Differential Modulation of Innate Antiviral Profiles in the Intestinal Lamina Propria Cells of Chickens Infected with Infectious Bursal Disease Viruses of Different Virulence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. Chicken Embryos and Chickens
2.3. Experimental Design
2.4. Immunohistochemical Detection of the IBDV Antigen
2.5. Isolation of ILP Cells of Birds
2.6. Reverse Transcription Real-Time Quantitative PCR (RT-qPCR)
2.7. Statistical Analysis
2.8. Ethical Statement
3. Results
3.1. Colonization of IBDV in ILP Cells and the Replication of IBDV in BF
3.2. Upregulation of the Innate Antiviral Response in ILP Cells
3.3. Activation of the Intestinal Macrophages
3.4. Enhanced Cytokine Response in ILP Cells
3.5. Differential Regulation of Antiviral Pathway Modulated by IBDVs with Different Virulence
3.6. Differential Modulations of the Macrophage and Cytokine Response by Different Virulent IBDV Strains in ILP Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, H.; Islam, M.R.; Raue, R. Research on infectious bursal disease—The past, the present and the future. Vet. Microbiol. 2003, 97, 153–165. [Google Scholar] [CrossRef]
- Van den Berg, T.P. Acute infectious bursal disease in poultry: A review. Avian Pathol. 2000, 29, 175–194. [Google Scholar] [CrossRef]
- Wyeth, P.J.; Chettle, N.J. Use of infectious bursal disease vaccines in chicks with maternally derived antibodies. Vet. Rec. 1990, 126, 577–578. [Google Scholar]
- He, X.; Xiong, Z.; Yang, L.; Guan, D.; Yang, X.; Wei, P. Molecular epidemiology studies on partial sequences of both genome segments reveal that reassortant infectious bursal disease viruses were dominantly prevalent in southern China during 2000–2012. Arch. Virol. 2014, 159, 3279–3292. [Google Scholar] [CrossRef]
- Abed, M.; Soubies, S.; Courtillon, C.; Briand, F.X.; Allee, C.; Amelot, M.; De Boisseson, C.; Lucas, P.; Blanchard, Y.; Belahouel, A.; et al. Infectious bursal disease virus in Algeria: Detection of a novel lineage of highly pathogenic reassortant viruses. Infect. Genet. Evol. 2018, 60, 48–57. [Google Scholar] [CrossRef]
- Jackwood, D.J.; Stoute, S.T.; Crossley, B.M. Pathogenicity of Genome Reassortant Infectious Bursal Disease Viruses in Chickens and Turkeys. Avian Dis. 2016, 60, 765–772. [Google Scholar] [CrossRef]
- Fan, L.; Wu, T.; Hussain, A.; Gao, Y.; Zeng, X.; Wang, Y.; Gao, L.; Li, K.; Wang, Y.; Liu, C.; et al. Novel variant strains of infectious bursal disease virus isolated in China. Vet. Microbiol. 2019, 230, 212–220. [Google Scholar] [CrossRef]
- Mahgoub, H.A.; Bailey, M.; Kaiser, P. An overview of infectious bursal disease. Arch. Virol. 2012, 157, 2047–2057. [Google Scholar] [CrossRef]
- Li, L.; Kubasová, T.; Rychlik, I.; Hoerr, F.J.; Rautenschlein, S. Infectious bursal disease virus infection leads to changes in the gut associated-lymphoid tissue and the microbiota composition. PLoS ONE 2018, 13, e0192066. [Google Scholar] [CrossRef] [Green Version]
- Befus, A.D.; Johnston, N.; Leslie, G.A.; Bienenstock, J. Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer’s patches. J. Immunol. 1980, 125, 2626–2632. [Google Scholar]
- Liebler-Tenorio, E.M.; Pabst, R. MALT structure and function in farm animals. Vet. Res. 2006, 37, 257–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.; Kaufer, I.; Reinacher, M.; Weiss, E. Immunofluorescent studies of early virus propagation after oral infection with infectious bursal disease virus (IBDV). Zentralbl. Veterinarmed. B 1979, 26, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Saif, Y. Infectious bursal disease and hemorrhagic enteritis. Poult. Sci. 1998, 77, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, Y.; She, R.; Xu, J.; Liu, L.; Xiong, J.; Yang, Y.; Sun, Q.; Peng, K. Reduced mucosal injury of SPF chickens by mast cell stabilization after infection with very virulent infectious bursal disease virus. Vet. Immunol. Immunopathol. 2009, 131, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.E.; García-Sastre, A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev. 2001, 12, 143–156. [Google Scholar] [CrossRef]
