Evolution of CCR5 and CCR2 Genes in Bats Showed Multiple Independent Gene Conversion Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Retrieval
2.2. Detection of Recombination and Phylogenetic Analysis
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olson, T.S.; Ley, K. Chemokines and chemokine receptors in leukocyte trafficking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R7–R28. [Google Scholar] [CrossRef] [Green Version]
- Stephens, B.; Handel, T.M. Chemokine receptor oligomerization and allostery. Prog. Mol. Biol. Transl. Sci. 2013, 115, 375–420. [Google Scholar]
- Mellado, M. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001, 20, 2497–2507. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, T.L.; Doms, R.W. Chemokines and coreceptors in HIV/SIV-host interactions. AIDS 1998, 12, S17–S26. [Google Scholar]
- Kaur, H.; Sehgal, R.; Rani, S. Duffy antigen receptor for chemokines (DARC) and susceptibility to plasmodium vivax malaria. Parasitol. Int. 2019, 71, 73–75. [Google Scholar] [CrossRef]
- Marques, R.E.; Guabiraba, R.; Del Sarto, J.L.; Rocha, R.F.; Queiroz, A.L.; Cisalpino, D.; Marques, P.E.; Pacca, C.C.; Fagundes, C.T.; Menezes, G.B.; et al. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology 2015, 145, 583–596. [Google Scholar] [CrossRef]
- Ntumngia, F.B.; Thomson-Luque, R.; Pires, C.V.; Adams, J.H. The role of the human duffy antigen receptor for chemokines in Malaria susceptibility: Current opinions and future treatment prospects. J. Recept. Ligand Channel Res. 2016, 9, 1–11. [Google Scholar]
- Vischer, H.F.; Nijmeijer, S.; Smit, M.J.; Leurs, R. Viral Hijacking of human receptors through heterodimerization. Biochem. Biophys. Res. Commun. 2008, 377, 93–97. [Google Scholar] [CrossRef]
- Kozireva, S.; Rudevica, Z.; Baryshev, M.; Leonciks, A.; Kashuba, E.; Kholodnyuk, I. Upregulation of the chemokine receptor CCR2B in Epstein-Barr virus-positive Burkitt lymphoma cell lines with the latency III program. Viruses 2018, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-C.; Lam, S.N.; Acharya, P.; Tang, M.; Xiang, S.-H.; Hussan, S.S.-U.; Stanfield, R.L.; Robinson, J.; Sodroski, J.; Wilson, I.A.; et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 2007, 317, 1930–1934. [Google Scholar] [CrossRef] [Green Version]
- Abayev, M.; Moseri, A.; Tchaicheeyan, O.; Kessler, N.; Arshava, B.; Naider, F.; Scherf, T.; Anglister, J. An extended CCR5 ECL2 peptide forms a helix that binds HIV-1 gp120 through non-specific hydrophobic interactions. FEBS J. 2015, 282, 1906–1921. [Google Scholar] [CrossRef]
- Dragic, T. An overview of the determinants of CCR5 and CXCR4 Co-receptor function. J. Gen. Virol. 2001, 82, 1807–1814. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Perez, J.; Rueda, P.; Alcami, J.; Rognan, D.; Arenzana-Seisdedos, F.; Lagane, B.; Kellenberger, E. Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). J. Biol. Chem. 2011, 286, 33409–33421. [Google Scholar] [CrossRef] [Green Version]
- Vàzquez-Salat, N.; Yuhki, N.; Beck, T.; O’Brien, S.J.; Murphy, W.J. Gene conversion between mammalian CCR2 and CCR5 chemokine receptor genes: A potential mechanism for receptor dimerization. Genomics 2007, 90, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Carmo, C.R.; Esteves, P.J.; Ferrand, N.; van der Loo, W. Genetic variation at chemokine receptor CCR5 in leporids: Alteration at the 2nd extracellular domain by gene conversion with CCR2 in oryctolagus, but not in sylvilagus and lepus species. Immunogenetics 2006, 58, 494–501. [Google Scholar] [CrossRef]
- Abrantes, J.; Carmo, C.R.; Matthee, C.A.; Yamada, F.; van der Loo, W.; Esteves, P.J. A shared unusual genetic change at the chemokine receptor type 5 between oryctolagus, bunolagus and pentalagus. Conserv. Genet. 2011, 12, 325–330. [Google Scholar] [CrossRef]
