HBV continues to bring
new surprises, from its evolutionary origin to its complex virological and immunological
manifestations in vivo. The realization that hepadnaviruses originated from non-enveloped
viruses reveals the de novo generation of the preS/S ORF through “overprinting” of the
pre-existing polymerase-coding sequence in an alternative reading frame around 400 mil-
lion years ago [41]. Although the exact evolutionary driver for this switch is unknown,
acquisition of viral envelop may favor its specialization to a single organ (liver) and co-
evolution with the host to evade the adaptive immune response [55,56] that is increasingly
reactive toward viral capsid. The ancestral link with non-enveloped nackednaviruses also
highlights the vestigial feature of active capsid release by HBV. This notion is also sup-
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ported by virological and ultrastructural investigations in the clinic, particularly in cases
with delayed anti-core production [37,38].

Although it is easy to see the immunogenic potential of capsid-derived immune com-
plex, its exact role in the pathogenesis or resolution of HBV infection is largely unexplored.
The lack of a sensitive and reliable test for CACs constitutes an immediate problem. We
have developed a simple microwell-based assay which produces a semi-quantitative read-
out of the level of CACs in serum. A retrospective, cross-sectional study is underway to
delineate its feature during the natural course of HBV infection. Preliminary data uncovered
a close link between CACs levels and liver inflammation consistent with our expectation
(manuscript in preparation). Further longitudinal studies on CHB patients undergoing
antiviral therapy are also highly desirable to reveal the kinetics of CACs in relation to
varying prognoses of treatment. Finally, the mechanism underlying CACs-mediated liver
injury is vital for understanding the molecular and cellular players involved in this process.
Histological and molecular pathology assays can provide spatially resolved, single-cell data
which are crucial to decipher the cell types and molecular markers that are downstream of
the CACs-initiated immunopathology. It is anticipated that the revitalization of the concept
of capsid-specific immune complex and further exploration of its pathophysiological roles
would lend unexpected insight into the pathogenesis of CHB and provide rationales for
the development of next-generation therapeutics aiming at a functional cure.
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