- Frieman, M.; Ratia, K.; Johnston, R.E.; Mesecar, A.D.; Baric, R.S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol. 2009, 83, 6689–6705. [Google Scholar] [CrossRef] [Green Version]
- Rauf, A.; Khatri, M.; Murgia, M.V.; Jung, K.; Saif, Y.M. Differential modulation of cytokine, chemokine and Toll like receptor expression in chickens infected with classical and variant infectious bursal disease virus. Vet. Res. 2011, 42, 85. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Chen, Y.; Kang, S.; Chen, G.; Wei, P. Differential Regulation of chTLR3 by Infectious Bursal Disease Viruses with Different Virulence In Vitro and In Vivo. Viral Immunol. 2017, 30, 490–499. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Han, H.; Yuan, J.; Li, Z. Comparison of the expression of cytokine genes in the bursal tissues of the chickens following challenge with infectious bursal disease viruses of varying virulence. Virol. J. 2010, 7, 364. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Chen, G.; Yang, L.; Xuan, J.; Long, H.; Wei, P. Role of naturally occurring genome segment reassortment in the pathogenicity of IBDV field isolates in Three-Yellow chickens. Avian Pathol. 2016, 45, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Alim, G.A.; Saif, Y.M. Immunogenicity and antigenicity of very virulent strains of infectious bursal disease viruses. Avian Dis. 2001, 45, 92–101. [Google Scholar] [CrossRef]
- Lucio, B.; Hitchner, S.B. Response of susceptible versus immune chicks to killed, live-modified, and wild infectious bursal disease virus vaccines. Avian Dis. 1979, 23, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.D.; Parrott, D.M. Preparation and purification of lymphocytes from the epithelium and lamina propria of murine small intestine. Gut 1981, 22, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sfeir, R.M.; Dubarry, M.; Boyaka, P.N.; Rautureau, M.; Tomé, D. The mode of oral bovine lactoferr in administration influences mucosal and systemic immune responses in mice. J. Nutr. 2004, 134, 403–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.C.; Wu, C.C.; Lin, T.L. Chicken melanoma differentiation-associated gene 5 (MDA5) recognizes infectious bursal disease virus infection and triggers MDA5-related innate immunity. Arch. Virol. 2014, 159, 1671–1686. [Google Scholar] [CrossRef]
- He, Y.; Xie, Z.; Dai, J.; Cao, Y.; Hou, J.; Zheng, Y.; Wei, T.; Mo, M.; Wei, P. Responses of the Toll-like receptor and melanoma differentiation-associated protein 5 signaling pathways to avian infectious bronchitis virus infection in chicks. Virol. Sin. 2016, 31, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Daviet, S.; Van Borm, S.; Habyarimana, A.; Ahanda, M.L.; Morin, V.; Oudin, A.; Van Den Berg, T.; Zoorob, R. Induction of Mx and PKR failed to protect chickens from H5N1 infection. Viral Immunol. 2009, 22, 467–472. [Google Scholar] [CrossRef]
- Meng, S.; Yang, L.; Xu, C.; Qin, Z.; Xu, H.; Wang, Y.; Sun, L.; Liu, W. Recombinant chicken interferon-α inhibits H9N2 avian influenza virus replication in vivo by oral administration. J. Interferon Cytokine Res. 2011, 31, 533–538. [Google Scholar] [CrossRef]
- Abdul-Careem, M.F.; Hunter, B.D.; Sarson, A.J.; Mayameei, A.; Zhou, H.; Sharif, S. Marek’s disease virus-induced transient paralysis is associated with cytokine gene expression in the nervous system. Viral Immunol. 2006, 19, 167–176. [Google Scholar] [CrossRef]