- Esteves, P.J.; Abrantes, J.; van der Loo, W. Extensive gene conversion between CCR2 and CCR5 in domestic cat (Felis Catus). Int. J. Immunogenet. 2007, 34, 321–324. [Google Scholar] [CrossRef]
- Perelygin, A.A.; Zharkikh, A.A.; Astakhova, N.M.; Lear, T.L.; Brinton, M.A. Concerted evolution of vertebrate CCR2 and CCR5 genes and the origin of a recombinant equine CCR5/2 gene. J. Hered. 2008, 99, 500–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, D.C. Gene conversion among chemokine receptors. Gene 2000, 246, 239–245. [Google Scholar] [CrossRef]
- Chomel, B.B.; Stuckey, M.J.; Boulouis, H.-J.; Setién, A.A. Bat-related zoonoses. In Zoonoses-Infections Affecting Humans and Animals; Springer: Dordrecht, The Netherlands, 2015; pp. 697–714. [Google Scholar]
- Wang, Q.; Qi, J.; Yuan, Y.; Xuan, Y.; Han, P.; Wan, Y.; Ji, W.; Li, Y.; Wu, Y.; Wang, J.; et al. Bat origins of MERS-CoV supported by bat Coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 2014, 16, 328–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Seyran, M.; Pizzol, D.; Adadi, P.; El-Aziz, T.M.A.; Hassan, S.S.; Soares, A.; Kandimalla, R.; Lundstrom, K.; Tambuwala, M.; Aljabali, A.A.A.; et al. Questions concerning the proximal origin of SARS-CoV-2. J. Med. Virol. 2021, 93, 1204–1206. [Google Scholar] [CrossRef]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.; Lau, S.; Woo, P.; Yuen, K.-Y. Bats as a continuing source of emerging infections in humans. Rev. Med. Virol. 2007, 17, 67–91. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Cummings, M.P. BAMBE, DnaSP, ENCprime/SeqCount, LAMARC, MacClade, MEGA, Modeltest, MrBayes, PAML, PAUP*, PHYLIP, r8s, readseq, Seq-Gen, Sites, TreeView. In Dictionary of Bioinformatics and Computational Biology; Hancock, J.M., Zvelebil, M.J., Eds.; Wiley-Liss: Hoboken, NJ, USA, 2004; p. 318. ISBN 978-0-471-43622-5. [Google Scholar]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Almeida, F.C.; Simmons, N.B.; Giannini, N.P. A Species-level phylogeny of old world fruit bats with a new higher-level classification of the family pteropodidae. Am. Mus. Novit. 2020, 2020, 1. [Google Scholar] [CrossRef]
- Gahbauer, S.; Pluhackova, K.; Böckmann, R.A. Closely related, yet unique: Distinct homo-and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol. PLoS Comput. Biol. 2018, 14, e1006062. [Google Scholar] [CrossRef]
- Hernanz-Falcón, P.; Rodríguez-Frade, J.M.; Serrano, A.; Juan, D.; del Sol, A.; Soriano, S.F.; Roncal, F.; Gómez, L.; Valencia, A.; Martínez-A, C.; et al. Identification of amino acid residues crucial for chemokine receptor dimerization. Nat. Immunol. 2004, 5, 216–223. [Google Scholar] [CrossRef]
- Metzger, K.J.; Thomas, M.A. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins. BMC Evol. Biol. 2010, 10, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, A.P.; Águeda-Pinto, A.; Pinheiro, A.; Rebelo, H.; Esteves, P.J. Evolution of CCR5 and CCR2 Genes in Bats Showed Multiple Independent Gene Conversion Events. Viruses 2022, 14, 169. https://doi.org/10.3390/v14020169
Fernandes AP, Águeda-Pinto A, Pinheiro A, Rebelo H, Esteves PJ. Evolution of CCR5 and CCR2 Genes in Bats Showed Multiple Independent Gene Conversion Events. Viruses. 2022; 14(2):169. https://doi.org/10.3390/v14020169
Chicago/Turabian StyleFernandes, Alexandre P., Ana Águeda-Pinto, Ana Pinheiro, Hugo Rebelo, and Pedro J. Esteves. 2022. "Evolution of CCR5 and CCR2 Genes in Bats Showed Multiple Independent Gene Conversion Events" Viruses 14, no. 2: 169. https://doi.org/10.3390/v14020169
APA StyleFernandes, A. P., Águeda-Pinto, A., Pinheiro, A., Rebelo, H., & Esteves, P. J. (2022). Evolution of CCR5 and CCR2 Genes in Bats Showed Multiple Independent Gene Conversion Events. Viruses, 14(2), 169. https://doi.org/10.3390/v14020169