- Abdul-Careem, M.F.; Hunter, B.D.; Parvizi, P.; Haghighi, H.R.; Thanthrige-Don, N.; Sharif, S. Cytokine gene expression patterns associated with immunization against Marek’s disease in chickens. Vaccine 2007, 25, 424–432. [Google Scholar] [CrossRef]
- He, X.; Gan, S.; Xiong, Z.; Xuan, J.; Liao, Y.; Wei, P. Development and application of real time quantitative RT-PCR assay for IBDV detection. Southwest China J. Agric. Sci. 2013, 26, 798–802. [Google Scholar]
- Glantz, S.A. Primer of Biostatistics; McGraw-Hill Medical: New York, NY, USA, 2012; pp. 432–433. [Google Scholar]
- Chen, G.; He, X.; Yang, L.; Wei, P. Antigenicity characterization of four representative natural reassortment IBDVs isolated from commercial three-yellow chickens from Southern China reveals different subtypes co-prevalent in the field. Vet. Microbiol. 2018, 219, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Pikuła, A.; Lisowska, A.; Jasik, A.; Śmietanka, K. Identification and assessment of virulence of a natural reassortant of infectious bursal disease virus. Vet. Res. 2018, 49, 89. [Google Scholar] [CrossRef] [Green Version]
- Morla, S.; Deka, P.; Kumar, S. Isolation of novel variants of infectious bursal disease virus from different outbreaks in Northeast India. Microb. Pathog. 2016, 93, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wu, T.; Wang, Y.; Hussain, A.; Jiang, N.; Gao, L.; Li, K.; Gao, Y.; Liu, C.; Cui, H.; et al. Novel variants of infectious bursal disease virus can severely damage the bursa of fabricius of immunized chickens. Vet. Microbiol. 2020, 240, 108507. [Google Scholar] [CrossRef]
- Xu, A.; Pei, Y.; Zhang, K.; Xue, J.; Ruan, S.; Zhang, G. Phylogenetic analyses and pathogenicity of a variant infectious bursal disease virus strain isolated in China. Virus Res. 2020, 276, 197833. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Zhang, Y.; Qiao, Y.; Deng, Q.; Chen, R.; Chen, J.; Huang, T.; Wei, T.; Mo, M.; et al. The emerging naturally reassortant strain of IBDV (genotype A2dB3) having segment A from Chinese novel variant strain and segment B from HLJ 0504-like very virulent strain showed enhanced pathogenicity to three-yellow chickens. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Ingrao, F.; Rauw, F.; Lambrecht, B.; van den Berg, T. Infectious Bursal Disease: A complex host-pathogen interaction. Dev. Comp. Immunol. 2013, 41, 429–438. [Google Scholar] [CrossRef]
- Liu, A.; Pan, Q.; Li, Y.; Yan, N.; Wang, J.; Yang, B.; Chen, Z.; Qi, X.; Gao, Y.; Gao, L.; et al. Identification of Chicken CD74 as a Novel Cellular Attachment Receptor for Infectious Bursal Disease Virus in Bursa B Lymphocytes. J. Virol. 2020, 94, e01712-19. [Google Scholar] [CrossRef]
- Han, C.; Zeng, X.; Yao, S.; Gao, L.; Zhang, L.; Qi, X.; Duan, Y.; Yang, B.; Gao, Y.; Liu, C.; et al. Voltage-Dependent Anion Channel 1 Interacts with Ribonucleoprotein Complexes To Enhance Infectious Bursal Disease Virus Polymerase Activity. J. Virol. 2017, 91, e00584-17. [Google Scholar] [CrossRef] [Green Version]
- Brennan, K.; Bowie, A.G. Activation of host pattern recognition receptors by viruses. Curr. Opin. Microbiol. 2010, 13, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Botos, I.; Wang, Y.; Leonard, J.N.; Shiloach, J.; Segal, D.M.; Davies, D.R. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 2008, 320, 379–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldaghayes, I.; Rothwell, L.; Williams, A.; Withers, D.; Balu, S.; Davison, F.; Kaiser, P. Infectious bursal disease virus: Strains that differ in virulence differentially modulate the innate immune response to infection in the chicken bursa. Viral Immunol. 2006, 19, 83–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, K.; Taniguchi, T. IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern recognition receptors. Nat. Rev. Immunol. 2006, 6, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Cormican, P.; Lloyd, A.T.; Downing, T.; Connell, S.J.; Bradley, D.; O’Farrelly, C. The avian Toll-Like receptor pathway—Subtle differences amidst general conformity. Dev. Comp. Immunol. 2009, 33, 967–973. [Google Scholar] [CrossRef]
- Kim, T.H.; Zhou, H. Functional Analysis of Chicken IRF7 in Response to dsRNA Analog Poly (I:C) by Integrating Overexpression and Knockdown. PLoS ONE 2015, 10, e0133450. [Google Scholar]
- Ouyang, W.; Qian, J.; Pan, Q.; Wang, J.; Xia, X.; Wang, X.; Zhu, Y.; Wang, Y. gga-miR-142-5p attenuates IRF7 signaling and promotes replication of IBDV by directly targeting the chMDA5′s 3′ untranslated region. Vet. Microb. 2018, 221, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Kedzierska, K.; Crowe, S.M. The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr. Med. Chem. 2002, 9, 1893–1903. [Google Scholar] [CrossRef]
- Khatri, M.; Sharma, J.M. Modulation of macrophages by infectious bursal disease virus. Cytogenet. Genome Res. 2007, 117, 388–393. [Google Scholar] [CrossRef]
- Way, S.J.; Lidbury, B.A.; Banyer, J.L. Persistent Ross River virus infection of murine macrophages: An in vitro model for the study of viral relapse and immune modulation during long-term infection. Virology 2002, 301, 281–292. [Google Scholar] [CrossRef]
- Käufer, I.; Weiss, E. Electron-microscope studies on the pathogenesis of infectious bursal disease after intrabursal application of the causal virus. Avian Dis. 1976, 20, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Rautenschlein, S.; Yeh, H.Y.; Njenga, M.K.; Sharma, J.M. Role of intrabursal T cells in infectious bursal disease virus (IBDV) infection: T cells promote viral clearance but delay follicular recovery. Arch Virol. 2002, 147, 285–304. [Google Scholar] [CrossRef] [PubMed]
- Janeway, C.J. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 1992, 13, 11–16. [Google Scholar] [CrossRef]
- Kunzendorf, U.; Tran, T.H.; Bulfone-Paus, S. The Th1-Th2 paradigm in 1998: Law of nature or rule with exceptions. Nephrol. Dial. Transplant. 1998, 13, 2445–2448. [Google Scholar] [CrossRef] [Green Version]
- Jouanguy, E.; Döffinger, R.; Dupuis, S.; Pallier, A.; Altare, F.; Casanova, J.L. IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol. 1999, 11, 346–351. [Google Scholar] [CrossRef]
- Avery, S.; Rothwell, L.; Degen, W.D.; Schijns, V.E.; Young, J.; Kaufman, J.; Kaiser, P. Characterization of the first nonmammalian T2 cytokine gene cluster: The cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokinelike transcript, KK34. J. Interferon Cytokine Res. 2004, 24, 600–610. [Google Scholar] [PubMed]
- Becker, Y. The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers—A review and hypothesis. Virus Genes 2004, 28, 5–18. [Google Scholar] [CrossRef]
- Lowenstein, C.J.; Alley, E.W.; Raval, P.; Snowman, A.M.; Snyder, S.H.; Russell, S.W.; Murphy, W.J. Macrophage nitric oxide synthase gene: Two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc. Natl. Acad. Sci. USA 1993, 90, 9730–9734. [Google Scholar] [CrossRef] [Green Version]
- Bashir, K.; Kappala, D.; Singh, Y.; Dar, J.A.; Mariappan, A.K.; Kumar, A.; Krishnaswamy, N.; Dey, S.; Chellappa, M.M.; GoswamiTapas, K.; et al. Combination of TLR2 and TLR3 agonists derepress infectious bursal disease virus vaccine-induced immunosuppression in the chicken. Sci. Rep. 2019, 9, 8197. [Google Scholar] [CrossRef]
- Li, L.; Pielsticker, C.; Han, Z.; Kubasová, T.; Rychlik, I.; Kaspers, B.; Rautenschlein, S. Infectious bursal disease virus inoculation infection modifies Campylobacter jejuni-host interaction in broilers. Gut Pathog. 2018, 10, 13. [Google Scholar] [CrossRef] [Green Version]
Group | Virus | Hours Post Infection (hpi) & | Days Post Infection (dpi) & | |||||
---|---|---|---|---|---|---|---|---|
4 | 8 | 12 | 1 | 3 | 5 | 7 | ||
1 | NN1172 | IH @, innate antiviral profiles of the ILP cells $, viral load | BBIX and Bursal viral load | |||||
2 | B87 | innate antiviral profiles of the ILP cells $, viral load | - | |||||
3 | PBS | IH @, innate antiviral profiles of the ILP cells $, viral load | BBIX and Bursal viral load |
Genes | Direction | Sequence | Product (bp) | Accession no. in GenBank |
---|---|---|---|---|
TLR3 [18] | Forward | GCAACACTTCATTGAATAGCCTTGAT | 92 | NM001011691.3 |
Reverse | GCCAAACAGATTTCCAATTGCATGT | |||
IRF7 [25] | Forward | ACCACATGCA GACAGACTGACACT | 146 | AF268079 |
Reverse | GGAGTGGATGCAAATGCTGCTCTT | |||
IFN-α [26] | Forward | GGACATGGCTCCCACACTAC | 75 | GU119896.1 |
Reverse | TCCAGGATGGTGTCGTTGAAG | |||
IFN-β [18] | Forward | TTCTCCTGCAACCATCTTC | 82 | NM001024836.1 |
Reverse | GAGGTGGAGCCGTATTCT | |||
PKR [27] | Forward | CCTCTGCTGGCCTTACTGTCA | 151 | AB125660.1 |
Reverse | AAGAGAGGCAGAAGGAATAATTTGCC | |||
OAS [28] | Forward | CACGGCCTCTTCTACGACA | 103 | AB037592.1 |
Reverse | TGGGCCATACGGTGTAGACT | |||
Mx [25] | Forward | TTCACGTCAATGTCCCAGCTTTGC | 85 | NM204609 |
Reverse | ATTGCTCAGGCGTTTACTTGCTCC | |||
iNOS | Forward | CAGCCAGCTCATCCGATAT | 307 | D85422.1 |
Reverse | TTCCAGACCTCCCACCTC | |||
Arg | Forward | CTTGGCACTTGGTTCTGT | 169 | NM001199704.1 |
Reverse | GCTGTGGGACTTTATCTTG | |||
IL-10 [26] | Forward | ATGCTGCGCTTCTACACA | 73 | NM001004414.2 |
Reverse | CCATGCTCTGCTGATGACT | |||
IL-12 [26] | Forward | TCTGCTAAGACCCACGAGA | 82 | DQ202328.1 |
Reverse | TTGACCGTATCATTTGCCCAT | |||
IFN-γ [29] | Forward | CTGAAGAACTGGACAGAGAG | 264 | NM205149.2 |
Reverse | CACCAGCTTCTGTAAGATGC | |||
IL-4 [30] | Forward | TGTGCTTACAGCTCTCAGTG | 212 | NM001007079.1 |
Reverse | ACGCATGTTGAGGAAGAG | |||
TNF-α | Forward | TTGCCCTTCCTGTAACCA | 66 | HQ739087.1 |
Reverse | AGCCAAGTCA ACGCTCCT | |||
GAPDH [18] | Forward | GCCATCACAGCCACACAGA | 120 | NM204305.2 |
Reverse | TTTCCCCACAGCCTTAGCA | |||
IBDV-VP2 [31] | Forward | ACCGGCACCGACAACCTTA | 117 | FJ615511.1 |
Reverse | CCCTGCCTGACCACCACTT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Chen, J.; Xiang, Y.; Chen, Y.; Shen, W.; Wang, W.; Li, Y.; Wei, P.; He, X. Differential Modulation of Innate Antiviral Profiles in the Intestinal Lamina Propria Cells of Chickens Infected with Infectious Bursal Disease Viruses of Different Virulence. Viruses 2022, 14, 393. https://doi.org/10.3390/v14020393
Chen R, Chen J, Xiang Y, Chen Y, Shen W, Wang W, Li Y, Wei P, He X. Differential Modulation of Innate Antiviral Profiles in the Intestinal Lamina Propria Cells of Chickens Infected with Infectious Bursal Disease Viruses of Different Virulence. Viruses. 2022; 14(2):393. https://doi.org/10.3390/v14020393
Chicago/Turabian StyleChen, Rui, Jinnan Chen, Yanhua Xiang, Yanyan Chen, Weiwei Shen, Weiwei Wang, Yihai Li, Ping Wei, and Xiumiao He. 2022. "Differential Modulation of Innate Antiviral Profiles in the Intestinal Lamina Propria Cells of Chickens Infected with Infectious Bursal Disease Viruses of Different Virulence" Viruses 14, no. 2: 393. https://doi.org/10.3390/v14020393
APA StyleChen, R., Chen, J., Xiang, Y., Chen, Y., Shen, W., Wang, W., Li, Y., Wei, P., & He, X. (2022). Differential Modulation of Innate Antiviral Profiles in the Intestinal Lamina Propria Cells of Chickens Infected with Infectious Bursal Disease Viruses of Different Virulence. Viruses, 14(2), 393. https://doi.org/10.3390/v14020393